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Abstract. A set of seasonal drought forecast models was
assessed and verified for the Jaguaribe River in semiarid
northeastern Brazil. Meteorological seasonal forecasts were
provided by the operational forecasting system used at
FUNCEME (Ceará’s research foundation for meteorology)
and by the European Centre for Medium-Range Weather
Forecasts (ECMWF). Three downscaling approaches (em-
pirical quantile mapping, extended downscaling and weather
pattern classification) were tested and combined with the
models in hindcast mode for the period 1981 to 2014. The
forecast issue time was January and the forecast period was
January to June. Hydrological drought indices were obtained
by fitting a multivariate linear regression to observations. In
short, it was possible to obtain forecasts for (a) monthly pre-
cipitation, (b) meteorological drought indices, and (c) hydro-
logical drought indices.

The skill of the forecasting systems was evaluated with re-
gard to root mean square error (RMSE), the Brier skill score
(BSS) and the relative operating characteristic skill score
(ROCSS). The tested forecasting products showed similar
performance in the analyzed metrics. Forecasts of monthly
precipitation had little or no skill considering RMSE and
mostly no skill with BSS. A similar picture was seen when
forecasting meteorological drought indices: low skill regard-
ing RMSE and BSS and significant skill when discriminating
hit rate and false alarm rate given by the ROCSS (forecasting
drought events of, e.g., SPEI1 showed a ROCSS of around
0.5). Regarding the temporal variation of the forecast skill
of the meteorological indices, it was greatest for April, when
compared to the remaining months of the rainy season, while

the skill of reservoir volume forecasts decreased with lead
time.

This work showed that a multi-model ensemble can fore-
cast drought events of timescales relevant to water managers
in northeastern Brazil with skill. But no or little skill could
be found in the forecasts of monthly precipitation or drought
indices of lower scales, like SPI1. Both this work and those
here revisited showed that major steps forward are needed in
forecasting the rainy season in northeastern Brazil.

1 Introduction

Northeastern Brazil has historically been the epicenter of ma-
jor drought events. Fioreze et al. (2012) identified 100 severe
droughts since the 16th century in this region, while Marengo
et al. (2017) identified 68 major events for the same period.
Within this region, the state of Ceará has been in the frontline
of the fight against this natural hazard. This has been due to
both the impacts suffered in the past and the measures taken
to improve its resilience.

Droughts in Ceará reflect a meteorological anomaly over
the tropical Atlantic Ocean. Dry years are generally related to
a positive sea surface temperature (SST) anomaly in the trop-
ical North Atlantic, associated with a negative anomaly in the
tropical South Atlantic and over the Equator. This forces a
northward shift of the intertropical convergence zone, taking
the rainbelt to northern latitudes. The causes of this anomaly
are linked to the occurrence of the El Niño–Southern Oscilla-
tion and to the North Atlantic Oscillation (Hastenrath, 2012).
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Past famines and mass migrations triggered large invest-
ments in infrastructure in recent decades. These investments
brought hundreds of strategic reservoirs and thousands of
small dams to a semi-arid landscape, which are being man-
aged according to a transparent water allocation process
(Formiga-Johnsson and Kemper, 2005). In order to support
water allocation and management, the state runs a seasonal
drought forecasting system and issues annual quantitative
and qualitative forecasts of the magnitude of the rainy sea-
son. These predictions can support decisions ranging from
agricultural management (choice of crop, planning of seed-
ing time) to water distribution and reservoir operation.

Currently, the forecasting system in Ceará is based on
the ECHAM4.6 general circulation model (Roeckner et al.,
1992). It runs from January to August on persisted SSTs (ob-
served SST anomalies which are assumed invariant), cover-
ing each year’s rainy season (February to April). The fore-
casts produced by this model are generally downscaled with
the NCEP regional spectral model (Juang et al., 1997), in
order to resolve the spatial variability of Ceará. Verification
and the current forecast can be retrieved under http://www3.
funceme.br/previsao-climatica/ (last access: 24 September
2018). For downscaled forecasts check http://seca-vista.geo.
uni-potsdam.de/ (last access: 24 September 2018).

In this study we intend to evaluate and extend this predic-
tion system by employing

1. an additional underlying GCM,

2. a statistical approach based on the classification of
weather patterns,

3. empirical–statistical downscaling methods to increase
the spatial resolution and temporal fidelity of the pre-
dictions, and

4. drought indices as powerful integrative descriptors for
the description of drought severity.

By these means, we aim to address the following question.

What skill do the seasonal meteorological drought
forecasts have?

While the term meteorological drought focuses on the at-
mospheric forcing causing water shortage, its effective impli-
cations for society are more specifically accounted for by the
term hydrological drought (de Araújo and Bronstert, 2016).
Since the aim of the prediction system is to support water
management, we sharpen the previous question in this re-
gard.

Can we forecast hydrological droughts in Ceará
based on these seasonal meteorological forecasts?

Figure 1. Flowchart explaining the methodology used for predict-
ing meteorological data, meteorological drought indices (MDIs)
and hydrological drought indices (HDIs).

2 Methods

2.1 General approach

This work employed a cascade of models and algorithms
ranging from two general circulation models (one atmo-
spheric and one coupled) at the top to hydrological indices
at the bottom (Fig. 1). Each step involved different types
of target variables being forecasted: the meteorological fore-
casts (Fig. 1, top) refer to meteorological variables (“meteo
data”) from GCM forecasts and the subsequent downscaling
and bias correction to match the spatial and temporal resolu-
tion. The meteorological indices (same figure, center) refer
to the indices that were used to describe the magnitude of the
forecasted meteorological drought. Finally, the hydrological
indices (same figure, bottom) were calculated based on me-
teorological indices in an attempt to infer the magnitude of
a hydrological drought characterized by meteorological and
hydrological properties. To allow for the comparison with
observations, we use results of GCM hindcast, i.e., a model
that has been run with data only known until the specified
time in the past. As these are supposed to represent and tech-
nically resemble true forecasts, they are referred to as “fore-
casts” henceforward. All results and computations after the
statistical downscaling have a monthly time step. Similarly,
all results and computations here presented were aggregated
to selected subbasins (Fig. 2).
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Figure 2. Left panel shows the location of the Jaguaribe River basin in South America. Right panel shows the Jaguaribe River together with
its main tributaries, division into subcatchments used in this work, and meteorological and rainfall observation stations.

2.2 Study area

The spatial domain chosen for this analysis is the Jaguaribe
River basin. Due to the river’s regional importance, a lot has
been written about its hydrology and development (see, e.g.,
de Araújo and Bronstert, 2016; de Aragão Araújo, 1990).
The Jaguaribe is the most important river in Ceará. Its catch-
ment has an area of 70 000 km2 and is home to about 2.7 mil-
lion people (IPECE, 2017). Annual precipitation amounts to
755 mm, of which about 90 % falls in the months January to
June. The rainfall season comprising the months January to
May is often considered key in securing water reserves for
the whole year. June contributes with considerably less rain-
fall.

Average potential evapotranspiration is estimated to
2100 mm. Due to its dominant geology composed of a crys-
talline complex, aquifers in the region are unproductive.
Runoff is practically the only source of drinking water for
people and animals as well as irrigation. To that end, most
of the water is stored in thousands of reservoirs of all scales
across the watershed.

The main tributaries are the Banabuiú River in central
Ceará and the Salgado River in southern Ceará. We aggre-
gated the results of this research into five subcatchments:
the aforementioned tributaries Banabuiú and Salgado, and
the upper (upstream of Orós Reservoir), middle (upstream of
Castanhão Reservoir) and lower (downstream of Castanhão
Reservoir) Jaguaribe. An overview of the state and location
of these catchments and tributaries is given in Fig. 2.

2.3 Seasonal forecast models (“GCM output”)

To address the first research question we employed differ-
ent combinations of dynamical and statistical models and a
weather pattern classification methodology to produce mete-
orological drought indices. The dynamical seasonal forecast
models were provided by FUNCEME and ECMWF in the

form of hindcasts for the period 1981 to 2014. Details like
resolution, reference and a short description are given in Ta-
ble 1.

ECMWF operational seasonal forecasting system S4 has
51 ensemble members and 6 months’ lead time. It is a
fully coupled atmosphere–ocean model. The system has been
systematically verified (Vitart, 2013; Molteni et al., 2011;
Richardson et al., 2012). The hindcast version of the system
has the same specifications of the operational model but only
15 ensemble members. It is available for academic purposes
and is here employed as a benchmark for the verification of
the regional forecasting system in operation in Ceará.

The seasonal forecasting system implemented at
FUNCEME (Ceará’s hydro-meteorological agency) is
based on the ECHAM4.6 general circulation model. Details
on this model can be found in Table 1. The operational
and hindcast versions have 20 ensemble members and are
run on initial sea surface temperature (SST) anomalies that
persisted during the forecasting period (8 months). The
initial state represents a typical (but random) realization
of late December as derived from AMIP-type runs (Gates
et al., 1999). The AMIP run starts in 1961 and is forced
by monthly observed SSTs (NOAA Optimum Interpolation
SST V2). Therefore, potential forecast skill is solely based
on oceanic memory. The forecasting system of FUNCEME
is in operational use and seasonal forecasts are released
monthly.

2.4 Downscaling of GCM output

In order to predict precipitation over particular locations it
is necessary to downscale the GCM forecasts. Three sta-
tistical downscaling approaches were employed: expanded
downscaling (XDS), empirical quantile mapping (EQM) and
weather pattern classification (WP; see Table 1 for details
and references). To differentiate between two fundamentally
different downscaling approaches, weather pattern classifica-
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Table 1. Output variables of each prediction model used in this paper.

Model/method Short description Reference Spatial scale

FUNCEME seasonal A 20-member ECHAM4.6 ensemble. Atmospheric circulation model, Roeckner et al. (1992) approx. 2.8◦

forecast system initial SSTs persisting for 6 months. Initial conditions of longitude/latitude
the atmosphere modeled by an AMIP-type run (starting in 1961).
AMIP run is forced by monthly observed SSTs
(NOAA Optimum Interpolation SST V2).

ECMWF seasonal A multi-model 15-member ensemble including ocean circulation. e.g., Stockdale et al. (1998) approx. 0.7◦

forecast system Initial conditions coming from ERA-Interim latitude/longitude
expanded downscaling Simulates local events consistent with prevailing atmospheric Bürger (1996) network of monitoring

circulation while preserving local covariability stations
empirical quantile Improves systematic biases throughout the statistical e.g., Wetterhall et al. (2012) network of monitoring
mapping distribution by mapping the empirical cumulative stations

distributions of the observed and modeled variables
weather pattern Including pre-selection of variables, e.g., Murawski et al. (2016), network of monitoring
classification variable combinations and spatial domain Philipp et al. (2007) stations

tion will not be referred to as downscaling approach/method
throughout the text.

The downscaling approaches used here yielded a
full set of meteorological variables distributed across
the catchment at points where observations were avail-
able (daily mean temperature, relative humidity, wind
speed and daily total precipitation and radiation). The
forecasting products obtained from the combinations
of GCMs and downscaling will be named after their
components: XDS:ECHAM, XDS:ECMWF, EQM:ECHAM,
EQM:ECMWF, WP:ECHAM, and WP:ECMWF.

Weather patterns were classified using the SANDRA
methodology described in Philipp et al. (2016). The selec-
tion of the optimal classification was done visually in re-
spect to the explained variation of the observed meteorologi-
cal drought indices. The classification itself was independent
of the MDIs, so that no artificial skill was to be expected
from forecasting the stations. Only MDI scales of 1, 12 and
36 months were calculated.

2.5 Drought quantification using drought indices

Meteorological droughts were quantified in magnitude and
temporal scale using meteorological drought indices (MDIs).
After careful appraisal regarding data demand and current
conventions, the following indices were selected: SPI1, SPI3,
SPI6 (WMO, 2012b; McKee et al., 1993), SPEI1, SPEI3 and
SPEI6 (Vicente-Serrano et al., 2009). The subscripted num-
bers (e.g., SPI1) refer to the temporal scale in months for
which the index was computed.

The forecast is generated at the beginning of January
for the period from January until June. Indices obtained by
downscaling forecasts with a temporal scale greater than the
lead time of the forecast will include values from the obser-
vation set. SPI6, for example, will contain 5 months of mea-
sured precipitation in the January forecast. In June, the same
index will be calculated exclusively with forecasted precipi-
tation. The skill of a SPI6 forecast for some months is there-

fore expected to be greater than the skill of a SPI1 forecast
beforehand. This feature does not apply to WP classification.

Timescales greater than 6 months are of no value for the
verification of the forecasting system in terms of meteorol-
ogy, as rainfall in the preceding dry season is usually negli-
gible. However, the hydrology of Ceará is characterized by
long-term memory introduced by a vast network of reser-
voirs. Additionally, drought events in this region are known
to be long and creeping phenomena that must be quantified
on large temporal scales. MDIs with long temporal scales
will therefore have to be considered when designing the hy-
drological drought index (HDI) forecast model in the next
section. To that end, we will employ shorter timescales for
MDI verification, but keep longer timescales (greater than
6 months) in the regression of hydrological drought indices
(HDIs), since they provide a better fit for the forecast model.

Regarding hydrological droughts, various HDIs were re-
viewed and two were considered suitable for this work. All
other indices either (a) require consumptive data for water
use, which is impractical for the given settings, or (b) fo-
cus on streamflow, which misses the most important features
(ephemeral rivers, role of reservoirs) of the hydrological sys-
tem of Ceará and many other semi-arid regions. The only in-
dex chosen from the literature was the surface water supply
index (SWSI) as formulated in Doesken et al. (1991) with a
weight of 0.5 for precipitation within the reservoir catchment
and 0.5 for reservoir volume:

SWSI=
0.5P(rs)+ 0.5P(pr)− 50

12
, (1)

where P(x) is the non-exceedance probability of x based on
available historical records of x, rs is mean monthly reservoir
storage in the respective catchment and pr is the monthly pre-
cipitation averaged for the respective catchment. The second
index, V , was defined as the regional reservoir volume at the
end of each month relative to the total regional reservoir stor-
age capacity.
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In terms of event prediction, the event considered for the
meteorological drought indices in use in this work is “dry
spells of moderate to extreme magnitude”, translated by val-
ues lower than or equal to −1 in the SPI/SPEI scale. For pre-
cipitation a threshold based on the 30th percentile of the se-
ries of observed monthly precipitation was used. The thresh-
old for defining HDI drought events was based on the 30th
percentile of the series of observed monthly HDIs. The rea-
son for using the 30th percentile was the classification used
by the regional agencies to separate between a “dry”, a “wet”
(above the 70th percentile) and a “normal” year.

2.6 Regression of hydrological drought indices

Forecasts of hydrological drought indices were obtained
by searching and fitting a multivariate regression model to
observations of hydrological drought indices and reservoir
volume changes. As candidate predictors, meteorological
drought indices of all temporal scales were used.

For predicting SWSI the multivariate linear regression was
fit directly to the hydrological index. For the regional reser-
voir volume, V , two different approaches were followed.
With the first approach, M1, the multivariate linear regres-
sion was fit directly to the values of V , analogous to SWSI.
With M2, the second approach, the multivariate linear re-
gression was first fit to the monthly changes in V . Then the
predicted value of V was calculated by adding its predicted
monthly changes to the most recent measured value in De-
cember. The regional reservoir volumes predicted by the two
regression models M1 and M2 are denoted VM1 and VM2,
respectively.

Model parsimony was enforced by predictor selection
comprising a heuristic search for the best Akaike informa-
tion criterion (AIC) under the constraint of checking the pre-
dictors for multi-collinearity. To eliminate multi-collinearity
between predictors, correlated predictors were replaced by
their ratios.

Possible forms of multilinear regression include predictors
as denominators of fractions. This implies that these predic-
tors must not take the value zero, in order to exclude division
by zero. To enforce this condition, the MDIs in question were
removed from the time series when approaching zero, in par-
ticular values in ] − 0.1,0.1[.

2.7 Forecast verification

At each level of Fig. 1, a verification of the forecast was per-
formed. Three metrics were employed: the root mean square
error (RMSE), the relative operating characteristic skill score
(ROCSS) and the Brier skill score (BSS) (Wilks, 2005). Root
mean square error is a scalar accuracy measure applied to the
realizations of the ensemble forecast. The Brier score is also
a scalar accuracy measure, though for verification of prob-
abilistic forecasts of predefined events. The relative operat-
ing characteristic is a discrimination-based verification met-

ric for forecasts of defined events. For more information on
these metrics, we recommend chap. 8 of Wilks (2005).

RMSE was computed for each member, ensemble mean
and climatology, i.e., the long-term mean annual cycle. Cli-
matology was considered the reference forecast. The mean
square error was computed for monthly values in the forecast
period (1981–2014, January–June) and averaged over the en-
tire period. The square root of this measure is the RMSE.
It shows the capability of the model to correctly forecast
monthly values, but it does not quantify the skill to predict
particular events of water scarcity. January to June precipi-
tation represents over 90 % of the annual precipitation in the
Jaguaribe basin.

Another important metric employed was the BSS. The
Brier score can be seen as the sum of three terms: reliability,
resolution and uncertainty. The term reliability measures the
differences between forecast probabilities and relative fre-
quencies of the observed event. Thus, low values of this score
correspond to high reliability. Resolution measures the abil-
ity of the forecast to discern periods in which observed fre-
quencies depart from average. Finally the term uncertainty
quantifies the variability of the observations: when the event
being forecasted almost never or almost always happens, the
uncertainty of the forecast is small. The Brier score is here
understood as in Wilks (2005) as

BS=
1
n

n∑
k=1

(yk − ok)
2, (2)

where BS is the Brier score and k denotes the index of the
n forecast-event pairs. yk is the forecast probability for each
forecast-event pair k and belongs to [0, 1]. The forecast prob-
ability is calculated as the number of members of the ensem-
ble that forecast an event divided by their total count. ok is
the observation for each forecast-event pair, which can take
the value 1 for an event and 0 when no event is observed in
k.

The BSS is computed with respect to the Brier score of the
reference forecast (BSref),

BSS= 1−
BS

BSref
, (3)

and it can take any value lower than or equal to one. A fore-
cast is said to have skill if its BSS is greater than zero.

The reference forecast was considered to be the climato-
logical relative frequency of the predefined event. For exam-
ple, the climatological relative frequency for February is the
number of times that a February observation, e.g., of precip-
itation, is considered an event divided by the total number of
years in the hindcast period.

The last metric employed was the ROCSS. The relative
operating characteristic describes the ability to discriminate
between true positives and false positives when forecasting
a given event. It is normally calculated for a set of forecast
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Figure 3. Root mean square error of the forecast of monthly precipitation. Panels (a): box plots show the spread of the RMSE of each model.
The asterisks (*) show the RMSE of the ensemble mean. The RMSE of using climatology as a forecasting product is given by the grey
dashed line. The four panels (b) show the RMSE for each individual station for each model. Note that in general the ensemble mean ranks
better than the best of the ensemble members.

probability bins, thereby having great importance for deci-
sion makers. ROCSS was calculated as

ROCSS= 2 ·AUC− 1 (4)

as in Wilks (2005), where AUC is the area under the rel-
ative operating characteristic curve. The ROCSS can have
values between −1 and 1, where anything below zero means
no skill. A ROCSS of 0 corresponds to the skill of a reference
random forecast.

3 Results and discussion

3.1 Forecasting precipitation

The RMSEs of the precipitation forecast are pre-
sented in Fig. 3. ECMWF ranks better than ECHAM,
while EQM:ECMWF results in the lowest RMSEs and
XDS:ECHAM in the greatest. Still, the best results in terms
of RMSE are comparable to the climatology, meaning that
there is limited skill in forecasting monthly precipitation.
The spatial distribution of RMSE of the ensemble mean in
April shows a concentration of high RMSEs in the lower
Jaguaribe catchment for EQM and in the Salgado catchment
for XDS.

The ensemble mean of the forecast, shown by the aster-
isks in Fig. 3 as well as in other figures below, always dis-
played a lower RMSE than any of the ensemble members.
This happens because the ensemble mean “smoothes out
unpredictable detail and presents the more predictable ele-
ments of the forecast” (WMO, 2012a). Despite its usefulness,
the ensemble mean is not entirely appropriate for predicting
drought events. Ensemble means do not provide any infor-
mation on the probability of an extreme event.

Unlike RMSE, which does not provide any information
on the skill of event forecasts, the BSS is explicitly suited
for that purpose and is shown in Fig. 4. One remarkable ob-
servation is to be made regarding the BSS: skill is mostly
absent when forecasting drought events based on precipita-
tion and its thresholds. The only exception is the forecast for
April, where the multi-model ensemble shows limited skill in
the three regions considered. These results will be discussed
further in light of the greater skill shown when forecasting
drought events based on MDIs.

Still, all forecasting systems here presented show skill in
discriminating events against false alarm forecasts. This is
expressed by the ROC curve shown in Fig. 5. The variation
of the ROCSS over time can be attributed to lead time (skill
decreasing with increasing lead time) and to low or no pre-
cipitation in the months before and after the rainy season.

Hydrol. Earth Syst. Sci., 22, 5041–5056, 2018 www.hydrol-earth-syst-sci.net/22/5041/2018/
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Figure 4. BSS of the forecast of a monthly low precipitation event. (a) The BSS is shown for each model/downscaling combination and for
the forecasting months averaged over the respective subcatchments. BSS values below zero were assigned a “no skill” category in order to
improve readability. The grey line is the BSS of the multi-model ensemble. Panels (b) show BSS averaged over all forecasting months for
each station. Note that in most cases the forecast of monthly precipitation has no skill.

Months of typically low precipitation showed poor ROCSS
(Fig. 5: January, May, June). When comparing downscal-
ing techniques and GCMs, EQM mostly outperformed XDS,
while the skill was less affected by using different GCMs.

To put our results into context, we could find three re-
ports with a statement of verification concerning precipita-
tion forecast in Ceará. de Castro et al. (2013) present a RMSE
of between 120 and 130 mm for the Sertão Interior de In-
hamuns, using an empirical model with forecasts issued in
January for the period February to June. Moura and Hasten-
rath (2004), with a forecast issued at the end of February for
the period of March to June, i.e., with a shorter lead time
than our work, show a RMSE of 50 to 70 mm (Hastenrath
and Greischar (1993) obtained similar results).

3.2 Forecasting meteorological drought indices

A time series of seasonal MDI forecasts was plotted to il-
lustrate the forecast spread given by model EQM:ECMWF
(Fig. 6). The improvement provided by the ensemble mean,
when compared to each member, is clearly visible. Also visi-
ble are several observed events of moderate to severe drought
(below the dashed grey line). The ensemble mean is able to
forecast at least a few of these events.

A measure of the general agreement (for all kinds of con-
ditions, dry, average or wet) between forecasted and ob-
served MDIs is given by the RMSE in Fig. 7. The relation-
ship between forecast probability and relative frequency of a
drought event (i.e., the BSS) is provided in Fig. 8, whereas
the balance between hit rate and false alarm rate for the same
event can be seen in the form of ROCSS in Fig. 9 below.

The RMSE of MDI forecasts is shown in Fig. 7. With
the exception of the predictions produced by the WP ap-
proach for SPI1, the general ranking of the approaches is
quite consistent among the three subbasins. As with precipi-
tation, the RMSE of SPI1 and SPEI1 generally does not differ
from that of the climatology and is greatest for ECHAM and
EQM. EQM:ECMWF and XDS:ECMWF show the consis-
tently lowest RMSE and XDS:ECMWF performs better than
the climatology. Interestingly, ECMWF consistently outper-
forms ECHAM on all scales.

RMSE reflects the prediction skill for the whole range
of the indices, including wet spells and dry spells/droughts.
When aiming primarily at forecasting drought events, this
verification may be misleading. Nevertheless, this metric
shows which models are most appropriate for this domain
and confirms the plausibility of the forecasting system also
for wet years.
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Figure 5. ROCSS of the forecast of a monthly low precipitation event. (a) The ROCSS is shown for each model/downscaling combination
and for the forecasting months averaged over the respective subcatchments. Panels (b) show ROCSS averaged over all forecasting months
for each station.
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Figure 6. Time series of the seasonal forecast of SPI1 in the Castanhão subcatchment given by ECMWF:EQM. Only periods from January
to June are shown. The threshold “moderate drought event” is given by the grey dashed line.

As for the BSS, Fig. 8 shows this indicator of skill for
timescales of 1, 3 and 6 months in three regions of the
Jaguaribe River. For the 1-month timescale, it is notewor-
thy that the first 3 months of the forecast display the lowest
skill. In particular the March forecast shows no skill in most
models, March being a key contributing month in the rainy
season. The second half of the rainy season, April/May/June,
has generally more skill. The same BSS minimum can be ob-
served in the SPI3 and SPI6 panels, but this time with slightly
greater value than for SPI1, since these indices entail some
measured data. Another interesting observation is that, con-
trary to RMSE, here no product can be considered a clear
winner.

For the ECHAM model a possible explanation for lower
skill at the onset of the rainy season may lie in its initial con-

ditions. Since the initial conditions for each model run are
provided by the output of an AMIP-type run (Gates et al.,
1999), they may depart considerably from actual atmospheric
conditions. According to this hypothesis, the model would
come closer to atmospheric conditions only through the SST
forcing, which could explain a certain lag in the forecasting
skill. Still, this explanation can only account for ECHAM
and not the ECMWF model, which is fully coupled and
whose initial conditions are derived from ERA-Interim.

The ROCSS for the different months of the forecasting
period shows a slightly different picture than the RMSE
and BSS previously presented. Figure 9 shows ROCSS for
timescales of 1, 3 and 6 months in three regions of the
Jaguaribe River. There is no clear pattern concerning the re-
lationship between lead time and skill for any of the fore-

Hydrol. Earth Syst. Sci., 22, 5041–5056, 2018 www.hydrol-earth-syst-sci.net/22/5041/2018/
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Figure 7. Box plots of the root mean square error of a forecasted meteorological drought index. The asterisk (*) shows the RMSE of the
ensemble mean and box plots show the spread of the individual members. Note that in general the ensemble mean ranks better than the best
of the ensemble members.
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Figure 8. BSS of a forecasted meteorological drought event based on an event of index lower than −1. The grey line shows the result of the
multi-model ensemble mean.
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Figure 9. ROCSS of a forecasted meteorological drought event based on an event of an index lower than −1. The grey line shows the result
of the multi-model ensemble mean.

casting models. As in previous plots, the forecasting skills
for different MDIs tend to display a minimum in March.

Contrary to the results for RMSE, ECHAM shows com-
parably good ROCSS and BSS in forecasting MDI drought
events of all scales in all three regions. Still, the comparably
low skill of the March forecast is problematic, March be-
ing the month of greatest precipitation in most of the catch-
ment. WP:ECHAM features the best BSSs for SPI1/SPEI1
in April and May, whereas EQM:ECHAM features generally
the highest ROCSS in April for the same scale.

It is worth looking at the BSS of SPI6/SPEI6, even if they
partly encompass measured values. BSS in June in partic-
ular is a valuable indicator of the ability of the models in
forecasting the whole rainy season. Here, most products dis-
play some skill in forecasting a drought event. XDS:ECMWF
is the only one displaying no skill for all three regions in
SPEI6. Generally the skills are higher with SPEI6 than with
SPI6. Regarding SPEI6, EQM:ECHAM and EQM:ECMWF
display skill in all three regions. In the important region of
Castanhão, where the largest reservoir and most infrastruc-
ture is located, EQM:ECHAM and XDS:ECHAM perform
best in forecasting SPEI6 for June, although with a low value
of BSS.

The multi-model ensemble skill shown by the grey line
is generally close to the upper envelope formed by that of
the individual models. For SPEI1 in the months January to
May (rainy season) the ROCSS of the multi-model ensemble

is always positive and oscillates around 0.5. An interesting
result is the improvement in skill when SPI1 is replaced by
SPEI1. The grey line, which shows the ROCSS/BSS for the
multi-model ensemble, has an increase in skill at all scales
and regions.

A similar forecast assessment has been reported by,
e.g., Dutra et al. (2013). Events were defined by a SPI3 lower
than−1, with a lead time of 3 months. ROCSS obtained were
on the order of 0.6 for the Blue Nile basin, which is compa-
rable with the results presented in this paper, but much lower
for other river basins, e.g., the Zambezi.

3.3 Forecasting hydrological drought indices

The multivariate regression model equations obtained and
their respective R2 are shown in the Appendix, Table A1.
Long-scale MDIs (like SPI12 or SPI36) prevail as predic-
tors of reservoir volume, whereas short-scale MDIs like SPI1
are mostly present as predictors of reservoir volume change.
This reflects the timescale of reservoir storage variations. At
a given moment in time, the reservoir storage results from
several months of inflow. Similarly, the effect of a month of
high inflow on the reservoir storage level is likely to be only
residual.

The forecast of the three HDIs shows notable differences
between downscaling techniques EQM/XDS and the WP
classification (Fig. 10). WP classification has a lower RMSE
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Figure 10. Root mean square error of the forecast of SWSI, V predicted with M1 and V predicted with M2 (based on month-to-month
variation). The forecast period is January to June. Three regions are presented: lower Jaguaribe, Orós and Castanhão. The horizontal grey
dashed line shows the RMSE of the climatology.

than EQM/XDS when predicting SWSI or VM1. For VM2, the
difference between WP and EQM/XDS is much smaller. The
ensemble spread of WP classification shrinks considerably
from VM1 to VM2. All methods show a decrease in RMSE
from VM1 to VM2.

Again, WP classification considers by design only a range
of discrete MDIs, which can affect RMSE. MDIs were lim-
ited to nine values, of which−0.75, 0 and 0.75 are the closest
to zero. The continuous values of MDIs derived by the other
products are problematic, because the multilinear regression
also considers division by the meteorological drought index.
When the MDIs are close to zero, outliers arise and skew the
RMSE. These datapoints were therefore removed from the
verification metrics.

Regarding the prediction of HDI drought events, Fig. 11
clearly points out that prediction performs best when tar-
geting reservoir volume with model M2 (adding predicted
monthly value to the December observed regional reservoir
volume). Here, all products show reasonable performance for
most regions, but a decreasing skill with increasing lead time.
Another important observation is that WPs do not display
skill in forecasting HDI events as shown in Fig. 11.

Contrary to the MDIs, the BSSs of the HDIs do not
feature a minimum in March. A slight tendency of lower
skills towards the end of the rainy season is observable in
VM1 forecasts. VM2 shows comparably good results for all
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Figure 11. BSS of the forecast of drought events as defined by
SWSI, V predicted with M1 and V predicted with M2 (based
on month-to-month variation). An event is defined when an index
is lower than the 30th percentile of the observations. The fore-
cast period is January to June. Three regions are presented: lower
Jaguaribe, Orós and Castanhão.
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Figure 12. ROCSS of the forecast of drought events as defined
by SWSI, V predicted with M1 and V predicted with M2 (based
on month-to-month variation). An event is defined when an index
is lower than the 30th percentile of the observations. The fore-
cast period is January to June. Three regions are presented: lower
Jaguaribe, Orós and Castanhão.

GCM/downscaling combinations in predicting HDI events,
confirming the results in Fig. 10.

The ROCSS shows small differences between GCMs or
downscaling methods (Fig. 12). VM2 features the highest
ROCSS of the different indices used and very little variabil-
ity among downscaling approaches and GCMs employed.
As with BSS, the ROCSS of VM2 decreases with increas-
ing lead time. The results of SWSI and VM1 are very similar,
with SWSI showing higher variability among downscaling
approaches and GCMs. VM2 could be predicted by WP clas-
sification with high ROCSS, whereas VM1 and SWSI show
no skill.

It was possible to predict any of the indices with skill in
most modeling approaches and catchments. Still, VM2 was
predicted with the greatest BSS and ROCSS, even though
it showed worse R2 when fitting the regression model on
which the prediction is based (Table A1). This result hints at
better HDI predictability when the predictant is a change in
reservoir volume than the reservoir volume itself. One reason
for the improved predictability of VM2 is surely the impor-
tance of persistence in reservoir storage dynamics. By adding
the predicted change to the measured reservoir volume we
are providing valuable measured information to the forecast
model that SWSI and VM1 do not have.

We could not find reports on streamflow/reservoir fore-
casting systems for the region of Ceará stating BSS, ROCSS,
RMSE or another verification measure. Still, for other semi-
arid regions of the world, similar skill values could be found
in the literature. Trambauer et al. (2015) forecasted events

of a standardized runoff index of 6 months lower than −0.5
with variable lead times. Their best catchment points to a
ROCSS of 0.7 with a lead time of 5 months. Seibert et al.
(2017) forecasted events with a standardized streamflow in-
dex (Vicente-Serrano et al., 2012) below −0.5, reporting a
ROCSS of 0 at the outlet of a large river (the Limpopo in
southern Africa) to close to 1 in its headwater catchments.

3.4 Multi-model ensemble forecast

Finally, we present the skill score of the multi-model en-
semble forecast in Table 2. Each type of index considered
(precipitation, meteorological drought index and hydrologi-
cal drought index) is presented. Results of the WP classifica-
tion were excluded from the multi-model ensemble, because
they did not cover all the indices addressed in this work.

The BSS of forecasts of low precipitation events (given in
column P ), as well as that of the forecasts of drought defined
by the SPI1, show either very low or no skill. Forecasts of
SPEI generally display greater skill than the forecasts of SPI.
This points to a possible bias in the forecasting that is com-
pensated for by introducing temperature into the equation of
SPEI.

The best skill obtained by the multi-model ensemble was
forecasting drought events related to reservoir storage in the
lower Jaguaribe region. The good skill of the reservoir stor-
age forecast is likely related to the long memory of the reser-
voir system. The forecasted precipitation will affect the reser-
voir only marginally, since most of its storage is accumulated
throughout several years. Most importantly, BSS increases
when VM2 is used instead of VM1, i.e., when reservoir volume
is forecasted by adding forecasted reservoir volume change
to measured December reservoir volume.

Table 2 reveals an interesting pattern in this work: addi-
tional information to the forecast model tends to increase
forecast skill. SPEI1 is based on temperature and precipi-
tation data and was forecasted with greater skill than SPI1,
which is only based on precipitation. Similarly, SPEI6, which
combines forecasted and measured precipitation and tem-
perature from months prior to the forecasting period, has
more skill than SPEI1 forecasts. The greatest BSS is given
by VM2, a HDI that requires measured initial reservoir vol-
umes as well as a combination of several MDIs. This last
point stresses the importance of assimilating prior hydrolog-
ical conditions into the forecast products.

4 Conclusions

The plausibility and skill of a set of drought forecasting mod-
els were presented. Different types of drought events were
considered: a rainfall anomaly during the rainy season, stan-
dardized precipitation indices below a given threshold and
anomalies in regional reservoir storage. The forecast prod-
ucts considered were combinations of two models, ECHAM
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Table 2. BSS of January–May multi-model ensemble forecast. The ensemble includes ECHAM and the ECMWF seasonal forecast model,
as well as the EQM and XDS downscaling techniques. The BSSs are averaged over each region. Columns show different indices used for the
forecast: P is seasonal precipitation, SPI1 and SPEI1 are standardized precipitation indices with scale 1 month, and Reservoir volume stands
for regional reservoir volume in percentage of regional storage capacity. The BSS refers to meteorological and hydrological drought events
described in Sect. 2.

Region BSS

P SPI1 SPEI1 SPEI6 Reservoir Reservoir
volume (M1) volume (M2)

Orós no skill no skill 0.11 0.38 0.43 0.66
Castanhão no skill 0.08 0.11 0.32 0.23 0.52
Lower Jaguaribe 0.06 no skill 0.16 0.37 0.12 0.71

and the ECMWF seasonal forecast, two downscaling tech-
niques, XDS and EQM, and a weather pattern classification
approach.

Each model provided an ensemble of predictions, so de-
terministic and probabilistic measures of skill could be used.
The deterministic measure allowed us to see the significant
improvement introduced by the ensemble mean: the ensem-
ble mean had in most cases a lower root mean square error
than the climatology. The RMSE of the ensemble mean how-
ever was comparable to the climatology and in some cases
greater. Still, no approach had a RMSE that significantly de-
parted from the RMSE of the climatology.

A multi-model ensemble forecast was obtained by binding
all members of all models into one product. The skill of this
forecast is given in Figs. 4, 8, and 11, and Table 2. Multi-
model ensembles can be considered to be our best guess of
a probabilistic drought forecast, since they are consistently
among the best forecast skills provided by the individual
models. Individual members surpassed the multi-model en-
semble skill only occasionally, for particular combinations
of regions, months and indices.

The skill of the hydrological drought forecast, namely the
relative reservoir storage VM2, was 0.66, 0.52 and 0.71 for
the regions of Orós, Castanhão and lower Jaguaribe, respec-
tively. The skill obtained for the hydrological drought fore-
cast is likely inflated by the long memory of the reservoir
system and the use of observed reservoir volume to define
the conditions prior to each forecast. Still, the R2 of the re-
gression that provides the reservoir variation underlying VM2
was lower than that of VM1, indicating that a regression might
be a poor prediction of reservoir inflow. Improvements are
expected by coupling a process-based hydrological model to
the seasonal forecasting system.

This work showed that a multi-model ensemble can fore-
cast drought events of timescales relevant to water managers
in northeastern Brazil with skill. But no or little skill could
be found in the forecasts of monthly precipitation or drought
indices of smaller temporal scales, like SPI1. Both this work
and others here revisited showed that major steps forward are
needed in forecasting the rainy season in northeastern Brazil.

Data availability. The hindcast datasets of ECHAM and ECMWF
can be released upon request. Observations of meteorological vari-
ables and reservoir volume were provided by FUNCEME and are
publicly available through an API (please contact the authors for
further instructions).
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Appendix A: Multivariate regression of regional
reservoir volume

Table A1. Regression used for predicting regional reservoir volume and regional reservoir volume change using a set of MDIs as predictors.
Regional reservoir volume was taken at the end of each month relative to the total regional reservoir storage capacity. Regional reservoir
volume change refers to the difference between the given and previous months.

Region Predictant Formula R2

Orós Reservoir volume 59.0− 22.9SPEI36+ 6.67SPI12+ 45.4SPI36 0.64

+6.00SPI12SPEI1− 5.30SPEI36SPI36

Orós Reservoir volume change 0.416+ 2.43SPEI1 SPI1+ 2.23SPI1 SPI12 0.36

−0.173SPI36
SPEI36
SPEI12

+ 4.20SPEI1
SPI12

SPEI12

−0.00334 SPEI36
SPEI12

SPI36
SPI12

Castanhão Reservoir volume 55.4+ 12.5SPEI36+ 12.4 SPI36
SPEI36

− 3.12SPEI12
SPI12

SPEI36
0.41

−3.19 SPI12
SPEI36

SPI12
SPEI12

+ 10.19 SPI36
SPEI36

SPEI12

Castanhão Reservoir volume change 2.95+ 3.47SPI1− 1.15 SPI1
SPEI1

− 1.27 SPI1
SPEI1

SPEI36 0.21

−0.791SPI1
SPI36

SPEI12
+ 1.41SPEI12

SPI36
SPEI36

Lower Jaguaribe Reservoir volume 33.4+ 16.3SPEI36+ 16.6SPI12+ 5.65SPEI36 SPI12 0.60

−13.5SPI12
SPI12

SPEI12
+ 0.877SPI12

SPI12
SPEI36

Lower Jaguaribe Reservoir volume change 0.689+ 2.22SPI1+ 0.0353 SPI36
SPI12

+ 2.12SPI1SPI12 0.38

+1.08SPI12
SPI12

SPEI12
+ 0.286SPI1

SPI12
SPEI36
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