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Languages for Computer Music
Roger B. Dannenberg*

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States

Specialized languages for computer music have long been an important area of

research in this community. Computer music languages have enabled composers who

are not software engineers to nevertheless use computers effectively. While powerful

general-purpose programming languages can be used for music tasks, experience has

shown that time plays a special role in music computation, and languages that embrace

musical time are especially expressive for many musical tasks. Time is expressed

in procedural languages through schedulers and abstractions of beats, duration and

tempo. Functional languages have been extended with temporal semantics, and object-

oriented languages are often used to model stream-based computation of audio.

This article considers models of computation that are especially important for music

programming, how these models are supported in programming languages, and how

this leads to expressive and efficient programs. Concrete examples are drawn from some

of the most widely used music programming languages.

Keywords: music languages, real-time, music representations, functional programming, object-oriented

programming, sound synthesis, visual programming

INTRODUCTION

Music presents a rich set of design goals and criteria for written expression. Traditional music
notation evolved to denote musical compositions that were more-or-less fixed in form. While not
exactly a programming language, music notation contains control structures such as repeats and
optional endings that are analogous to modern programming languages (Jin and Dannenberg,
2013).

Traditional music notation and theory about musical time developed in the thirteenth century,
while the comparable use of graphs to plot time-based phenomena in science did not occur until
the sixteenth century (Crosby, 1997). Perhaps music can also motivate revolutionary thinking in
computer science. Certainly, music is unlike many conventional applications of computers. Music
exists over time, while in conventional computation, faster is always better. Music often includes
many voices singing in harmony or counterpoint, while conventional computer architectures and
programming languages are sequential, and parallelism is often considered to be a special case.
Music making is often a collaborative process, while computation is often viewed as discrete
operations where input is provided at the beginning and output occurs at the end. Perhaps music
will help to expand thinking about computer languages in general.

Before embarking on a broad discussion of languages for computer music, it will be useful
to survey the landscape. To begin, the timeline in Figure 1 shows a number of computer music
languages and their date of introduction or development. A number of these will be used
throughout this article to illustrate different trends and concepts.

In the next paragraphs, we will introduce some of the dimensions of programming languages
including their syntax, semantics, implementation issues, and resources for their users. These will
be useful in the following sections where we will describe what makes music special and different
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Dannenberg Languages for Computer Music

FIGURE 1 | A timeline of representative and historically significant computer music languages. The selection here includes only languages that support digital audio

signal generation and processing.

FIGURE 2 | Graphical syntax examples. At left, a Pd program to add 3 + 4. At

right, a Max program to show the number of button presses in the previous 5 s.

(section Why Is Music Different), models of musical time
(section Models of Time and Scheduling), models for sound
synthesis and audio signal processing (section Models for Sound
Synthesis), and examples (section Some Examples). Section
Conclusions presents conclusions.

Syntax
Syntax refers to the surface level of notation. Most computer
music languages are text-based languages with a syntax similar
to other programming languages; for example, one might write x
+ y to add two variables, f(x,y) to evaluate a function with 2
arguments, or if (c) then f(x,y) to perform a conditional
operation.

Graphical syntax has been especially popular in computer
music. Figure 2 illustrates simple expressions in this form, and
we will discuss graphical music programming languages later.
Whether the syntax is text-based or graphical, music languages
have to deal with timing, concurrency and signals, so perhaps
even more important than syntax is the program behavior or
semantics.

Semantics
Semantics refers to the “meaning” or the interpretation of text
or graphical notation in a programming language. Semantically,
many programming languages are quite similar. They deal with
numbers, text strings, arrays, and aggregates in ways that are very
much a reflection of the underlying hardware, which includes a
large memory addressable by integers and a central processing
unit that sequentially reads, writes, and performs arithmetic on
data.

Since music computation often includes parallel behaviors,
carefully timed output, signal processing and the need to respond
to real-time input, we often find new and interesting semantics in
music languages. Music languages include special data types such
as signals and scores, explicit specifications for temporal aspects
of program behavior and provisions for real-time scheduling and
interaction.

Run-Time Systems
Semantics at the language design level often relate to the “run-
time system” at the implementation level. The term “run-
time system” describes the organization of computation and a
collection of libraries, functions, and resources available to the
running program. In short, the run-time system describes the
“target” of the compiler or interpreter. A program is evaluated
(“run”) by translating it into to a lower-level language expressed
in terms of the run-time system.

Run-time systems for computer music, like music language
semantics, are often driven by the special requirements of
musical systems. In systems with audio signal processing, special
attention must be paid both to efficiency and to the need
for synchronous sample-by-sample processing. Concurrency in
music often motivates special run-time support such as threads,
processes, functional programming, lazy evaluation, or other
approaches. The importance of time in music leads to scheduling
support and the association of explicit timing with computation
or musical events.

Libraries
Most musicians are not primarily software developers. Their
main interest is not to develop new software, but to explore
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musical ideas. Ready-made modules often facilitate exploration
or even inspire new musical directions; thus, libraries of reusable
program modules are important for most computer musicians.
This sometimes inhibits the adoption of new languages, which
do not emerge with a mature set of ready-made capabilities
and examples. One trend in computer music software is “plug-
in” architectures, allowing libraries (especially audio effects and
software synthesizers) to be used by multiple languages and
software systems.

Programming Environment
Another important factor for most computer musicians is
the programming environment. In earlier days of computing,
programs were prepared with a simple text editor, compiled
with a translator, and executed by the operating system.
Modern language development is typically more integrated,
with language-specific editors to check syntax and offer
documentation, background compilation to detect semantic
errors, and the ability to tie run-time errors directly to
locations in the program text. Some programming languages
support “on-the-fly” programming (or “live coding”) where
programs can be modified during program execution. Some
music programming environments include graphical time-based
or score-like representations in addition to text (Lindemann,
1990; Assayag et al., 1999; Yi, 2017).

Community and Resources
Like other programming languages, computer music languages
often enjoy communities of users who author tutorials, help
answer questions online, post example code and maintain open
source implementations. While a vibrant community may have
little to do with the technical merits of a computer music
language, the existence of a helpful community has a large impact
on the attractiveness of a language to typical users.

WHY IS MUSIC DIFFERENT

We have mentioned a number of dimensions in which
computer music languages differ from “ordinary” general
purpose programming languages. This section will focus on some
of these differences, and in particular, the importance of time in
music programming.

Music Happens in Time
While difficult to define precisely, a key characteristic of music is
the presentation of sound in some form of temporal organization.
Thus, time features prominently in music representations and
music programming languages.

Programming Languages Traditionally Focus on

Getting Answers Fast
Traditional computer languages and computer science theory are
largely concerned with computing answers as soon as possible.
Algorithms are often described as a sequence of steps. We design
algorithms to minimize the number of steps, design languages to
express those steps efficiently, and design hardware to perform
those steps as fast as possible. Key measures of quality in

traditional computer science theory are time complexity (how
long will a program run?) and space complexity (how much
memory is required?).

Music Demands Producing “Answers” at the Right

Time
While computing answers quickly is important, in music the
“answer” itself is situated in time. In real-time music systems,
the timing of musical events is as important as their content.
Computer music languages deal with time in different ways:

• An event-based, implicitly timed approach views computation
as arising from input events such as a key pressed on a musical
keyboard. Programs describe what to do when an input event
arrives, and the response is as fast as possible; thus, timing is
implicitly determined by the times of events.

• Explicit “out-of-time” systems do not run in real time and
instead keep track of musical time as part of the computation.
For example, an automatic composition systemmight generate
a musical score as quickly as possible, but it must keep track of
the logical progression of time in the music and pass this time
along into the program output, which is some kind of musical
score representation or perhaps an audio file.

• Precisely timed systems adapt the explicit “out-of-time”
approach to a real-time, or “in-time” system. The idea is to
maintain an accurate accounting of the “ideal” time of each
output event so that even if real computation lags behind now
and then, cumulative error can be eliminated. This approach is
widely used and is particularly useful when there are multiple
processes that need to be musically synchronized.

• Sample-synchronous computation is required for audio signal
processing. Here, time is effectively quantized into sample
periods (typically 44,100 samples per second, the sample rate
used by CDAudio). Computation proceeds strictly sample-by-
sample in a largely deterministic fashion. In practice, operating
systems cannot schedule and run a computation for every
sample (e.g., every 22 µs), so samples are computed slightly
ahead of time in batches of around 1 to 20ms of audio. Thus,
while computation logically proceeds synchronously sample-
by-sample, the process must actually compute faster than and
slightly ahead of real time to avoid any interruptions in the
flow of samples to the output.

Music Timing Is Rich (Tempo, Synchronization, Meter)
Musical time is typically measured in beats rather than seconds.
Beats nominally occur at a steady tempo, that is, so many beats
per second, but in actual music performance, tempo can vary
or even pause, and beats can be displaced. Beats are often
organized into measures and phrases, creating a hierarchical time
structure. Furthermore, performers may not adhere strictly to
tempo and beats, choosing rather to introduce expressive timing
variations. All of these aspects of musical time can be modeled
computationally, and some languages have specific facilities to
represent hierarchical time and tempo structures.

For example, Nyquist evaluates expressions within an
environment that maps from “logical time” (e.g., beats) to
“physical time” (seconds). This mapping can express local tempo
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as slope (derivative), and mappings can be nested to represent
hierarchical structures such as a swing feel (local perturbations of
time) within an overall increasing tempo.

Events, Gestures, and Sound
Musical computation takes place at different levels of granularity.
A musical “event” usually refers to a macro-scale behavior that
has a beginning, duration, and end time. Conventional musical
notes can be considered events, but so can the performance
of an entire movement of a sonata, for example. Events are
often represented by the invocation of functions in programming
languages.

“Gestures” in the computer music community usually refer to
a continuous function of time, typically a time sequence of sensor
values. Examples include pitch-bend information from a MIDI
keyboard, accelerometer data from a dancer, and the X-Y path of
a mouse. Gestural computations require concurrent processing
over time and there may be special language support for this.

“Sound” refers to sequences of audio samples. Because audio
sample periods are in the range of microseconds while the
(worst case) response time of computers to events is often
multiple milliseconds, audio processing usually requires special
organization, buffers, and scheduling, and this has a great impact
on computer music languages, as we will see in the next section.

The need to process events, gestures, and sounds is one of
the main motivations for computer music languages. Often,
computer music languages borrow most of their designs from
conventional programming languages, and it is these time-based
concepts that drive the differences.

Data Flow and Synchronous Behavior
Many computer music languages enable audio processing. Music
audio is often large, e.g., a 20-min composition in 8 channels of
floating point samples takes ∼1.7 gigabytes of storage. To deal
with such large sizes and also to enable real-time control, audio
is usually computed incrementally by “streaming” the audio
samples through a graph of generators and operators.

Figure 3 illustrates a simple example that mixes two incoming
channels, delays them, filters them, and pans the result to two
output channels. The computation expressed by this graph is
synchronous, meaning that for each computational step, a node
accepts a sample from each input (on the left) and generates
a sample for each output (on the right). Samples must never
be ignored (dropped) or duplicated. This style of processing
is sometimes called “data flow” and is quite different from
processing in more common procedural and object-oriented
languages. The need to support this type of synchronous signal

FIGURE 3 | An audio computation graph.

processing has had a strong influence on computer music
language design, as we shall see.

A Good Music Programming Language
Should Be a Good Language
There are many languages designed specifically to describe
musical scores and event sequences. In particular, languages
such as ABC (Walshaw, 2017) for encoding music notation
are common. See also Adagio (Dannenberg, 1998), Guido
(Hoos et al., 1998), MUSIC-XML (Good, 2001), and Lillypond
(Nienhuys and Nieuwenhuizen, 2003). In spite of the success
of these examples, music is not so restricted and well-defined
that it does not need the power of general-purpose programming
languages. In particular, traditional music compositions rely on
notation to communicate a fixed sequence of notes and rhythms,
whereas modern computer music composition and performance
emphasizes dynamic computation of notes and rhythms, and
in general, sound events. This requires a more powerful and
expressive language.

To illustrate this point, consider one of the earliest
programming languages for music, Music V, which included a
specialized “score” language to invoke sound synthesis events
(e.g., “notes”) along a timeline, and an “orchestra” language
that described the signal processing to occur within each sound
event. Since the score language simply presented a static list of
events, their times, and parameters, Music V was not a very
general language in terms of computation. However, users soon
developed more general “score generating languages” as front-
ends to overcome limitations of Music V. This is evidence that
music programming languages should be flexible to allow any
computation to be expressed.

Music Is Not One Thing
Just as there are many styles of music, there are many ways
to approach music computationally. Some languages attempt to
focus on just one aspect of computation, e.g., Faust (Orlarey
et al., 2009) is a language for describing audio signal processing
algorithms, but it mostly leaves instantiation and control of these
algorithms to other languages and systems. Other languages,
such as Nyquist (Dannenberg, 1997b) and Open Music (Bouche
et al., 2017), strive to be more general, with facilities for scores,
automated music composition, control, signal analysis, and
sound synthesis. The variety of musical problems and language
design goals makes the study and design of computer music
languages all the more interesting.

Flexibility to Compose Solutions Is More Important

Than Ready-Made Capabilities
It is difficult to define a general language that cleanly addresses
many types of problems. Languages attempting to support many
different tasks often have several “sub-languages” to handle
different programming requirements. For example, Music V has
separate score and orchestra languages, and Max MSP has a
similar syntax but different semantics and scheduling for control,
audio signals, and image processing. In general, ready-made
“solutions” within programming languages and systems tend
to be overly specific and ultimately limiting. Therefore, more
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general languages with the flexibility to create new solutions for
the problems at hand are more broadly useful. Within these
languages, specific solutions are often developed as sharable
packages and libraries.

MODELS OF TIME AND SCHEDULING

Time is essential to music, and musicians have sophisticated
abstractions of time. In this section, we will consider some of
the abstractions and how these are reflected in programming
languages.

Logical Time Systems
The most important time concept for computer music systems
is the idea of logical time. Logical time is also a key concept
for computer simulations that model behaviors and the progress
of time. A simulation must keep track of simulated time even
though simulations may run faster or slower than real time.
Similarly, music systems can keep track of simulated, or logical
time, computing the precise, ideal time at which events should
occur. When a real-time system falls behind (the logical time is
less than real time), the system can compute the next event earlier
to catch up, and if logical time is greater than real time, the system
can wait. Thus, systems based on precise logical times can avoid
accumulating timing errors.

For example, Nyquist has operators to control when
computations take place within a logical time system. To create
a musical notes at times 0.5 and 3, one could write:

sim(pluck(c4) @ 0.5, pluck(d4) @ 3)

Nyquist instantiates the pluck function at logical times 0.5 and
3, and the resulting sounds are combined by sim. In practice,
Nyquist runs ahead of real time, keeping samples in a playback
buffer, and output timing is accurate to within a sample period.

Tempo and Time Deformation
In addition to logical time, music systems often model tempo
and beats, which essentially “warp” or “deform” musical time
relative to real time. FORMULA (Anderson and Kuivila, 1990)
was an early system with elaborate mechanisms for tempo
and time deformation. In FORMULA, tempo changes are
precisely scheduled events, and tempo can be hierarchical.
For example, one process can regulate tempo, and another
process, operating within the prescribed tempo framework, can
implement a temporary speeding up and slowing down, or
rubato.

In Nyquist, tempo changes are represented by mappings from
one time system to another. These mappings can be combined
through function composition to create nested structures such
as tempo and rubato. These mappings can be specified using
continuous functions, represented as sequences of samples just
like audio (Dannenberg, 1997a).

Non-preemptive Threads in Formula and
Chuck
One way to express concurrency and precise logical timing is to
use threads or co-routines. Threads allow multiple computations

to proceed concurrently rather than sequentially. Precise timing
is obtained by introducing “sleep” or “wait” functions that pause
computation of one thread, perhaps allowing other threads to
run. In conventional programs, calling a “sleep” function would
result in an approximately timed pause; then the thread would be
scheduled to resume at the next opportunity. This of course can
lead to the accumulation of small timing errors that can be critical
for music applications.

A solution used in many computer music languages is to keep
track of logical time within each thread.When the thread “sleeps,”
its logical time is advanced by a precise amount. The thread with
the lowest logical time always runs next until another “sleep” is
made to advance its logical time. In this scheme, threads do not
preempt other threads because, logically, time does not advance
until a thread sleeps.

In FORMULA, “threads” are called processes, and “sleeping” is
achieved by calling time_advance(delay), which indicates
quite directly that logical time is manipulated. The decision
to actually suspend computation depends on the relationship
between logical time and real time. If logical time is greater, the
process should suspend until real time catches up. If logical time
is less, the process is behind schedule and should continue to
compute as fast as possible until it catches up to real time.

In ChucK, threads are called “shreds” and the “sleep”
operation is denoted by the “ChucK” operator (“=>”). For
example, advancing time by 500ms is performed by the
command

500::ms => now;

In many cases, it is not sufficient to wait to run threads until
real time meets their logical time. Output is often audio, and
audio samples must be computed ahead of real time in order to
be transferred to digital-to-analog converters. Therefore, some
form of “time advance” is used, where threads are scheduled
to keep their logical time a certain time interval ahead of
real time. Thus, output is computed slightly early, and there
is time to transfer output to device driver buffers ahead of
deadlines.

MODELS FOR SOUND SYNTHESIS

As mentioned earlier, sound and signal computation is
synchronous and often expressed as a graph where nodes
represent computations and edges represent the flow of audio
samples (Bernardini and Rocchesso, 1998). In some cases, the
computational nodes have parameters such as filter frequencies,
delay times, scale factors, etc., that can be updated, resulting in a
hybrid that combines synchronous data-flow computation with
asynchronous parameter updates.

In MaxMSP and Pd, audio computation graphs are described
graphically. Figure 4 illustrates a simple program in Pd that
generates a sinusoid tone, with a slider to adjust the frequency
parameter.

Functional Programming
Another approach to representing audio signal graphs is
functional programming languages. In the functional approach,
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FIGURE 4 | Audio signal graph expressed in Pd.

audio computation is viewed as functions applied to (infinite)
streams of samples. For example, in Nyquist, one can write the
command

play lp(buzz(15, C4, lfo(6) ∗ 5),

env(1, 0, 1, 900, 900, 1)) ∼ 3

The function buzz generates a tone with 15 harmonics, a pitch
of C4, and frequency variation determined by the function lfo,
which creates a vibrato-like signal that is scaled using “∗ 5.” The
buzz signal is passed through a low-pass filter (lp) with a cutoff
frequency determined by a time-varying “envelope” function
specified by the env function. The entire expression is evaluated
in the context of the “∼ 3” operation, which means to “stretch”
time computations by a factor of 3, resulting in a 3-s-long sound
(This is an example of creating a logical time system that is
“stretched” relative to real time).

This example shows how functional notation can be used to
describe audio computation graphs. Strictly speaking, nested
functions alone describe tree structures, but by introducing
variables, one can describe any acyclic graph structure
where nodes are functions and edges are sounds or other
values.

In conventional programming languages, sub-expressions
are evaluated first, then functions are applied (this is called
applicative-order evaluation). This could be a problem if sounds
are very long (large) or if sounds are derived from real-time input.
Nyquist solves this problem through lazy evaluation, where
sounds are represented by run-time structures that will eventually
compute samples, but not until they are needed.

In lazy evaluation systems, function arguments (i.e., sub-
expressions) are not evaluated before passing them to functions
(outer expressions). For example, we could construct a list
containing f (1), f (2), . . . , f (N) without ever applying function
f. Later, if the program selects the 3rd element of the list
for output, the evaluator would need to evaluate f (3). When
expressions are evaluated on demand, it is possible to express
infinite sequences, yet evaluate them incrementally with finite
memory. This approach is taken by Nyquist, which uses lazy
evaluation to implement a built-in data type called SOUND,
and Faust, which allows signal processing to be expressed as the
computation of infinite sequences of numbers.

Because the run-time behavior of signal processing functions
is quite sophisticated, few computer music languages have any

way to define fundamentally new signal processing functions.
Instead, the language provides a set of “primitive” functions such
as oscillators, filters, and control signal generators (examples
are buzz, lp, and lfo, respectively) that can be composed
into more interesting functions. This is one shortcoming of
most computer music languages. Even with hundreds of signal
processing primitives, there are always new ideas, and new
primitives must be implemented in another language (typically in
the lower-level languages C or C++, but we will see exceptions
such as Faust).

Objects and Updates
Functional programming, especially for real-time systems, is
not very popular. Another way to model audio computation
graphs is with objects and object-oriented programming. In
this approach, we do not view sounds as “values” and we do
not rely on the language and runtime system to implement
them efficiently using lazy evaluation. Instead, we can use a
somewhat less abstract approach that exposes the underlying
implementation. Instead of sounds as values, we represent
sounds as “objects”—a programming structure that packages a
collection of operations or “methods” with a collection of data
values.

In the “sound-as-object” approach, we can still write programs
that look more-or-less like functional programming, e.g.,
buzz(15, c4, lfo(6) ∗ 5), only now, buzz, lfo and
“∗” return objects that are linked together forming an audio
computation graph. To “play” the graph, one typically “pulls”
samples from the root node by calling its compute method. This
method may recursively call compute methods on other nodes.
For example the compute method of buzz will call that of “∗,”
which will call that of lfo. Each object will use returned samples
to compute and return its own samples.

By replacing sounds with objects that compute sounds,
we can achieve a functional programming style without the
complications of lazy evaluation and garbage collection used by
Nyquist (Dannenberg, 1997c). This sound-as-object approach
is common, but not quite as powerful as the sound-as-values
approach. For example, in Nyquist one can write:

set x = osc(c4)

play seq(cue(x), cue(x) @ 2)

which will have the effect of playing x at both time 0 and time
2 (the “@” operator is another logical time system constructor
that shifts logical time of the expression on the left relative to the
logical time system in effect). If x is a reference to an object, and
if the object is used to generate a sound at time 0, the samples will
no longer exist at time 2. In contrast, Nyquist saves the samples
comprising x at least long enough to access them again 2 s later
as required by this expression.

While objects might be a limitation in this example, objects
have the advantage in real-time systems that they can bemodified
or updated to change their behavior. Consider the vibrato
function lfo(6) from previous paragraphs. If lfo(6) is a
value, it is wholly defined by this expression. On the other hand,
if lfo(6) creates an object, one can imagine that, at some later
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FIGURE 5 | Amatriain’s object model of signal computation.

time, the program could send a “set_frequency” message to
the object to change the rate of vibrato.

Thus, the object-oriented approach provides an intuitive
way to mix synchronous sample-by-sample computations with
asynchronous real-time event processing. Amatriain (2005) goes
further to propose a general model for interactive audio and
music processing where the fundamental building blocks are
objects with:

• other signal-generating objects as inputs,
• event-like inputs that invoke object methods (functions),
• signals as outputs, and
• event-like outputs, providing a way for the object to send

notifications about the signal

Figure 5 illustrates this object model, and, of course, the model is
recursive in that a signal-processing object can be composed from
the combination of other signal-processing objects. The CLAM
system (Amatriain et al., 2006) used this model within a C++

language framework.

Block Computation
Music audio computation speed can be a significant problem,
especially for real-time systems. One way to make computation
more efficient is to compute samples in vectors or blocks. Audio
computation requires the program to follow links to objects, call
functions, and load coefficients into registers. All of this overhead
can take as much time as the arithmetic operations on samples.
With block computation, we compute block-by-block instead of
sample-by-sample. Thus, much of the computational overhead
can be amortized over multiple samples.While this is a seemingly
small detail, it can result in a factor of two speedup.

Unfortunately, block computation creates a number of
headaches for language designers that have yet to be resolved.
The main problem with block computation is that logical
computation times are quantized into larger steps than would
be the case for individual samples, which typically have a period
of 22 µs. In contrast, blocks of 64 samples (a common choice)
have periods of 1.4ms. There are signal-processing situations
where 1.4ms is simply not precise enough. A simple example is
this: suppose that an amplitude envelope is composed of linear
segments that can change slope at each block boundary. This

means that the rise time of a sudden onset can be 0, 1.4, or 2.8ms,
but nothing in between. We are sensitive to the sound quality of
these different rise times.

Some languages, such as Csound (Lazzarini et al., 2016), allow
the user to specify the block size so that smaller blocks can be used
when it matters, but using smaller blocks to solve one particular
problem will result in less efficient computation everywhere.
Max/MSP allows different parts of the audio computation to
use different block sizes. Music V uses a variable block size. In
Music V, a central scheduler keeps track of the logical time of the
next event, which might begin a note or other signal processing
operation. If the next logical time is far enough in the future, a full
sized block is computed. If the next logical time is a few samples
in the future, then the audio computation graph is traversed to
compute just the next few samples. This allows the graph to be
updated with sample-accurate timing.

Another way to save computation is to compute some signals
at a lower control rate. Many signals are used to control
amplitude, frequency, filter cutoffs, and other parameters that
change relatively slowly. Typically, these control signals can
outnumber audio signals, so control rate computation can save a
substantial amount of computation. This affects language design
because signal-processing primitives may come in two types:
audio rate and control rate. Often, the control rate is set to
the block rate so that a control signal has just one sample per
block while audio signals have many samples (e.g., 8 to 64) per
block.

SOME EXAMPLES

Now that we have explored some issues and design elements that
influence computer music programming languages, it is time to
look at some specific languages. There is not space for complete
descriptions, so this section aims to convey the flavor and unique
characteristics found in a selection of examples.

Music N
The earliest computer music languages were created by Max
Mathews at Bell Labs starting in 1957. A series of languages
named MUSIC I, MUSIC II, etc. inspired similar languages
includingMUSIC 360 for the IBM360,MUSIC 4BF implemented
in FORTRAN, MUSIC 11 for the PDP-11, and Csound
implemented in the C programming language. Because the
underlying semantics are so similar, these programs are often
referred to as “Music N.”

The most characteristic aspect of Music N is the separation of
the “score” and “orchestra” languages, so Music N is really two
languages that work together. The score language is essentially
an unstructured list of events. Each event has a starting time,
duration, an instrument, and a list of parameters to be interpreted
by the instrument. The following example shows a few notes from
a Music V score (Mathews et al., 1969):

NOT 0 1 .50 125 8.45 ;

NOT .75 1 .17 250 8.45 ;

NOT 1.00 1 .50 500 8.45 ;
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Each line plays one note. The first note (line 1) starts at time 0,
uses instrument #1, has a duration of 0.5 s, and has two more
parameters for amplitude and pitch control.

The orchestra language defines instrument #1 as follows:

INS 0 1 ;

OSC P5 P6 B2 F2 P30 ;

OUT B2 B1 ;

END ;

The idea is that for each note in the score, an instance of an
instrument is created. An instance consists of data for each of
the signal processing “objects” OSC and OUT. These objects take
parameters from the score using “P” variables (e.g., the amplitude
and pitch are denoted by P5 and P6, which take the 5th and 6th

fields from the note in the score).
While its syntax is primitive due to 1960’s era computing

capabilities, Music V paved the way for many future languages.
One big idea in Music V is that instruments are created
with a time and duration that applies to all of their signal-
processing elements. This idea was extended in Nyquist so
that every function call takes place within an environment that
specifies time, duration (or stretch factor), and other parameters.
Although Music V instruments describe sequential steps (e.g.,
OSC before OUT in this example), there are clear data-dependent
connections (OSC outputs to buffer B2, which is read by OUT),
and in amodern language like Nyquist, merely by allowing nested
expressions, one can write something like play(osc(c4)),
indicating data dependencies and data flow in a functional style.

Thus, Music N made several contributions and innovations.
First is the idea that one can create virtual “instruments” by
combining various signal processing elements that generate,
filter, mix, and process streams of digital audio samples. In
Music V, these elements (such as OSC and OUT in the example)
are called “unit generators.” Nearly all software synthesizers
use this concept. Second, Music V introduced the idea that
virtual instruments can be invoked somewhat like functions in
sequential programming languages, but instances of instruments
can exist over time and in parallel, computing a block of
samples at each time step. Third, Music V introduced the
essential ingredient of time into computer music languages.
When instruments are invoked, they are given a starting
time and duration, which affect not only the instrument
but also all of the unit generators activated inside the
instrument.

It should be mentioned that the “modern” Music N language
is Csound, which has progressed far beyond the early Music
V. In particular, Csound supports a much more modern
expression syntax, many more unit generators, some procedural
programming, and provisions for real-time control.

Nyquist, mentioned earlier, is also a descendent of Music
V. If one considers a Music V score to denote the sum of the
results of many timed function calls, and Music V orchestras as
functions that return sounds, defined in terms of unit generators
and other functions, then much of the semantics of Music V
can be expressed in a functional programming style. This is
more powerful than Music N because it unifies the ideas of
score and orchestra, allowing “instruments” to contain scores and

sequences, scores to be hierarchically composed of sub-scores,
and instruments to contain sub-instruments.

Max/MSP and Pd
In contrast to Music N, Max/MSP (Puckette, 2002) and its
open-source twin Pd (Puckett, 1996) are visual programming
languages, but they at least share the idea of “unit generators.”
Sound synthesis is accomplished by “drawing” unit generators
and “connecting” them together with virtual wires, creating data
flow graphs as we saw in Figure 4.

Max/MSP does not normally structure data-flow graphs
into “instruments,” make instances of graphs, or attach
time and duration to graphs. These are limitations, but
Max/MSP has the nice property that there is a one-to-one
correspondence between the visual interface and the underlying
unit generators.

Timing, sequencing and control in Max/MSP is accomplished
by sending “update” messages to unit generators. For example,
the “patch” in Figure 6 contains a mixture of signal-processing
unit generators and message-passing objects. The dashed lines
represent signals and the solid lines represent connections for
message passing. This patch uses sfplay∼ to play a sound
file. The output of sfplay∼ is passed through ∗

∼, which
multiplies the signal by another value to implement a volume
control, and the audio output is represented by dac∼. To
control the patch, there is no score. Instead, when “1” is sent to
sfplay∼, it plays to the end of the file (the user simply “drags
and drops” the desired file from the computer’s file browser).
The user can click on the message box containing “1” to send
that message. Similarly, the user can control volume by dragging
the cursor up or down on the number box containing “0.72.”

FIGURE 6 | A simple “patch” in Max/MSP to play a sound file with volume

control.
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Changes are sent as messages to ∗
∼, which updates its internal

scale factor to the new number.

SuperCollider
SuperCollider (McCartney, 2002) is primarily a real-time
interactive computer music language, having roughly the same
goals as Max/MSP. However, SuperCollider is text-based and
emphasizes (1) more flexible control structures, (2) treating
objects as data and (3) support for functional programming. For
the most part, SuperCollider is organized around object classes.
The class UGen represents unit generators, class Synth represents
a collection of unit generators that produce audio output, and
class Stream represents a sequence of values, which are often
parameters for sound events (e.g., notes).

SuperCollider separates control from synthesis, using two
processes communicating by messages. One reason for this
is to insulate the time-critical signal processing operations in
the synthesis engine, scsynth, from less predictable control
computations in the composition language, sclang.

SuperCollider illustrates some of the trade-offs faced by
language designers. Earlier versions of SuperCollider had a
more tightly coupled control and synthesis systems, allowing
control processing to be activated directly and synchronously by
audio events. Also, audio processing algorithms, or instruments,
could be designed algorithmically at the time of instrument
instantiation. In the latest version, instrument specifications can
be computed algorithmically, but instruments must be prepared
and compiled in advance of their use. This makes it faster
to instantiate instruments, but creates a stronger separation
between control and synthesis aspects of programs.

Figure 7 contains a very short SuperCollider program to
play a sequence of chords transposed by a random amount. In
this program, the SynthDef describes an instrument named
sawSynth, which consists of three sawtooth oscillators (Saw,
parameterized by an array of 3 frequencies, returns three
oscillators, which are reduced to stereo by Splay). The sound
is then low-pass filtered by LPF, which is controlled by a slowly
varying cutoff frequency generated by LFNoise2. The ar()
and kr()methods denote audio rate and control rate versions of

unit generators, where lower-frequency control-rate processing is
used for efficiency. The instrument is compiled and loaded into
the synthesizer engine.

The Pbind expression constructs messages using patterns
Pseq, Prand, and Pkey to generate parameter values for
the synthesizer and to control the duration of each event. For
example, Pseq alternately selects the array [50, 53, 55, 57],
generating one chord, and another array [53, 56, 58, 60], offset
by a random integer from 0 to 10 (using Pwhite). The result
of each pattern generator is of type Stream, which represents
an infinite sequence of values. In this case, playing the stream
generates an infinite sequence of events representing chords, and
sends the events to be played by the synthesizer.

ChucK
ChucK (Wang et al., 2015) is an open source project that
originally focused on “live coding,” or writing and modifying
code in real time as a music performance practice. ChucK
terminology uses many plays on words; for example, ChucK
refers to precise timing (described earlier) as “strongly timed,”
which is a reference to a class of conventional languages that are
“strongly typed.”

ChucK uses a construct called a “shred” (similar to and rhymes
with the conventional term “thread,” and possibly a reference to
“shredding” or virtuosic lead electric guitar playing.) A shred is
the basic module of ChucK, providing a thread and some local
variables whose lifetimes are that of the thread. In Figure 8, the
first line creates a data flow graph using the unit generators
SinOsc, ADSR, and dac. The “ChucK” operator (=>) forms
the connections. Notice how this syntax not only establishes
connections, but also names the unit generators (s and e, short
for for “sinusoid” and “envelope”). This ability to reference unit
generators and update them corresponds to Amatriain’s “Objects
and Updates” model, as we will see in the code.

One might expect a different syntax, e.g.,
dac(SinOsc(ADSR)), which would allow unit generators
(such as mixers and multipliers) to accept multiple inputs and
parameters. In ChucK, additional parameters are set in various
ways using additional statements. You can see e.set(...)

FIGURE 7 | A simple SuperCollider composition and synthesis program, based on examples by Bruno Ruviaro (http://sccode.org/1-54H).
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FIGURE 8 | ChucK example code. (based on http://chuck.cs.princeton.edu/doc/examples/basic/adsr.ck).

used to set envelope parameters, and 0.5 => s.gain used
to set the oscillator gain.

After initializing variables, values, and connections, a
typical ChucK shred enters a while loop that describes
a repeating sequential behavior. Here, we see e.keyOn()

and e.keyOff(), used to start and stop the envelope, and
800::ms => now, used to pause the shred for 800ms of
logical time. During the pause, the unit generators continue to
run and generate audio.

In ChucK, unit generators compute one sample at a time,
which is less efficient than block-at-a-time computation, but it
allows the thread to awaken and update unit generators with
sample-period accuracy. This allows for some very interesting
control and synthesis strategies that interleave “standard” unit
generators with custom control changes.

Faust
While most computer music languages provide some way to
express “notes” or sound events that instantiate an audio flow
graph (or, in Max/MSP, send messages to audio objects that
already exist), Faust (Orlarey et al., 2009) is designed purely to
express audio signal computation. Faust also differs from most
other languages because it does not rely on a limited set of built-
in unit generators. Instead, Faust programs operate at the audio
sample level and can express unit generators. In fact, Faust can
output code that compiles into unit generators for a variety of
languages such as Csound, described earlier.

Rather than inter-connecting pre-compiled unit-generators at
run time like many other languages, Faust produces code in the
C++ programming language (also other languages such as Java,
Javascript, and WebAssembly) that must then be compiled. This
compilation avoidsmuch of the overhead of passing data between
unit-generators, allowing the primitive elements of Faust to be
very simple operators such as add, multiply, and delay. These
operations apply to individual samples.

Although Faust is text-based, it uses an unusual syntax to
encode block diagrams as an alternative to more conventional
functional notation. In functional notation, we write f (input1,
input2) to denote the output of f with inputs input1 and input2,
but in Faust, we write input1, input2: f as if signals are flowing
left-to-right. The comma (,) denotes “parallel composition,”
which is to say that input1 and input2 are fed in parallel
to f. The colon (:) denotes “sequential composition”: data
flows from input1, input2 into f. Other composition operators
describe feedback loops, splitting (fan-out) and summing (fan-
in).

Figure 9 contains an example of a Faust program to generate
a sine tone with frequency and amplitude controls (Orlarey,
2015). Here, we see a mixture of functional notation, “block
diagram” notation, and infix notation. Typically, a sine tone
computation would be built into a language, because at best, it
would be very, inefficient to describe this computation in terms of
available operations. Because Faust works at the sample level and
writes code for an optimizing compiler, it is practical to describe
oscillators, filters, and many signal processing algorithms. In fact,
this is the main goal of Faust.

In Figure 9, the second line describes the phase computation.
The third line simply scales the phase by 2π and computes
the sine. In functional notation, we would say osc(f ) =

sin(2π · phasor(f )). The phasor function should therefore
return a signal where samples increase step-by-step from 0 to 1,
then wrap around (using the modulus function fmod) to 0. In
a procedural programming language, we might define a variable
phase and assign new values to it, e.g.,

phase = fmod(phase + increment, 1);

But Faust is a functional language with no variables or assignment
operators, so the algorithm is expressed using feedback denoted
by “∼_.” This says to take a copy of the output and feed it back
into the input. Thus, the previous sample of phase is combined
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FIGURE 9 | A program in Faust to generate a sine tone.

with f/ma.SR, and these two signals are added (by “+”) and
become the first argument to fmod.

The last definition, of process, illustrates that graphical user
interface elements can be considered signal generators. Here,
a slider labeled “freq” controls the amount by which phase is
incremented as a way to change the oscillator frequency, and
“level” controls a scale factor of the samples output by osc.

Faust is specialized to describe audio signal processing
algorithms. For example, it would be difficult to use Faust to
compose a melody. Nevertheless, Faust has become quite popular
for creating unit generators and signal processing plug-ins that
can be used in other languages and systems. There are substantial
libraries of Faust functions, Faust is able to generate ready-to-
use modules for a number of different systems, and Faust helps
developers avoid many low-level details of programming directly
in C or C++.

CONCLUSIONS

Computer music languages offer a fascinating collection
of techniques and ideas. Computer music languages differ
from other languages in that they must deal with time,
complex concurrent behaviors, and audio signals. All of
these concepts are fairly intuitive as they relate to music,
but they can be very tricky to program in conventional
programming languages. Because music making is more
a creative process than an engineering discipline, it is
important for languages to support rapid prototyping and
experimentation, which also leads to specialized notations, syntax
and semantics.

Computer Music Language Challenges
We have seen a number of design issues and some solutions,
but there are many challenges for future language designers.
We saw how Music N described music synthesis in two
languages: the score language, which specifies timing and
parameters for synthesis computations, and the orchestra
language, which describes the synthesis computations as a
graph of interconnected unit generators. In practice, there is
a third language needed to describe the internal processing
of each unit generator. Nyquist showed a way to unify
the score and orchestra languages into a mostly-functional
programming language, but it would be even better if Nyquist
could define new unit generators as well. Chronic (Brandt,
2000, 2002) was one approach to bridging this gap, but it
required special conventions for expressing signal processing
algorithms, almost as if using a separate language. Faust

(Orlarey et al., 2004, 2009) and Kronos (Norilo, 2015) offer
very clean notations for describing unit generators, but neither
includes a flexible or powerful notation for events, scores,
dynamic instantiation of concurrent behaviors or time-based
scheduling.

The functional programming approach seems natural for
signal processing because it is a good match to synchronous
data flow or stream-processing behaviors that we see inside
unit generators. Functional programming is also natural for the
expression of interconnected graphs of unit generators. However,
it is also natural to view unit generators as stateful objects that
operate on signals synchronously while allowing asynchronous
updates to parameters such as volume, frequency, and resonance.
It is the nature of music that things change. If “change” could
always be expressed as a signal, perhaps music representations
would be simpler, but in practice, “change” often arises from
discrete events, for example key presses on a musical keyboard.
Intuitively, these are state changes, so an important challenge
in music language design is providing “natural” functional
descriptions of signal flow while at the same time enabling the
expression of state changes, discrete events, and their interaction
with signals.

A third challenge is to facilitate the inspection and
understanding of complex real-time music programs. Max/MSP,
with its visual representation of computation graphs, makes
it easy to insert probes and visualizations of messages and
signals; thus, it ranks highly in terms of transparency. However,
Max/MSP does not encourage abstraction in the form of
functions, classes, multiple concurrent instances of behaviors,
or recursion, and even iteration can be awkward to design and
observe. Gibber (Roberts et al., 2015), a live-coding language,
takes the innovative approach of animating the source code to
indicate when statements are evaluating. Even the font sizes
of expressions can be modulated in real time to reflect the
amplitude of the signal they are generating. This kind of dynamic
display of programs draws attention to active code and helps
to associate sounds with the expressions that gave rise to
them. In Aura (Danenberg, 2004), one can design instruments
from unit generators with a visual editor (inspired by Max) as
well as with code. The visual instrument editor automatically
generates a graphical control panel for the instrument so that
the user can test the instrument interactively, either before
incorporating the instrument into a composition, or after
that when questions arise. The general challenge for language
designers is to provide useful inspection and debugging facilities,
especially for real-time music performances involving timed,
concurrent behaviors.
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Language Development Is Active
Although computer music language development began in
the 1950’s, there is quite a lot of activity today. If anything,
fast computing hardware has opened new capabilities, created
more demand for creative music software, and encouraged
more development. Faster computers also facilitate software
development. Ambitious language development projects can
be accomplished faster than ever before. On the other hand,
users have become accustomed to advanced programming
environments with automatic command completion, pop-up
hints, reference materials, syntax-directed editing and other
conveniences, and this adds to the burdens of language
development. Failure to provide these amenities makes new
languages more difficult to learn and use.

Wide Range of Users, Wide Range of
Needs
Another factor that keeps music language development
lively is the many different disciplines and needs of users.

Music applications range from theoretical music analysis
to live coding. Other applications include generating and
controlling MIDI data (an interface designed for and
universally used by commercial synthesizers), algorithmic
composition, and music typesetting. Applications we have
already discussed include music signal processing and event-
based real-time systems. Each application area motivates
different language organizations and semantics. To some
extent, different levels of technical expertise—from beginner
to professional software developer—also place emphasis on
different aspects of music programming. For all these reasons, we
can expect that music language design and development
will remain active and interesting for the foreseeable
future.
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