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Abstract
Background/Aims: Angiotensin II type I receptor agonistic autoantibody (AT1-AA) is closely 
related to pre-eclampsia, which is characterized by proteinuria and hypertension. AT1-AA 
has been shown to enhance the effect of AngII in pre-eclampsia, such as production of 
endothelin-1, activation of ROS, and vasoconstriction, which are considered to be associated 
with hypertension; however, whether or not AT1-AA participates in podocyte damage leading 
to the generation of proteinuria has not been reported. In this study we investigated the role of 
pre-eclamptic serum AT1-AA on podocytes and the mechanism underlying the generation of 
proteinuria. Methods: The levels of AT1-AA isolated from pre-eclamptic sera were determined 
by an enzyme-linked immunosorbent assay. Human podocytes were cultured in vitro and 
treated with various concentrations of AT1-AA. Whether or not an ERK1/2 inhibitor and TRPC6 
siRNA inhibit the effect of AT1-AA on podocytes was determined. Western blot was used to 
detect the expression of podocyte-specific proteins (nephrin, synaptopodin, and podocin) 
and the phosphorylation of ERK1/2 and TRPC6. The arrangement of F-actin was observed by 
immunofluorescence. A Calcineurin Cellular Activity Assay Kit was used to detect calcineurin 
activity. Changes in the intracellular Ca2+ concentration was determined by confocal laser. 
Results: AT1-AA induced a decrease in podocyte-specific protein expression and calcineurin 
activity and increased expression of p-ERK1/2 and TRPC6 protein and the intracellular 
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Ca2+ concentration. Immunofluorescence revealed rearrangement of F-actin. PD98059, an 
inhibitor of ERK1/2, and TRPC6 siRNA attenuated the decreased expression of podocyte-
specific proteins and decreased intracellular Ca2+ concentration. The expression of TRPC6 was 
reduced following the addition of ERK1/2 inhibitor. Conclusion: AT1-AA induced podocyte 
damage in a dose-dependent manner. The underlying mechanism might involve activation of 
the TRPC6 –calcium/calcineurin pathway. This study provides new details regarding podocyte 
injury and the mechanism underlying the generation of proteinuria in pre-eclampsia.

Introduction

Pre-eclampsia (PE) is a leading cause of maternal and fetal morbidity and mortality 
during the perinatal period. PE is a systemic syndrome that is described as the new onset of 
hypertension after week 20 of pregnancy combined with proteinuria, other maternal organ 
dysfunction, such as renal insufficiency, liver involvement, neurological or haematological 
complications, uteroplacental dysfunction, or fetal growth restriction [1-3]. Although PE 
has been the focus of research interest of countless studies, the mechanism underlying 
the pathogenesis of kidney injury in PE is unknown. Recently, injury to the podocyte, an 
important component of the glomerular filtrating barrier, has been considered to contribute 
to the development of proteinuria in PE [4-6].

Angiotensin II type I receptor agonistic autoantibody (AT1-AA), as the name implies, 
functions by binding with the 7 amino acid sequence (I-H-R-N-V-F-F-I-I-N-T-N-I-T-V-C-A-
F-H-Y-E-SQ-N-S-T-L) on the second extracellular loop of AT1 receptor. In 1999, Wallukat et 
al. [7] first detected AT1-AA in gravidas with PE. The effects of AT1-AA are now known to 
include activation of oxidative stress, calcineurin and nuclear factor kappa-β, an increase in 
the production of endothelin-1 and sFlt-1, and induction of Ca2+ release in vascular smooth 
muscle cells [8-10]. AT1-AA has important properties involving Ang II–mediated effects on 
the AT1 receptor. It has been reported that Ang II induces calcium/calcineurin signaling and 
podocyte injury [11]; however, it is unclear whether or not ATI-AA can activate calcium/
calcineurin signaling and the role in podocyte injury has not been reported.

The canonical transient receptor potential (TRPC) family is an important non-selective 
Ca2+ permeable cation channel and is expressed in the plasma membrane of many tissues 
[12, 13]. TRPC6 has been increasingly studied because TRPC6 is associated with family 
familial focal segmental glomerulosclerosis [14-17]. TRPC6 is a basic component of the 
slit diaphragm of podocytes. Abnormal expression of TRPC6 is involved in the pathology 
of podocyte damage by increasing the Ca2+ current [18-20]. Several lines of evidence have 
demonstrated that phosphorylation of ERK increases the expression of TRPC6 and causes 
cell damage [21, 22]. Nijenhuis et al. [23] reported that AngII induces the up-regulation of 
TRPC6 through the Ca2+/calcineurin pathway [23].

In the present study we hypothesized that AT1-AA is responsible for podocyte injury 
and the TRPC6-calcium/ calcineurin pathway is involved in downstream signaling activated 
by AT1-AA in the podocyte.

Materials and Methods

Sera collection
Ten patients with PE were enrolled from the Department of Gynecology and Obstetrics of The Fifth 

People’s Hospital of Shanghai (Fudan University, Shanghai, China). The study protocol was approved by the 
Ethics Committee of the Fifth People’s Hospital of Shanghai and informed written consent was obtained 
from all patients. PE was diagnosed by the new onset of high blood pressure (systolic pressure ≥140 
mmHg and /or diastolic pressure ≥90 mmHg) and proteinuria (300 mg/24 h or >1+ protein in a random 
urine specimen) after 20 weeks gesta tion. The exclusion criteria were as follows: chronic hypertension; 
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renal disease; diabetes mellitus and endocrine or 
autoimmune diseases. Fasting blood samples were 
collected from all of the study participants via the 
cubital veins and centrifuged at 3000 rpm for 10 
min at 4℃ to separate the serum. The sera were 
isolated by affinity chromatography and stored at 
-80℃. The clinical features of the participants are 
summarized in Table 1.

Autoantibody purification
Peptide synthesis: The peptide corresponding 

to the sequence of the human AT1RECII 
(165–191[I-H-R-N-V-F-F-I-I-N-T-N-I-T-V-C-A-F-H-Y-E-SQ-N-S-T-L]) was synthesized as antigen by GL Biochem 
Ltd (Shanghai, China).

Purification of AT1-AA: The total immunoglobulin G (IgG) was isolated from serum samples by HiTrap 
Protein G HP (GE/Amersham, USA) according to the manufacturer’s instruction. The IgG was then passed 
through an affinity chromatography column containing CNBr-activated sepharose 4B gel (GE Healthcare 
Life Sciences, USA) conjugated with the peptide prepared previously. The IgG fraction which did not bind 
with the affinity chromatography column was designated as non-specific IgG (nIgG) and used as the control 
group. The IgG fraction bound to the column was AT1-AA. AT1-AA and nIgG were used immediately or 
stored at -80℃.

Enzyme-linked immunoabsorbent assay (ELISA)
The level of AT1-AA was detected by ELISA kit before purification. The serum samples were added 

to the plates for determination of AT1-AA concentration by ELISA. The operation is briefly described as 
follows. The samples were added to 96-well ELISA plates incubated at 37℃ for 30 min, and then washed. 
The conjugate reagent was next added to the microplates. After incubating and washing, the microplates 
were incubated with color agent in the dark at 37℃ for 10 min. The reaction was terminated by stop buffer. 
The optical density (OD) was measured at 450 nm in a microplate reader. The concentration was calculated 
according to a standard curve. Then, the sera were used to isolate AT1-AA. Purified AT1-AA was measured 
in a similar fashion.

Cell culture
The immortalized human podocyte cell line was generously provided by Professor Zhihong Liu 

(Research Institute of Nephrology of the Jinling Hospital of Nanjing University School of Medicine, Nanjing, 
China). The cells were cultured as described previously. Briefly, the podocytes were grown at 33°C in a 
RPMI-1640 medium containing 10% fetal bovine serum (FBS; Gibco, USA) and a mixture containing 
insulin, transferrin and selenium solution (ITS; Invitrogen, USA). After the cells grew to approximately 80% 
confluence, the cells were moved to a 37°C humidified atmosphere in the same medium for 10 - 14 days to 
induce differentiation. The medium was changed every 2 days. Then, the podocytes were treated with or 
without AT1-AA for 24 h. We pre-treated the cells with PD98059 (10 uM) for 30 min and TRPC6 siRNA (25 
nM) for 48 h prior to AT1-AA exposure.

Transfection of TRPC6 siRNA
The cells were transiently transfected with TRPC6 siRNA or scrambled siRNA using the Lipofectamine® 

RNAiMAX Reagent (Invitrogen, USA) according to the manufacturer’s instructions. Briefly, to silence TRPC6, 
we used TRPC6 siRNA (TRPC6-human-1011, TRPC6-human-1491, and TRPC6-human-985), as well as a 
negative siRNA to select the effective siRNA. The siRNAs were diluted with RNA-free water to prepare a 
25 μM solution. When the cells grew approximately 10 days in a 37°C incubator, we changed the complete 
medium to serum- and antibiotic-free medium. Then, we diluted 9 μl of Lipofectamine® RNAiMAX Reagent 
in 150 μl of Opti-MEM®Medium and 1 μl of siRNA in 150 μl of Opti-MEM®Medium per well. After that, we 
added the diluted siRNA to diluted Lipofectamine® RNAiMAX Reagent and incubated at room temperature 
for 5 min before addition to the wells. After 4 - 6 h, we changed the medium with fresh complete medium.

Table 1. Clinical features of participants
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Cells were harvested within 48 - 72 h after transfection for Western blot. The sequences of TRPC6 
siRNAs were as follows:

Negative  siRNA  sense  5’-UUCUCCGAACGUGUCACGUTT-3’,    Anti-sense 5’-ACGUGACACGUUCGGAGAATT-3’; 
TRPC6-Homo-1491 sense 5’-GGUGAUCACGGUCGCCCAATT-3’, Anti-sense 5’-UUGGGCGACCGUGAUCACCTT-3’; 
TRPC6-Homo-1101 sense 5’-GCUGCCCACUGCCAGGAAUTT-3’, Anti-sense 5’-AUUCCUGGCAGUGGGCAGCTT-3’; 
TRPC6-Homo-915 sense 5’-GCUUUGCUUCUAGCUAUUATT-3’, Anti-sense 5’-UAAUAGCUAGAAGCAAAGCTT-3’.

Western blot analysis
Western blot analysis was performed following a standard protocol. The treated human podocytes 

were washed with cold PBS and harvested in a lysis buffer containing a protease and phosphorylase 
inhibitor cocktail on ice for 30 min. Total protein was obtained by centrifuging at 12, 000 g for 15 min at 
4°C. The same amount of protein was loaded on 10% SDS-PAGE, then transferred onto PVDF membranes. 
The membranes were blocked with 5% non-fat milk at room temperature for 1 h and incubated overnight 
at 4°C with primary antibodies against β-actin (mouse-to-human [1:1000], CST#3700); p-ERK1/2 (rabbit-
to-human [1:2000], CST#9101); total-ERK1/2 (mouse-to-human [1:1000], CST#4695); TRPC6 (rabbit-to-
human [1:1000], CST#7225); nephrin (rabbit-to-human [1:1000], ab58968); podocin (rabbit-to-human 
[1:2000], ab50339); synaptopodin (rabbit-to-human [1:1000], ab117702). The membranes were washed 
three times with TBS-T and correspondingly incubated with a peroxidase-conjugated secondary antibody 
(Cell Signaling Technology) for 1 h at room temperature. After thrice washing with 0.1% TBST, the signals 
were detected with enhanced chemiluminescence (ECL, Merck Millipore, USA). β-actin served as an internal 
control.

Immunofluorescence
Immunofluorescence staining was performed on the cells using a standard protocol. Briefly, after twice 

washing with ice-cold PBS, the cells were fixed with 4% paraformaldehyde at room temperature for 30 min, 
permeabilized using 0.1% Triton X-100 for 15 min, then blocked with 5% BSA in PBS for 60 min at 37℃. 
After thrice washing with PBS, the cells were incubated with the appropriate primary antibody dilutions 
(anti-F-actin [1:400], mouse-human, ab205) at 4°C overnight. After thrice washing, the cells were incubated 
with Alexa Fluor 594-conjugated goat anti-mouse secondary antibody (1:200, Jackson, USA) at room 
temperature for 60 min. The nuclei were counterstained with DAPI (C1005-10 ml [1:50]; Beyotime, China;) 
for 5 min at room temperature. After washing, the samples were examined using fluorescence microscopy 
(Olympus, Tokyo, Japan).

Calcineurin phosphatase activity assay
The calcineurin (CaN) activity of human podocytes was measured using a Biomol Calcineurin Cellular 

Activity Assay Kit (Enzo Life Science, Germany) according to the manufacturer’s instructions. In brief, 
the cells were lysed on ice in lysis buffer containing protease inhibitors. Then, the samples were passed 
through freshly prepared columns within desalting resin to remove free phosphate. Between samples, the 
columns were rinsed with phosphate-free water. An equal amount of sample was added to substrate with or 
without EGTA buffer and incubated at 30°C for 30 min. Biomol Green reagent (100 μl) was used to terminate 
reactions and read the OD value at 620 nm. The CaN activity for each sample was calculated according to the 
following formula: CaN= total-EGTA buffer.

Measurement of intracellular Ca2+ ([Ca2+]i)
The treated cells were grown on a laser scanning confocal microscope and 1% physiologic saline 

solution containing 0.02% Pluronic F-127 (p2443; Sigma-Aldrich) and 5 μM Fluo-3/AM ( F1242; Invitrogen) 
was added for 45 min at 37°C. After thrice washing with D-Hanks, the cells were incubated in HEPES buffer 
saline for 20 min. The fluorescence intensity of Fluo-3 in the podocytes was recorded with a laser confocal 
scanning microscope (FV300; Olympus, Japan). The cells were then incubated with 5μM ionomycin in a 5 mM 
Ca2+ buffer and 5 μM ionomycin in a 5 mM EGTA buffer for measuring the maximal and minimal responses 
to Ca2+, respectively. The intracellular calcium concentration was calculated according to Grynkiewicz et al..

http://dx.doi.org/10.1159%2F000494744
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Statistical analyses
All data are expressed as the 

mean±SD of three independent 
experiments. Intergroup 
comparisons were made using 
one-way analysis of variance 
(ANOVA). Multiple comparison 
between the groups was 
performed using Tukey’s test. 
The data were analyzed using 
GraphPad Prism 5.0 software. 
A p value <0.05 was considered 
statistically significance for all 
tests.

Results

AT1-AA level in PE
We determined the AT1-

AA levels in PE sera using 
ELISA. Before purification 
the AT1-AA concentration 
was 134.48±3.89 ng/L and 
after purification the AT1-
AA concentration was 190. 
95±12.07 ng/L.

Effect of AT1-AA 
purified from PE 
patients on podocyte-
specific proteins
To determine whether 

or not AT1-AA exerts a 
harmful effect, we treated 
podocytes with various 
concentrations of AT1-
AA (1:10~1:80) for 24 h. 
The effect of AT1-AA on 
the expression of nephrin, 
podocin, and synaptopodin 
is shown in Fig 1. AT1-AA 
reduced the expression 
of nephrin, podocin, 
and synaptopodin in a 
dose-dependent manner. 
Therefore, we chose a titer of 1:10 in subsequent experiments.

Effect of transfection of TRPC6 expression in podocytes
To identify the function of TRPC6 on AT1-AA-stimulated podocytes, we used siRNA 

to knock down the expression of TRPC6. There were three pairs of siRNAs against TRPC6 
and Western blot was applied to determine the effective pairs (Fig. 2A). The effect of TRPC6 
siRNA 1101 decreased the expression of TRPC6 by 65% (Fig. 2B). Therefore, we chose TRPC6 

Fig. 1. Effects of various concentrations of AT1-AA on podocyte-
specific protein expression. The podocytes were incubated with fetal 
bovine serum (FBS), nIgG (Con), and AT1-AA at 1:10, 1:20, 1:40, and 
1: 80 for 24 h. (A-C) Analysis of nephrin, podocin, and synaptopodin 
expression in podocytes treated with various concentration of AT1-AA. 
(D) Podocyte-specific protein expression detected by Western blot. 
*P<0.05, **P<0.01.
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Fig. 2. The efficiency of transfection of TRPC6 siRNA on podocytes. The 
NC group represents the negative control siRNA group. (A) The relative 
expression of TRPC6 was assessed by densitometric analysis. (B) The 
expression of TRPC6 in podocytes was assessed by Western blotting 
after transfection for 48 h. **P<0.01.
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siRNA 1101 for subsequent 
experiments.

Effect of transfection 
reagent on podocytes
To eliminate the 

effect of transfection on 
podocytes, we established 
the following three groups: 
control group; vehicle 
group; and siRNA group. 
The special proteins 
of podocytes (nephrin, 
podocin, and synaptopodin) 
were assessed by Western 
blotting. As shown in Fig. 3, 
the transfection reagent had 
no effect on the expression 
of these proteins among the 
three groups.

Fig. 3. Effects of transfection on podocyte-specific protein expression 
exposed to nIgG (Con), transfection reagent (vehicle), or SiRNA against 
TRPC6 (TRPC6 siRNA). (A) Podocyte-specific protein expression was 
detected by Western blot. (B-D) Expression of nephrin, podocin, and 
synaptopodin in podocytes.
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Fig. 4. Expression of TRPC6, p-ERK1/2, and podocyte-specific proteins in cells incubated with nIgG (Con), 
AT1-AA, AT1-AA plus PD98059 (AT1-AA+PD), and AT1-AA plus TRPC6 siRNA (AT1-AA+SiRNA). (A) The 
expression of TRPC6, p-ERK1/2, and podocyte-specific proteins was detected by Western blot. (B-D) The 
relative expression of proteins was analyzed by density measurement. *P＜0.05, **P＜0.01, ***P＜0.001, 
#P＞0.05.
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TRPC6 and p-ERK1/2 are involved in podocyte injury stimulated by AT1-AA
As shown in the Fig. 4, the expression of p-ERK1/2 and TRPC6 was significantly increased 

in the podocytes treated with AT1-AA compared with the cells incubated with nIgG. After the 
podocytes were pre-treated with ERK1/2 inhibitor or TRPC6 siRNA, the expression of the 
podocyte- specific proteins increased. The results revealed that ERK1/2 and TRPC6 have a 
role in podocyte injury induced by AT1-AA. Compared to the AT1-AA group, the expression 
of p-ERK1/2 changed little in the TRPC6 knockdown group. The expression of TRPC6 was 
significantly reduced in the PD group. The results demonstrated that ERK1/2 modulated the 
expression of TRPC6.

Effect of AT1-AA on F-actin in podocytes
F-actin is a cytoskeletal protein that is a crucial structure in foot processes of podocytes. 

The expression and arrangement of F-actin plays a vital role in podocyte function. As shown 
in Fig. 5, compared with other groups, the expression and arrangement of F-actin in the 
podocytes treated with AT1-AA was changed, including cortical F-actin ring formation and 
stress fiber attenuation. In addition, this change was attenuated by the addition of pd98059 
or TRPC6 siRNA.

Change in the concentration of intracellular Ca2+

In agreement with previous studies, we showed that the concentration of intracellular 
Ca2+ increased in the AT1-AA group, which was blunted by PD98059 or TRPC6 siRNA (Fig 
6A).

Change in calcineurin phosphatase activity
Fig. 6B shows that the AT1-AA group had decreased calcineurin phosphatase activity. 

The effect of AT-AA in down-regulation of calcineurin activity was partly relieved after PD 
administration or TRPC6 knockdown.

Discussion

PE, a leading direct 
cause of maternal 
morbidity and 
mortality worldwide, 
is a noteworthy risk 
factor for end-stage 
kidney disease (ESKD) 
in later life [24]. As an 
important structure of 
glomerular filtration 
membranes, podocytes 
play an important role 
in proteinuria. There 
is growing evidence, 
identified by us and 
others, that podocyte 
injury is involved 
in the generation of 
proteinuria in PE [25-
27]. AngII can induce 
podocyte injury via 
binding to AngII 

Fig. 5. Effects of AT1-AA on changes in F-actin in podocytes under control 
conditions (Con), AT1-AA (AT1-AA), and in the presence of TRPC6 siRNA 
(AT1-AA+siRNA) or PD98059 (AT1-AA+PD). F-actin was stained by red 
immunofluorescence and the nuclei were counterstained by DAPI.
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receptor [28]; however, our 
previous study showed that 
the expression of AngII and 
AT1 receptor in the kidney 
were decreased in a PE rat 
model. Wallukat et al. [7] 
discovered an autoantibody 
which can activate the AT1 
receptor and imitate most 
functions of AngII [10, 29]. 
In the current study we 
established a PE podocyte 
injury model induced by 
AT1-AA and we showed that 
AT1-AA induced podocyte 
injury in a dose-dependent 
manner.

AngII has been 
reported to enhance 
TRPC6 expression and activate calcium/calcineurin signaling, which could induce podocyte 
injury [30, 31]. To elucidate the mechanism underlying the effect of AT1-AA on podocyte 
injury, we verified the activation of TRPC6-calcium/calcineurin in podocytes treated with 
AT1-AA. Indeed, we found that AT1-AA up-regulates the expression of TRPC6 in cultured 
human podocytes and that the subsequent activation of calcium/calcineurin is responsible 
for podocyte injury. We conclude that the increased TRPC6 expression is a direct result of 
AT1-AA acting on the podocyte. Zhang et al. [32] previously suggested that AngII-induced 
TRPC6 expression might involve MAPK, ERK, JNK, and NF-κB. To identify the possible novel 
mechanism underlying TRPC6-calcium/calcineurin signaling activation induced by AT1-AA, 
we detected the expression of ERK1/2. AT1-AA increased ERK1/2 protein expression, which 
is in agreement with our previous study [33]. When ERK1/2 inhibitor was administered in 
the podocytes treated with AT1-AA, we observed marked ameliorations in podocyte injury 
and a reduction of TRPC6; however, the expression of ERK1/2 was unrecognizable when we 
knocked down TRPC6. Regardless of the latter possibility, ERK1/2 regulates the expression 
of TRPC6.

We further demonstrated that AT1-AA induced calcium/calcineurin signaling activation 
in podocytes by increasing the expression of TRPC6. We inferred that the intracellular calcium 
concentration might have changed in the treated cells. This is because AngII is expected 
to lead to calcium influx in podocytes, and our current study clarified that the expression 
of TRPC6, a transient receptor potential ion channel the activation of which results in 
calcium entry into cells, was up-regulated by AT1-AA in podocytes. We also investigated 
the phosphatase activity of calcineurin. In the current study we found that the intracellular 
calcium concentration was increased, while the calcineurin phosphatase activity decreased. 
Since calcineurin is regulated by the calcium concentration, we assume that the decrease in 
calcium phosphatase activity was related to an increased intracellular calcium concentration 
[34].

In agreement with previous results, there was a cytoskeletal rearrangement in the 
treated podocytes, including cortical F-actin ring formation and stress fiber attenuation. 
This change was in agreement with the effect of AngII on podocytes [35]. TRPC6 knockdown 
or ERK1/2 inhibitor attenuated, not only this cytoskeleton change, but also the expression 
of podocyte-specific proteins.

In this study we demonstrated that AT1-AA is answerable for the activation of TRPC6-
calcium/calcineurin signaling and podocyte injury, including podocyte cytoskeletal 
rearrangement. In summary, our study was the first to demonstrate that AT1-AA induces 
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Fig. 6. Effect of AT1-AA on calcium/calcineurin in podocytes. (A) 
Bar graph of intracellular calcium concentration in podocytes under 
control conditions (Con), after administration of AT1-AA (AT1-AA), 
in the presence of siRNA against TRPC6 (AT1-AA+siRNA), and af ter 
administration of PD98059 (AT1-AA+PD). (B) Bar graph of calcineurin 
phosphatase activity. *p＜0.05, **P＜0.01, ***P＜0.001.
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podocyte injury by up-regulating ERK1/2, which activates TRPC6-calcium/calcineurin 
signaling, forming a potentially deleterious feedback loop by enhancing expression of TRPC6 
and ultimately leading to podocyte injury. In addition, our findings have increased our 
understanding of the mechanisms underlying AT1-AA-induced podocyte injury and provide 
a new therapeutic strategy in PE.

Limitations
This study was performed in vitro without an animal model. Whether or not this effect 

is the same in vivo requires further verification. We did not investigate the role of ARB, the 
blocker of the AT1 receptor, in AT1-AA-induced podocyte injury because of the small amount 
of antibodies that can be isolated from PE serum. We tried to acquire the autoantibodies using 
synthetic peptides in immune mice. Unfortunately, the injurious effect was not apparent.
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