
TEM Journal. Volume 7, Issue 4, Pages 842-848, ISSN 2217-8309, DOI: 10.18421/TEM74-23, November 2018.

842 TEM Journal – Volume 7 / Number 4 / 2018

Integrating Third-party Services Using Brokers

in the Serious Games’ Domain

Stefan Dimitrov Stavrev
1
, Todorka Zhivkova Terzieva

1
, Angel Atanasov Golev

1

1
Faculty of mathematics and informatics, Plovdiv University “Paisii Hilendarski”,

24 Tsar Asen, 4000 Plovdiv, Bulgaria

Abstract – In this paper we demonstrate how to

integrate 3rd party services in serious games. We use

message queue broker and micro-services in a

publish/subscribe manner in order to use real-time 3rd

party data into a serious game’s logic. First, we discuss

the benefits of service oriented architecture. Then, we

analyse and compare different message queues brokers

in terms of data latency, throughput, fail-tolerance and

scalability for the purpose of serious games. As a

sequence, we apply those best practices from other

domains in the field of Serious Games (SGs). Finally,

we summarize the presented ideas and comparisons

and draw conclusions.

Keywords – Serious games, Message oriented

middleware, systems integration, message queue.

1. Introduction

Message queues (MQ) have been around since the

80’s. They have the benefit of handling and

exchanging large amounts of data between different

systems. They have already been successfully

applied in various domains – handling transactions in

bank institutions and stock exchange, handling real-

time messages for social networks like Facebook and

LinkedIn. Message queues are used in operating

systems to route mouse and keyboard input. MQ

DOI: 10.18421/TEM74-23
https://dx.doi.org/10.18421/TEM74-23

Corresponding author: Stefan Dimitrov Stavrev,
Faculty of mathematics and informatics, Plovdiv
University “Paisii Hilendarski”, Plovdiv, Bulgaria
Email: stavrev@fmi-plovdiv.org

Received: 28 July 2018.
Accepted: 22 October 2018.
Published: 26 November 2018.

© 2018 Stefan Dimitrov Stavrev, Todorka
Zhivkova Terzieva, Angel Atanasov Golev; published by
UIKTEN. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivs 3.0
License.

The article is published with Open Access at
www.temjournal.com

brokers are linearly scalable, able to work in nodes

and even in the cloud [13]. However, their

application in the video games industry and in the

serious games domain in particular has remained

somewhat limited. Multi-player servers still rely on

the request/response paradigm. Services and service

oriented architecture [2], on the other hand, is an

emerging trend in the field of serious games

development.

2. Previous work

 Recent research in the field of Serious Games is

conducted on architecture that is oriented entirely

towards services [4,3]. Service-Oriented Architecture

(SOA) is a set of practices for architectural design of

software that exploits services as loosely coupled

components orchestrated to deliver various

functionalities. The SOA paradigm is not well

established in the SG domain, yet. The components

provide independent services to other components of

the serious game or application. The key principles in

this particular design are modularization and re-use

of functionalities. That concept in not new in the

field of computer science but is relatively rarely

applied, yet, in the field of games and serious games

in particular [10,11]. Additional benefit of using

services is the lack of compile-time dependencies.

Moreover, it is entirely possible to have the core

gaming as a service in a centralized server. But the

biggest advantage remains the re-use of components

[7] - shared user profiles, knowledge databases on

learning topics, natural language processing dialog

services, exchanging scores between different game

instances. Of course, the SOA approach is not

without shortcomings. Some of the challenges are

that the quality assurance and testing module

integration tend to be more difficult when developing

SOA applications. In addition, sometimes the lack of

documentation on the usage of interfaces makes

integration with a certain service difficult.

Furthermore, extra attention to services description

needs to be kept in mind. Another limitation of the

SOA approach is that the game needs to be

constantly online, i.e. connected to a certain service

or services. That last restriction makes the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201616704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TEM Journal. Volume 7, Issue 4, Pages 842-848, ISSN 2217-8309, DOI: 10.18421/TEM74-23, November 2018.

TEM Journal – Volume 7 / Number 4 / 2018. 843

architecture less flexible. Finally, there is the

additional performance cost due to network calls.

Some of those shortcomings can be avoided by

getting service data in a publish/subscribe manner

instead of direct request/reply [13]. The

publish/subscribe methodology is a well know

programming paradigm in the field of computer

science - it allows loose coupling between system

components [1]. It has been successfully applied in

various domains where complex subsystems,

possibly written in different programming languages,

need to exchange information [5]. An additional

benefit is that the constant internet connection

problem in no longer a requirement by using a

message queue in between the game and the 3rd

party service.

Message queues are middleware systems that

enable developers to have fault-tolerant, distributed,

decoupled, service oriented architecture. But why not

use traditional request/response pattern for serious

games? First, let us take a closer look at the problem

we are presented with. The typical requirements are

that SGs should be light, decoupled, possibly run on

low-end hardware, be easily scalable and make use

of 3rd party services [10, 11]. Using a traditional

request/response pattern (REST, for instance) from

inside the game logic will put additional demand on

the hardware resources which we want to avoid. The

constant requesting whether there is new data

available from the 3rd party server is a cumbersome

operation. An event-driven server architecture (with

web-sockets, for instance) can potentially solve the

constant data polling demand but still the game logic

will be tightly coupled with the 3rd party services.

That in turn sacrifices application scalability. On the

other hand, real-time data is highly dynamic by

nature. In the event of a network failure, 3rd party

data will be lost. Another advantage of using MQs

over traditional direct messaging is their

asynchronous nature, which allows us to put a

message on the queue without processing it

immediately.

3. Previous work

Adding a MQ broker in between the game logic

and the 3rd party service solves some of the

integration problems with SOA. However, there is a

number of messaging brokers available; most of

them are open-source, others are proprietary. When

it comes to choosing the right one we must keep in

mind that there is no silver bullet – no one single

solution can fit all requirements [16]. That is why

we will briefly compare the most widely-used

brokers and pick one to be used with our SGs

architecture – DiAS [12]. In addition, we must keep

in mind the individual broker’s design intent. In that

context, there are several broker metrics that are

important for us:

 Throughput of messages

 Low-latency

 Number of protocols supported out of the

box

 Number of features supported out of the box

 Fault-tolerance and data recovery

 Scalability

A very good collection and description of different

messaging systems is put on [21]. However, since

there are too many brokers available and each of

them is created for a different purpose, we are not

going to compare them directly. Instead, we will

investigate 3 of the most popular, general purpose

brokers. The 4-tier architecture that we propose later

in this paper allows for changing the broker at any

time with little configuration.

3.1. ActiveMQ

The first broker we will investigate is Apache

ActiveMQ [22]. It is written in JAVA and is based

on JMS [14]. It is open source, under the Apache 2.0

license. Because the broker is JMS-based, it supports

2 types of messaging: topic based and queue based.

The queue based messaging is point-to-point: a

sender (or also known as publisher) sends a message

to a queue and the message is received by exactly

one receiver. The other type of messaging is

publish/subscribe: a publisher sends a message to a

topic and all subscribers to that topic are going to

receive it. ActiveMQ supports several wire level

protocols: OpenWire, STOMP, MQTT, REST

(HTTP GET/POST), AMQP [6]. ActiveMQ supports

3 types of message persistence: AMQ message store

(fast read-write), non-journaled JDBC [15] (reliable

but not fast) and journaled JDBC (reliable and faster

than JDBC). Last but not the least, ActiveMQ offers

a nice web-console to monitor and manage the broker

traffic in real-time.

3.2. Kafka

The next on the list is Apache Kafka. It is a broker

written in SCALA. Kafka is a persistent, distributed,

replicated publish/subscribe messaging system [23].

It typically consists of a cluster of brokers. The

brokers are stateless, i.e. consumers maintain their

own state (with the help of ZooKeeper [27] by

default). Kafka has only topics, which can be tuned

to act as queues if needed. For message transport,

Kafka uses its own binary protocol over TCP. Clients

can interface with the broker via web sockets.

Apache Kafka has fewer features out of the box – it

is built for performance and high throughput. Kafka

TEM Journal. Volume 7, Issue 4, Pages 842-848, ISSN 2217-8309, DOI: 10.18421/TEM74-23, November 2018.

844 TEM Journal – Volume 7 / Number 4 / 2018

is created with horizontal scaling in mind.

Unfortunately, Apache Kafka ships with built-in

support for JAVA clients only.

3.3. RabbitMQ

The last broker to consider in our list is RabbitMQ

[25]. It is written in the Erlang programming

language. Communication in RabbitMQ can be either

synchronous or asynchronous. Publishers send

messages to exchanges which are something like

group mailboxes. After that, exchanges resend those

messages to queues. Finally, consumers retrieve

messages from those queues. The use of exchanges

which reroute messages to queues is required

because RabbitMQ implements the latest

specification of the AMQP [6]. With additional

plugins however, RabbitMQ has added support for

JMS, STOMP and HTTP clients. RabbitMQ has only

queues (because of the AMQP again). RabbitMQ

uses central node for message routing. That is why it

is most suitable for vertical scalability scenarios. In

contrast with Kafka, the broker keeps track of

consumer state.

4. Messaging protocols

4.1. AMQP

AMQP [6,16], stands for Advanced Message

Queuing Protocol. The idea behind its development

was to replace the existing proprietary messaging

middleware [8, 10]. The main reasons to use AMQP

are reliability and interoperability. Out-of-the-box

AMQP comes with a variety of messaging features.

Some of those features are: topic-based publish-and-

subscribe messaging, reliable queuing, security,

routing, and transactions. The protocol exchanges the

required messages directly by either a topic, or via

headers. AMQP is a binary executable, and works on

the application level. It is designed to efficiently

support a wide variety of messaging applications and

communication patterns. AMQP only has queues

which in turn are only consumed by a single receiver.

AMQP data client applications are not designed to

publish messages directly to queues. Instead, a

message is published to an exchange, which through

its bindings may get sent to one or multiple queues.

4.2. MQTT

MQTT (Message Queue Telemetry Transport) [16,

24] was originally developed by one of the teams in

IBM. MQTT was designed to provide publish-and-

subscribe messaging (no queues). It was also

envisioned to be used with resource-constrained

devices and low bandwidth scenarios, high latency

networks such as dial up lines and satellite links, for

instance. It can be used effectively in embedded

systems. MQTT has the advantage of being low

footprint and it makes it ideal for today’s “Internet of

Things” style applications. MQTT offers three

qualities of service (QoS):

 At most once / unreliable - QoS level 0

 At least once, to ensure it is sent a minimum

of one time (but might be sent more than one

time), QoS level 1

 Exactly once, QoS level 2

MQTT’s strengths are simplicity, a compact binary

packet footprint, and it makes a good fit for simple

push messaging scenarios such as humidity updates,

wind speeds, oil pressure feeds, stock price

movements or mobile notifications [16].

4.3. STOMP

STOMP (Simple/Streaming Text Oriented

Messaging Protocol) is text-based protocol and is

very similar to HTTP [16, 26]. STOMP provides a

message (also known as “frame”) header with

properties, and a frame body, similarly to AMQP.

The intent behind STOMP was to create simple, yet

widely-interoperable protocol. For instance, one can

use a telnet client to connect to a STOMP broker. By

design, STOMP does not deal in queues and topics.

Instead, it uses a SEND semantic with a

“destination” string [16]. The broker must map onto

something that it understands internally such as an

exchange, queue or topic. Consumers then

SUBSCRIBE to those destinations. Since those

destinations are not mandated in the specification,

different brokers may support different

implementations of the term “destination”. That is

why, it usually takes an effort to port code between

brokers. However, STOMP is simple and

lightweight, with a wide range of language bindings.

To summarize, AMQP supports only queues, with

the possible emulation of topics. It is supported in:

Apache ActiveMQ, RabbitMQ, ApacheQpid. MQTT

is de facto the IoT data exchange protocol. It has

topics but no queues. It is with light footprint,

supported by various brokers: ActiveMQ, moquette,

WebSphereMQ. STOMP is the middle grounds

between the two protocols. It is lightweight with a

number of commands. It is supported by ActiveMQ,

RabbitMQ, Gozirra, Sprinkle and many others.

Having reviewed different MQs and the wire level

protocols at which each of them supports, we have

chosen Apache ActiveMQ (with STOMP) to use for

3rd party integration with serious games. The reason

is partially due to the wire level protocols that each

broker supports. As we have seen, Active MQ has

the largest client protocol support. In contrast,

RabbitMQ only comes up with AMQP by default

(which ActiveMQ also supports). Kafka, on the other

hand, implements its own binary protocol and while

it is fast it is also not very generic.

TEM Journal. Volume 7, Issue 4, Pages 842-848, ISSN 2217-8309, DOI: 10.18421/TEM74-23, November 2018.

TEM Journal – Volume 7 / Number 4 / 2018. 845

5. Services integration

First, let’s revise our distributed gaming

architecture – DiAS [12]: Figure 1. In DiAS, we

presented how a game instance is able to run

independently of its input layer.

In this paper, we will pay closer attention to the

integration of 3rd party services that may run on the

cloud. That part of the architecture is marked in red

in Figure 1.

Figure 1: DiAS serious game architecture.

Why do we need 3rd party services data into our

SG in the first place? First, because the trend

nowadays is oriented towards real-time services,

especially SGs [2, 3, 9]. Secondly, we can better

capture and reflect the real-world conditions into the

DiAS architecture. Imagine the following use case: a

player enters the digital environment. Instead of a

fixed day-night cycle and weather conditions, that

information can be provided in real-time via a 3rd

party weather service (Figure 2.). Another example

is: we want a school class schedule to be available

and visualized inside our game. Serious games

usually keep track of scores – how much points have

each individual player accumulated during the course

of the game. What if we want to compare that score

to the scores of all students across the whole school –

some mechanism needs to be put into place that

collects, aggregates, arranges and finally – presents

the summarized scoring information to a certain

player. How do we integrate such a scoring system

across different classes or even – different schools?

Let’s take a look at Figure 2. We want to integrate

different 3rd party data sources into our game in

order to make it more dynamic and the gameplay –

service-oriented. To achieve that, we define a 4-tier

integration architecture, consisting of: data source

connectors, broker, clients and application.

5.1. Connectors

The first step is to connect to the 3rd party service

the provider API, get the data that interests us and

later – process it. There are several ways those tasks

can be achieved. We can, of course, program our

custom logic layer for each individual data source.

That approach, however, will have a bigger overhead

for adding new data sources in the future. Another

possibility is to use Enterprise Integration Patterns

[1]. Luckily enough, there are several

implementations of those patterns – Apache Camel

[17], Microsoft BizTalk Server [18] and IBM

WebSphere Application Server [19].

TEM Journal. Volume 7, Issue 4, Pages 842-848, ISSN 2217-8309, DOI: 10.18421/TEM74-23, November 2018.

846 TEM Journal – Volume 7 / Number 4 / 2018

Figure 2: DiAS 3rd party integration architecture

Without going into deep comparison between the

mentioned approaches, we chose Apache Camel as

our integration framework. The main reason for that

decision is:

 Camel is open source

 It supports ActiveMQ out of the box

 Supports JMS

 Is highly configurable with different data

sources connectors and processors

 Easy to add message endpoints.

Please note that 3rd party data comes available in

different format – XML, JSON, CSV, etc. In

addition, different services support various

communication protocols: SOAP, REST, web

sockets, MQ topic/queue. Apache Camel comes with

a built-in support for the most common protocols and

data formats. If a certain data format or

communication protocol is not supported, it can

easily be added. Another integration pattern that we

use is the notion of a data processor. It applies data

transformations from one data type to another. If the

source data needs to be cleaned and filtered, that is a

task for the data processor. Finally, the processed

data is published to an endpoint. In our case, that

endpoint is the MQ broker.

5.2. Broker

The second tier of our DiAS integration

architecture is the MQ broker. We have discussed

several MQ brokers and chosen Apache ActiveMQ.

It is lighter than Kafka, has built in support for

various communication protocols – AMQP, MQTT,

STOMP, Open wire. In addition, ActiveMQ has

direct support for Camel Endpoints [22]. JMS (on

which ActiveMQ is based) has the notion of topics

and queues. Topics and queues inside a JMS broker

are different delivery mechanisms. The main

difference between the two is the way messages are

delivered and the number of receiving entities. A

topic is a one-to-many delivery mechanism. It is the

classic implementation of a publish/subscribe

paradigm. Messages are delivered to a certain topic

by the publisher. Interested entities subscribe to

receive updates on certain topics. If there are zero

subscribers to a certain topic, the data will still be

available on the topic but will expire after a period of

time. There is no mechanism to notify the publisher

that one of the subscribers has received a message.

Queues, on the other hand, are point-to-point

delivery mechanisms. They are an implementation of

the push / pull mechanism. A publisher, in this case,

will put data to a queue. If there is a subscriber to

that queue, the message will be received by the

subscriber. If there are multiple subscribers to that

queue, the data will be received by exactly one

subscriber. If no subscribers are available at the time

of the data delivery to a queue, the data will be

persisted until there is one. The receiving entity has

to notify the sender that it has received the message –

in contrast, in the topic model, the subscribers have

no such obligation. In the event that multiple

messages are delivered one-after-the-other to a

queue, once a subscriber becomes available, it will

receive all the messages for that queue in a FIFO

manner. Another aspect that ActiveMQ introduces is

the notion of durability [20]. A durable topic

subscriber will receive all the message send to that

topic, even if that subscriber is disconnected for a

period of time. In contrast, with non-durability, the

subscriber will receive only the messages sent during

an active subscription session.

For integration with DiAS, we propose the

following distinction: for 3rd party services, that

need to be available to a number of game instances,

to use topics. For one-to-one services, such as

Google Classroom, to use queues, one per each game

instance or classroom. For game scores exchange, to

use durable topics. The benefit of the latter is that

TEM Journal. Volume 7, Issue 4, Pages 842-848, ISSN 2217-8309, DOI: 10.18421/TEM74-23, November 2018.

TEM Journal – Volume 7 / Number 4 / 2018. 847

even in the event of a network spike, peers will still

be able to publish and subscribe to game data locally

– via the internal network. That statement is valid in

the event that the MQ broker resides internally for

the local network (for instance, for a class C private

network, on tcp://192.168.0.10:61613).

5.3. Client

The 3rd tier of the proposed integration

architecture is that of the clients. The clients can be

pure subscribers, pure publishers or hybrid – both

subscribers and publishers of data. A client can

subscribe to a broker topic or queue, depending on

the use case. For instance, it makes sense that a

weather service client is only a subscriber for

weather-related topic since weather data is processed

in only one direction. On the other hand, a client for

Google Calendar will play a role of both a subscriber

and a publisher. It can get data from the public

calendar for a particular class (as a subscriber) on a

queue and publish data to Google calendar. Another

example for a hybrid client is the one responsible for

getting and publishing local game scores to and from

the broker. That way, different players that play their

own instance of the same serious game can view in

real-time how well they performed compared to their

peers.

5.4. Application

The fourth and final tier is the application. It is

here that our game logic resides. One can make the

point that the 3rd and 4th tiers can be combined into

one. While that is true if we choose that approach, we

lose decoupling of the game logic from 3rd party

services. In addition, we add a dependency in our

game to a certain protocol and broker.

6. Conclusion

In this paper we presented how 3rd party services

can be made available in the context of serious

games. We were able to achieve that by decoupling

the game logic from directly querying for the 3rd

party data and introducing a broker to handle the

message load. Moreover, we showed a 4-tier

integration architecture for delivering 3rd party data,

consisting of: data source connectors, broker(s),

clients and application(s). It is important to note that

each of the 4 tiers is generic and can be substituted,

depending on the use cases and the specific needs

that a serious game is trying to achieve.

Acknowledgements

Parts of this work are supported by a project SP17-

FMI-011 of the Scientific Research Fund of Plovdiv

University “Paisii Hilendarski”, Bulgaria.

References

[1]. Hohpe, G., & Woolf, B. (2004). Enterprise

integration patterns: Designing, building, and

deploying messaging solutions. Addison-Wesley

Professional.

[2]. Carvalho, M. B. (2017). Serious games for learning: a

model and a reference architecture for efficient game

development(Doctoral dissertation, Technische

Universiteit Eindhoven).

[3]. Carvalho, M. B., Bellotti, F., Hu, J., Hauge, J. B.,

Berta, R., De Gloria, A., & Rauterberg, M. (2015,

July). Towards a Service-Oriented Architecture

framework for educational serious games.

In Advanced Learning Technologies (ICALT), 2015

IEEE 15th International Conference on (pp. 147-151).

IEEE.

[4]. Carvalho, M. B., Bellotti, F., Berta, R., De Gloria, A.,

Gazzarata, G., Hu, J., & Kickmeier-Rust, M. (2015).

A case study on service-oriented architecture for

serious games. Entertainment Computing, 6, 1-10.

[5]. Black, U. (1995). TCP/IP & Related Protocols.

McGraw-Hill, 122-126.

[6]. Vinoski, S. (2006). Advanced message queuing

protocol. IEEE Internet Computing, 10(6).

[7]. Van der Vegt, W., Westera, W., Nyamsuren, E.,

Georgiev, A., & Ortiz, I. M. (2016). RAGE

architecture for reusable serious gaming technology

components. International Journal of Computer

Games Technology, 2016, 3.

[8]. Mahmood, S., Lai, R., & Kim, Y. S. (2007). Survey of

component-based software development. IET

software, 1(2), 57-66.

[9]. Söbke, H., & Streicher, A. (2016). Serious Games

Architectures and Engines. In Entertainment

Computing and Serious Games (pp. 148-173).

Springer, Cham.

[10]. Aalst, W. M. P. v. d., Beisiegel, M., Hee, K. M. v.,

Konig, D., & Stahl, C. (2007). A soa-based

architecture framework. International Journal of

Business Process Integration and Management. 2(2),

91–101.

[11]. Sprott, D., & Wilkes, L. (2004). Understanding

service-oriented architecture. The Architecture

Journal, 1(1), 10-17.

[12]. Stavrev, S., Terzieva, T., & Golev, A. (2018).

Concepts for distributed input independent

architecture for serious games. CBU International

Conference Proceedings 2018: Innovations in Science

and Education, Prague, Czech Republic. (in press).

[13]. Skeen, D. Vitria's Publish-Subscribe Architecture:

Publish-Subscribe Overview. Retrieved from:

http://www.vitria.com/

http://www.vitria.com/

TEM Journal. Volume 7, Issue 4, Pages 842-848, ISSN 2217-8309, DOI: 10.18421/TEM74-23, November 2018.

848 TEM Journal – Volume 7 / Number 4 / 2018

[14]. JMS, Java Message Service. Retrieved from:

https://docs.oracle.com/javaee/6/tutorial/doc/bncdq.ht

ml

[15]. JDBC, Java Database Connectivity. Retrieved from:

https://docs.oracle.com/javase/8/docs/technotes/guide

s/jdbc/

[16]. VmWare blog page. Retrieved from:

 https://blogs.vmware.com/vfabric/2013/02/choosing-

your-messaging-protocol-amqp-mqtt-or-stomp.html

[17]. Apache Camel. Retrieved from:

 http://camel.apache.org/enterprise-integration-

patterns.html

[18]. Microsoft Biz Talk Server. Retrieved from:

https://www.microsoft.com/en-us/cloud-

platform/biztalk

[19]. IBM WebSphere Application Server. Retrieved

from:

https://www.ibm.com/cloud/websphere-application-

platform

[20]. ActiveMQ. Retrieved from:

http://activemq.apache.org/how-do-durable-queues-

and-topics-work.html

[21]. A list of widely used message queue brokers.

Retrieved from http://queues.io/

[22]. Apache Active MQ. Retrieved April 10, 2018 from

http://activemq.apache.org/

[23]. Apache kafka. Retrieved from:

 https://kafka.apache.org/

[24]. MQTT, Retrieved from: http://mqtt.org/

[25]. Rabbit MQ. Retrieved from:

 https://www.rabbitmq.com/

[26]. STOMP. Retrieved from: https://stomp.github.io/

[27]. ZooKeeper. Retrieved from:

 https://zookeeper.apache.org/ .

https://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html
https://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://blogs.vmware.com/vfabric/2013/02/choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html
https://blogs.vmware.com/vfabric/2013/02/choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
https://www.microsoft.com/en-us/cloud-platform/biztalk
https://www.microsoft.com/en-us/cloud-platform/biztalk
https://www.ibm.com/cloud/websphere-application-platform
https://www.ibm.com/cloud/websphere-application-platform
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://queues.io/
http://activemq.apache.org/
https://kafka.apache.org/
http://mqtt.org/
https://www.rabbitmq.com/
https://stomp.github.io/
https://zookeeper.apache.org/

