
fnins-12-00800 October 31, 2018 Time: 18:45 # 1

MINI REVIEW
published: 02 November 2018

doi: 10.3389/fnins.2018.00800

Edited by:
Annalisa Buffo,

Università degli Studi di Torino, Italy

Reviewed by:
Karine Merienne,

Centre National de la Recherche
Scientifique (CNRS), France

Dario Besusso,
Institute of Neuroscience (CAS), China

*Correspondence:
Dimitra Thomaidou

thomaidou@pasteur.gr
Jenny Sassone

sassone.jenny@hsr.it

Specialty section:
This article was submitted to

Neurogenesis,
a section of the journal

Frontiers in Neuroscience

Received: 29 June 2018
Accepted: 15 October 2018

Published: 02 November 2018

Citation:
Sassone J, Papadimitriou E and

Thomaidou D (2018) Regenerative
Approaches in Huntington’s Disease:

From Mechanistic Insights
to Therapeutic Protocols.
Front. Neurosci. 12:800.

doi: 10.3389/fnins.2018.00800

Regenerative Approaches in
Huntington’s Disease: From
Mechanistic Insights to Therapeutic
Protocols
Jenny Sassone1* , Elsa Papadimitriou2 and Dimitra Thomaidou2*

1 Vita-Salute University and San Raffaele Scientific Institute, Milan, Italy, 2 Department of Neurobiology, Hellenic Pasteur
Institute, Athens, Greece

Huntington’s Disease (HD) is a neurodegenerative disorder caused by a CAG expansion
in the exon-1 of the IT15 gene encoding the protein Huntingtin. Expression of mutated
Huntingtin in humans leads to dysfunction and ultimately degeneration of selected
neuronal populations of the striatum and cerebral cortex. Current available HD therapy
relies on drugs to treat chorea and control psychiatric symptoms, however, no therapy
has been proven to slow down disease progression or prevent disease onset. Thus,
although 24 years have passed since HD gene identification, HD remains a relentless
progressive disease characterized by cognitive dysfunction and motor disability that
leads to death of the majority of patients, on average 10–20 years after its onset.
Up to now several molecular pathways have been implicated in the process of
neurodegeneration involved in HD and have provided potential therapeutic targets.
Based on these data, approaches currently under investigation for HD therapy aim on
the one hand at getting insight into the mechanisms of disease progression in a human-
based context and on the other hand at silencing mHTT expression by using antisense
oligonucleotides. An innovative and still poorly investigated approach is to identify
new factors that increase neurogenesis and/or induce reprogramming of endogenous
neuroblasts and parenchymal astrocytes to generate new healthy neurons to replace
lost ones and/or enforce neuroprotection of pre-existent striatal and cortical neurons.
Here, we review studies that use human disease-in-a-dish models to recapitulate
HD pathogenesis or are focused on promoting in vivo neurogenesis of endogenous
striatal neuroblasts and direct neuronal reprogramming of parenchymal astrocytes,
which combined with neuroprotective protocols bear the potential to re-establish brain
homeostasis lost in HD.

Keywords: Huntington’s disease, iPCs, direct reprogramming, neuroprotection, in vivo reprogramming, miRNAs

INTRODUCTION

Huntington’s Disease (HD) is an autosomal-dominant neurodegenerative disorder with prevalence
of ∼7–11 per 100,000 in the caucasian population (Spinney, 2010). It is caused by abnormal
expansion of a trinucleotide CAG repeat in exon 1 of the HTT gene (MacDonald et al., 1993)
and is characterized by severe motor, cognitive and psychiatric symptoms. HD neuropathology
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is characterized by preferential degeneration of GABAergic
medium spiny neurons (MSNs) of the striatum and, in a lesser
extent, of pyramidal projection neurons in cortical layers V,
VI, and III, innervating the striatum (Cudkowicz and Kowall,
1990). Neurodegeneration in HD is preceded by a long period
of neuronal dysfunction, associated with transcriptional and
epigenetic changes resulting in progressive loss of striatal
identity (Seredenina and Luthi-Carter, 2012; Langfelder et al.,
2016). Neurodegeneration in HD may also be accompanied by
decreased striatal neurogenesis, a fact that may also account for
part of HD symptomatology (Ernst et al., 2014). As of now,
molecular mechanisms underlying HD pathogenesis remain
elusive, and no therapeutic treatments are currently available
beyond clinical symptomatic management.

An effective therapy in HD may use a combined approach
of cell trans-differentiation and neuroprotection. The following
chapters review the main identified molecular pathways and
potential therapeutic targets which can lead to the development
of cell reprogramming and neuroprotective protocols (Figure 1).

CELL REPLACEMENT APPROACHES IN
ANIMAL MODELS OF HD

A variety of rodent models have been created to recapitulate
neuropathological features and symptoms of either juvenile, early
adult, or adult human HD (Mangiarini et al., 1996; Slow et al.,
2003) and to develop cell therapy protocols using renewable
cell sources, including fetal neural stem cells (NSCs), embryonic
stem cells (ESCs), induced pluripotent stem cells (iPSCs) and
induced neural stem cells (iNSCs) for brain repair in HD (for
review see (Tartaglione et al., 2017). The majority of recent
transplantation studies were performed using the Quinolinic
Acid (QA) excitotoxic lesion model, as it induces a selective loss
of striatal MSNs with a relative preservation of interneurons,
largely resembling the neuropathological features of human HD
(Beal et al., 1991). In these studies human progenitor cells, either
hESCs or hiPSCs were, prior to their transplantation, in vitro
differentiated to striatal progenitors or immature MSNs, either
through directed differentiation protocols modulating the levels
of extrinsic developmental signals, such as BMP/TGFβ (Carri
et al., 2013), Sonic Hedgehog (SHH) and Activin A (Arber et al.,
2015) or by forced expression of transcription factors (TFs)
involved in MSNs differentiation, such as GSX2 and EBF1 (Faedo
et al., 2017). In these studies, transplantation of the enriched
populations of striatal progenitors resulted in their functional
integration into the lesioned striatum, a subpopulation of which
differentiated to DARPP-32+MSNs (Arber et al., 2015), extended
fibers over a long distance (Faedo et al., 2017), projected to
the substantia nigra and received GABAergic and glutamatergic
inputs, leading to restoration of apomorphine-induced rotational
behavior (Ma et al., 2012). In a very recent study, a hydrogel
scaffold has been used for the more effective, rapid and scalable
directed differentiation of human iPSCs to striatal progenitors
in three-dimensional (3D) organoid-like structures (Adil et al.,
2018). 3D-derived striatal progenitors grafted into R6/2 HD mice
(Mangiarini et al., 1996), developed an MSN-like phenotype

and formed synaptic connections with host cells, resulting in
improvement of mice motor coordination (Adil et al., 2018).
Although the use of human cells – in particular healthy hESCs
that partially overcomes the problem of dealing with a diseased
system – bears potential for cell replacement, studies are still
in a preliminary stage and more rigorous testing of human
cell directed differentiation on 2D and 3D culture systems
and transplantation in various HD animal models is needed
to assess both circuit reconstruction and behavioral recovery
in HD.

IN VITRO DIFFERENTIATION FOR HD
MODELING

Whilst HD rodent models have undoubtedly yielded much useful
data, the nature of these systems makes insights gained from
such a stand-alone model limited when it comes to translation
in human patients. On the other hand, cell transplantation
has only partially restored lost function in pre-clinical models
and clinical trials. To this end the discovery and advancement
of iPSCs technology has allowed for a more thorough study
of human HD on a cellular and developmental level. The
first iPSC lines were generated from HD patients (Park
et al., 2008) and since then, many iPSC-based human HD
cell models with different CAG repeat lengths have been
generated, among which, the ones generated by the HD iPSC
Consortium are the best characterized (Jeon et al., 2012; The
HD iPSC Consortium, 2012). HD iPSCs and the neural cell
types derived from them recapitulate some disease phenotypes
found in both human patients and animal models, such as
altered cell growth (Jeon et al., 2012), cell adhesion, survival,
electrophysiological properties, metabolism (The HD iPSC
Consortium, 2012), protein clearance (proteasomal, autophagic),
oxidative stress/antioxidant response (Szlachcic et al., 2015) and
mitochondrial fragmentation (Guo et al., 2013). Interestingly,
gene expression studies have revealed that neurons derived
from HD iPSCs exhibit deregulated signaling pathways directly
related to development and neurogenesis. Conforti et al., 2018
showed that early telencephalic induction and late neural
identity are affected in cortical and striatal populations obtained
from HD iPSC lines. It was also reported for the first time
using cortical organoids that large CAG expansion causes
complete failure of the neuro-ectodermal acquisition, while
cells carrying shorter CAG repeats show gross abnormalities in
neural rosette formation as well as disrupted cytoarchitecture
(Conforti et al., 2018). Interestingly, gene-expression analysis
revealed that control organoids overlapped with differentiated
human fetal cortical areas, while HD organoids correlated
with the immature ventricular / subventricular zone (Conforti
et al., 2018). Along the same lines, recent data using
isogenic human embryonic stem cell (hESC) lines, suggest
that HD is caused by chromosomal instability and begins
far earlier than expected as a dominant-negative loss-of
function, rather than through the broadly accepted gain-of
toxic function mechanism (Ruzo et al., 2018). This evidence
supports the hypothesis that an early neurodevelopmental
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FIGURE 1 | Study of HD pathogenesis and possible therapeutic approaches in humans. (A) iPSC technology has made it possible to generate in vitro brain
organoids or subtype specific neuronal populations related to HD, such as MSNs, from HD patients’ fibroblasts, thus enabling the study of the neurodevelopmental
aspects of HD, as well as drug screening. Direct reprogramming of patients’ fibroblasts to induced-MSNs (iMSNs) facilitated the study of late onset HD pathogenesis,
since iMSNs retain age-related signatures. (B) In vivo regenerative approaches as possible therapeutic strategies, including transplantation of iMSNs or direct
reprogramming of resident glial cells into induced neurons in the striatum, remain to be further explored. On the other hand, neuroprotective approaches have been
more extensively explored aiming either at targeting REST complex activity, or at the restoration of BDNF levels, lipid metabolic pathways or mitochondrial function.

defect exists in HD and could contribute to the later adult
neurodegenerative phenotype (Lim et al., 2017; Wiatr et al.,
2018).

Considering this pathological phenotype, PSCs, including
iPSCs and ESCs, have been used to screen for HD therapies.
A screen in wild type human ESCs-derived neural stem cells
(NSCs) for chemical inhibitors of the transcriptional repressor
REST resulted in the identification of one potent compound,
named X5050, able to increase the expression of neuronal genes
targeted by REST in wild type neural cells (Charbord et al., 2013).
Acute intraventricular delivery of this small molecule increased
the expression of the key neurotrophic factor BDNF, being
depleted during disease progression (Zuccato et al., 2001), as well
as, several other REST-regulated genes in the prefrontal cortex
of mice with QA-induced striatal lesions (Charbord et al., 2013),
highlighting its potential therapeutic value in HD. In another
study led by the HD iPSC Consortium, RNA-seq analysis in iPSC-
derived neural cultures revealed consistent deficits related to
neurodevelopmental gene networks and led to the identification
of a small molecule, isoxazole-9 (Isx-9), that targeted several of
these dysregulated networks and successfully normalized CAG
repeat-associated phenotypes in both juvenile- and adult-onset

HD iPSC-derived neural cultures, as well as cognition and
synaptic pathology in R6/2 HD mice (Lim et al., 2017).

Hence, these results highlight that ESC/iPSC are promising
cellular models for the investigation of the molecular defects
underlying HD pathogenesis and the screening of compounds
for HD therapies. Important caveat remains the need for
optimization of human iPSC models, including reprogramming
and differentiation protocols, for the purposes of consistent
observation. Importantly, given the fact that human iPSCs
become rejuvenated by erasing epigenetic aging signatures
(Mertens et al., 2015), they seem more appropriate for studying
early onset diseases and this is probably the reason that
the majority of results obtained from studies using iPSCs
is derived from individuals with juvenile onset HD (>60
CAGs) rather than with adult onset HD (39–60 CAGs) (Park
et al., 2008; Guo et al., 2013; Szlachcic et al., 2015). The
contribution of epigenetic aging signature in the appearance
of HD pathology is also supported by the finding that human
iPSC-derived lines with expansion lower than 60 CAG repeats,
corresponding to late onset HD pathology, don’t exhibit
major observable pathological phenotypes (Mattis and Svendsen,
2018).
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Direct Reprogramming in HD:
Preservation of Age-Related Signatures
Accordingly it has been recently established that modeling
an adult-onset disorder might require the maintenance of
aging signatures. Along this line, direct reprogramming
approaches that result in the production of neuronal types
that retain donor age-dependent aging signatures, such
as age-specific transcriptional profiles, nucleo-cytoplasmic
compartmentalization and an aged DNA methylation epigenetic
clock (Mertens et al., 2015), seem to be appropriate human
models for the study of HD, which is primarily an adult-onset
disease. Victor et al., 2014 reported for the first time the
direct reprogramming of human fibroblasts into induced-
MSNs (i-MSNS), by force-expressing neurogenic miRNAs
miR-9/9∗−miR-124 together with the TFs CTIP2, DLX1/2,
and MYT1L. Interestingly, when the i-MSNs were transplanted
into the mouse striatum they survived for more than 6 months
and projected to their correct targets (Victor et al., 2014).
Recently the same group expanded this protocol for the in vitro
generation of i-MSNs from healthy and HD-patients’ fibroblasts
(Victor et al., 2018). Remarkably, HD neurons generated in
this manner displayed inclusion-body formation, mitochondrial
and metabolic dysfunction and cell death, mirroring the defects
occurring in the striatum of HD patients. By contrast, heMSNs
derived by direct conversion of human HD embryonic fibroblasts
(HEFs), produced by differentiation of HD-iPSCs, exerted a
milder HD phenotype with lower mHTT aggregation, supporting
the notion that the age-related decline in protein homeostasis
could contribute to HD pathology. Taken together the findings
of this study presented for the first time a patient-based
platform of MSNs for the study of the age-related mechanisms
of late onset HD pathogenesis and proved that in a human
context cellular age is an essential component underlying
the manifestation of HD phenotypes and that age-associated
reduction in protein homeostasis levels is primarily responsible
for mHTT aggregation in HD i-MSNs.

IN VIVO REPROGRAMMING FOR HD
THERAPY

A novel strategy for cell replacement therapy for HD is
the concept of in vivo cell reprogramming in the striatum,
which is the area mostly affected. Increasing evidence indicates
that astrocytes within the striatal parenchyma can undergo
endogenous trans-differentiation into neuroblasts after stroke
or QA-mediated excitotoxic lesion that induces selective loss
of striatal MSNs (Magnusson et al., 2014; Nato et al., 2015),
revealing the intrinsic existence of a latent neurogenic capacity
in the adult striatum. These cells were found to express markers
of immature newborn neurons like ASCL1 or DCX, while
some of them developed into mature NeuN+ neurons, several
of which expressed MSN TFs (Luzzati et al., 2011) and the
MSN marker neuronal nitric oxide synthase (nNOS), while
they formed synaptic connections (Magnusson et al., 2014).
However, most newborn neurons generated in both studies

have a short life-span and fail to express markers of fully
differentiated striatal neurons, either due to their precocious
death or lack of proper commitment, but attain complex and
specific morphologies (Magnusson et al., 2014; Nato et al., 2015).
Additionally, studies in early and late onset HD genetic models
have revealed the presence of newborn neurons in the striatal
area, that have either ectopically migrated from the SVZ (Kohl
et al., 2010) or have originated from selective proliferation
in the striatal area, respectively (Kandasamy et al., 2015).
Importantly, intraventricular administration of BDNF/Noggin in
R6/2 mice enhanced striatal neurogenesis and delayed motor
impairment, implicating induced neurogenesis as an important
contributor to functional recovery (Cho et al., 2007). Along the
same lines, continuous administration of FGF2 in R6/2 mice
not only stimulated SVZ neurogenesis and newborn neurons’
recruitment to the striatum, but also provided neuroprotection
and prolonged survival of striatal neurons (Jin et al., 2005). In
parallel, in vivo reprogramming has been a promising approach
for the conversion of glial cells (astrocytes, NG2 glia and
pericytes) into more mature, subtype-specific neurons under
defined conditions using specific TFs both in the injured cortex
(Heinrich et al., 2010, 2014; Guo et al., 2014) and normal
striatum (Niu et al., 2013; Torper et al., 2013, 2015). In some
of those studies the induced neurons were electrophysiologically
functional and could integrate into the endogenous circuitry
(Guo et al., 2014; Torper et al., 2015), highlighting the potential
of this approach in producing functionally mature neurons
in vivo. Recently the in vivo direct reprogramming approach has
been successfully employed in a mouse model of Parkinson’s
disease (Rivetti Di Val Cervo et al., 2017). In this study a
combination of the TFs NEUROD1, ASCL1, and LMX1A with
the microRNA miR-218 was used in order to reprogram adult
striatal astrocytes into induced dopaminergic neurons that were
shown to be excitable and managed to correct some aspects
of motor behavior in vivo. However, it must be kept in mind
that enhancement of endogenous neurogenesis, or in vivo
reprogramming do not address the fact that mHTT is not
targeted and is widely expressed throughout the brain, so a
primary neurodegenerative process can occur in newly generated
cells. However, as HD is an age related disease, a high rate
of new neurogenesis may lead to tissue rejuvenation providing
substantial benefit. Thus, in vivo direct reprogramming remains
a promising approach for the production of healthy MSNs
in the striatum with interesting and still largely unexplored
potential, especially if the reprogramming process is combined
with gene therapy strategies aiming at the down-regulation of
mHTT in the reprogrammed newborn neurons. To this end,
approaches to reduce mHTT levels in vivo in animal HD models
are being tested over the last decade using either intrastriatal
rAAV-mediated delivery of anti-mHTT shRNAs (Rodriguez-
Lebron et al., 2005), antisense oligonucleotides (ASO) that
catalyze RNase H-mediated degradation of mHTT mRNA
(Kordasiewicz et al., 2012), or more recently miRNA-based
mHTT mRNA-lowering using AAV viral vectors (Miniarikova
et al., 2017). All these approaches so far (recently reviewed in
Miniarikova et al., 2018) show promising results in alleviating
HD symptomatology in animal models and could potentially

Frontiers in Neuroscience | www.frontiersin.org 4 November 2018 | Volume 12 | Article 800

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00800 October 31, 2018 Time: 18:45 # 5

Sassone et al. Regenerative Approaches in Huntington’s Disease

be combined with regenerative therapeutic strategies and/or
neuroprotective molecules in order to further enhance their
therapeutic effect on HD progression. To this end, a recently
released drug trial using the antisense oligonucleotide, IONIS-
HTTR that targets Huntingtin mRNA and suppresses mutant
HTT production, has shown promise as a potential disease-
modifying HD therapy (Tabrizi et al., 2018).

THE ROLE OF miRNAs IN HD
THERAPEUTIC APPROACHES

As already mentioned, miRNAs (miR-9/9∗, miR-124, miR-218)
have been already used in direct reprogramming protocols in
combination with TFs to produce induced-striatal, cortical or
motor neurons. Interestingly, besides their promising use in
direct reprogramming protocols to slow down HD progression,
miRNAs are also implicated in HD pathology and it has been
very recently reported that disease-specific miRNAs have been
detected in the cerebrospinal fluid (CSF) of HD patients (Reed
et al., 2017) and could be potentially used as early HD prognostic
markers. The perturbation of the neural miRNA system observed
in HD, in many cases occurs through a mechanism involving
the REST complex. REST complex targets include the neuronal
specific microRNAs miR-9/9∗, miR-29a, miR-29b, miR-124 and
miR-132 (Johnson and Buckley, 2009), all being dysregulated
in human HD samples, or mouse models of HD. Conversely,
components of the REST complex are targets for down-regulation
by certain neurogenic miRNAs, such as miR-9/9∗ and miR-
124, suggesting that their neurogenic potential is at least in
part due to challenging REST complex levels and/or activity
(Visvanathan et al., 2007; Packer et al., 2008), a concept that
may have far reaching implications regarding experimental
therapeutic strategies for HD. miR-124 is the most abundant
miRNA in both the embryonic and adult CNS, acting globally
to increase the expression levels of neuronal genes through
several different pathways, including repression of anti-neural
transcriptional repressor REST complex (Visvanathan et al.,
2007). Dysregulation of miR-124 has been shown in many CNS
disorders and conditions, including CNS tumors, inflammation
and stroke (Sun et al., 2015). During HD progression in
particular, the levels of miR-124, as well as other neurogenic
miRNAs, are significantly reduced (Johnson and Buckley, 2009),
resulting in disorganization of the neurogenic program. On the
other hand miR-124 enhances striatal neurogenesis in HD, as
striatal stereotaxic injection of miR-124 mimics increased striatal
cells’ proliferation and improved motor function of R6/2 mice
(Liu et al., 2015), while exosomal delivery of miR-124 in a mouse
model of ischemia led to an increase in cortical neurogenesis
and ameliorated the injury (Yang et al., 2017). However, the
neurogenic/ neuroprotective potential of miR-124 in HD remains
to be further studied, as in a recent study exosome-based delivery
of miR-124 in the striatum of R6/2 mice did not lead to a
behavioral improvement (Lee et al., 2017). In light of the evidence
provided that the neural miRNA system is affected during HD
progression, the mechanism of action of specific brain-enriched
miRNAs in instructing or reinforcing neurogenesis or in vivo

neuronal reprogramming would lead to the identification of new
therapeutic strategies to combat HD.

NEUROPROTECTION AS A MEANS TO
REDUCE OR PREVENT NEURONAL
DEGENERATION IN HD

It is obvious from recent studies that although significant
advances have been made in the identification of molecular
pathways and screening of potential drug targets using stem
cells and reprogramming technologies (for review see (Connor,
2018), a stand-alone therapeutic strategy cannot reverse HD
progression. Promoting neuronal replacement from endogenous
sources and fostering neuroprotection of existing neurons are
distinct but complementary strategies in view of devising an
effective therapy in HD. Coupling these two approaches, ideally
along with – as already mentioned – a strategy for the
downregulation of mHTT, could have profound clinical impact.
On the one hand induced-newborn neurons will rejuvenate
the injured striatum, but require substantial support for their
long-time survival and incorporation into the existing neural
networks, while on the other hand the existing mature neurons
need also support in order to alleviate their degeneration
due to the wide presence of mHTT in the diseased brain.
Thus, molecular mechanisms enhancing neurogenesis and
neuroprotection represent valuable candidates in the field.

Neuroprotective Protocols Aimed at
Restoring BDNF Levels
Countless evidence shows that BDNF or BDNF/TRKB signaling
is reduced in HD due to a mHTT-mediated mechanism.
Produced by cortical neurons, BDNF promotes neuronal growth,
survival of striatal neurons and plasticity. mHTT causes changes
in vesicular transport of BDNF and transcriptional down-
regulation of the BDNF gene. Indeed, BDNF levels are decreased
in HD mouse models and in the brains of HD patients (Zuccato
and Cattaneo, 2014). Restoration of BDNF levels is of interest in
HD and delivery of BDNF through viral or stem-cell vehicles has
shown some potential in inducing striatal neuronal regeneration,
delaying motor impairment and extending survival in HD
mouse models (Cho et al., 2007), but delivering a protein-based
therapeutic to the CNS remains an important challenge. Because
BDNF acts principally through binding to TRKB receptors,
one approach is the developing of TRKB agonists and TRKB
monoclonal antibodies. Several experimental compounds have
been tested in HD mouse models and provided promising
neuroprotective effects (Wild and Tabrizi, 2014). In particular
small molecule modulation of p75NTR TRKB receptor has been
shown to effectively reduce HD phenotype in mouse models
providing evidence that targeting p75NTR may be an effective
strategy for HD treatment (Simmons et al., 2013, 2016). Another
innovative approach to restore BDNF levels is by inhibiting the
formation of the REST-mSIN3 complex that is required for BDNF
transcriptional repression. One compound has been identified,
and encouraging results obtained in mHTT knock-in NSC lines

Frontiers in Neuroscience | www.frontiersin.org 5 November 2018 | Volume 12 | Article 800

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00800 October 31, 2018 Time: 18:45 # 6

Sassone et al. Regenerative Approaches in Huntington’s Disease

(Conforti et al., 2013). Alternatively, as already discussed,
neurogenic miRNAs and in particular miR-9/9∗ and miR-124
could serve as therapeutic agents to target the REST complex, as
they have been both shown to down-regulate either REST itself
(Packer et al., 2008) or other REST cofactors (Visvanathan et al.,
2007). Thus, a combination of chemical compounds and miRNAs
reducing REST complex formation may prove effective for HD
treatment.

Neuroprotective Approaches Acting on
Metabolic Pathways
A big number of studies has highlighted mitochondrial defects
leading to impaired energy metabolism and cellular oxidative
stress in HD models and tissues of HD patients (Guedes-Dias
et al., 2016; Liot et al., 2017). In this context, a potential target
is the peroxisome proliferator-activated receptor (PPAR) gamma
coactivator 1 alpha (PGC-1α), a transcriptional co-regulator of
many nuclear-encoded mitochondrial genes. Expression of PGC-
1α and its target genes get reduced in HD tissues and drugs
able to activate PPAR nuclear receptors exert neuroprotective
effects in both cellular and mouse HD models (Chiang et al.,
2012). The ATPase valosin-containing protein (VCP), is another
molecular target for HD as treatment with the HV-3 VCP
deriving peptide that abolishes mHTT/VCP interaction corrects
excessive mitophagy and reduces cell death in in vitro and
in vivo HD models (Guo et al., 2016). Finally, a mitochondrial
pathway which when targeted may provide neuroprotection in
HD and other polyglutamine diseases is the activation of anti-
apoptotic proteins belonging to B-cell lymphoma 2 (BCL2)
family. As in vitro and in vivo models of HD and HD patients’
tissues show alterations in BCL2 family protein expression and
localization (Sassone et al., 2013), it was suggested that inhibition
of selected BCL2 family proteins may provide neuroprotection.
Interestingly, BCL2 has been shown to act as a key factor for the
improvement of glial-to-neuron direct reprogramming in vitro
and in vivo by reducing cell death occurring due to the metabolic
state transition of reprogrammed cells (Gascón et al., 2016).

Evidence also shows abnormal lipid metabolic pathways
in HD and suggests that the development of new targets to
restore their balance may act to ameliorate some HD symptoms
(Desplats et al., 2007). A lipid pathway that dysfunctions in
HD is the cholesterol metabolic pathway, as the expression
of genes involved in the cholesterol biosynthetic pathway
and the levels of cholesterol, lanosterol, lathosterol and 24S-
hydroxycholesterol were found to be reduced in the brain of HD

mouse models (Arenas et al., 2017). A recent study revealed a
new cholesterol-targeting therapeutic strategy for HD through
identifying abnormally low levels of the enzyme cholesterol 24-
hydroxylase (CYP46A1) in HD models and in post-mortem brain
tissues of HD patients. Delivery of CYP46A1 into the striatum
of HD models decreased neuronal atrophy and improved motor
deficits, implying that restoring CYP46A1 activity promises a
new therapeutic approach in HD (Boussicault et al., 2016).
Interestingly a nanoparticle-based cholesterol delivering strategy
was able to restore synaptic and cognitive impairment in R6/2 HD
mice, supporting the idea that therapies aimed to restore brain
cholesterol level may have a significant impact in HD treatment
(Valenza et al., 2015).

CONCLUSION

Recent achievements in iPSC technology have contributed
substantially to the understanding of the HD pathology
and the screening for potential therapeutic molecules for
HD. Furthermore, the advancements in in vivo neuronal
reprogramming in different regions of the CNS, such as the
cortex, the striatum, the spinal cord and the midbrain have
opened new possibilities for the treatment of neurodegenerative
diseases. Benefiting from those advances, a possible new
approach for the treatment of HD could be a combination
of promoting neuronal replacement from endogenous sources
by direct reprogramming along with fostering neuroprotection
by restoring BDNF levels or metabolic dysfunction of existing
neurons, ideally in conjunction with the promising strategy of the
down-regulation of mHTT levels.
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