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In this paper, we present the first evidence that perceived speech can be identified from

the listeners’ brain signals measured via functional-near infrared spectroscopy (fNIRS)—a

non-invasive, portable, and wearable neuroimaging technique suitable for ecologically

valid settings. In this study, participants listened audio clips containing English stories

while prefrontal and parietal cortices were monitored with fNIRS. Machine learning was

applied to train predictive models using fNIRS data from a subject pool to predict which

part of a story was listened by a new subject not in the pool based on the brain’s

hemodynamic response as measured by fNIRS. fNIRS signals can vary considerably

from subject to subject due to the different head size, head shape, and spatial locations

of brain functional regions. To overcome this difficulty, a generalized canonical correlation

analysis (GCCA) was adopted to extract latent variables that are shared among the

listeners before applying principal component analysis (PCA) for dimension reduction

and applying logistic regression for classification. A 74.7% average accuracy has been

achieved for differentiating between two 50 s. long story segments and a 43.6% average

accuracy has been achieved for differentiating four 25 s. long story segments. These

results suggest the potential of an fNIRS based-approach for building a speech decoding

brain-computer-interface for developing a new type of neural prosthetic system.

Keywords: BCI, fNIRS, prefrontal cortex (PFC), parietal lobe, speech perception, decoding

INTRODUCTION

The decoding of speech from brain signals has attracted the attention of researchers in recent
years (Chakrabarti et al., 2015; AlSaleh et al., 2016; Herff and Schultz, 2016). A device that can
directly translate brain signals into texts that describe a person’s thoughts may help people with
disabilities and verbal communication deficits and enable a new communication channel with the
outside world. Such brain-computer interfacing device may also help healthy people to directly
interact with a machine without the need of using muscles and potentially expand the interaction
bandwidth.

Most of the previous studies focused on phoneme-based decoding and adopted invasive
or partially invasive technology that requires the implant of sensors during neurosurgery. For
example, Brumberg et al. investigated the classification of intended phoneme production based
on intracortical microelectrode recordings (Brumberg et al., 2011). Herff et al. decoded words from
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continuously spoken speech from intracranial
electrocorticographic (ECoG) signals recorded from epileptic
patients based on the classification of phonemes (Herff et al.,
2015). A 75% classification accuracy has been achieved for a
dictionary of 10 words and a 40% accuracy for a dictionary
of 100 words. Martin et al. investigated the classification of
individual words from a pair of imagined word using ECoG
and a 58% binary classification accuracy has been achieved
(Martin et al., 2016). The authors also showed that the binary
classification of listened and overt spoken words is much
better, which achieved 89% and 86% accuracy, respectively.
We refer to Chakrabarti et al. (2015) and Herff and Schultz
(2016) for a more comprehensive review of the state of art in the
field.

Despite of the promising results achieved, invasive technology
requires the implantation of sensors which limits their
applications, especially for the healthy populations. In the
field of non-invasive brain-computer interface, studies mainly
adopted electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI) for the classification of speech related
task conditions. For example, O’Sullivan et al. played two audio
stories of 60 s long simultaneously to the subjects who were
instructed to attend to one of the stories. They were able the
identify which story the subjects were attended to with 89%
accuracy (O’Sullivan et al., 2015). Yoshimura et al. investigated
the 3-class classification of two imagined phonemes and no-
imagery control and a 59% accuracy has been achieved adopting
fMRI prior for current source estimation (Yoshimura et al.,
2016). Vodrahalli et al. investigated the classification of movie
scene from fMRI response (Vodrahalli et al., 2017). A shared
response model (SRM) has been used for dimension reduction
and a classification accuracy of 72% has been achieved over 4%
chance level. A recent fMRI study investigated a similar task
of identifying musical pieces (Hoefle et al., 2018). A multiple
regression has been adopted to predict features of musical pieces
for the task of differentiating between new pieces not used for
training the predictive model.

In this study, we adopted fNIRS for the classification of
listened stories. This approach is motivated from our recent
fNIRS study (Liu et al., 2017c) and a number of other fMRI
studies (Stephens et al., 2010; Lerner et al., 2011; Hasson
et al., 2012) which show that listeners’ brain mirror each other
whenever they are listening to the same story and the listeners’
brain mirror the speaker’s brain with a delay. We also inspired
from fNIRS BCI studies which revealed the potential of fNIRS
in classifying mental conditions (Ayaz et al., 2009; Power et al.,
2010, 2012; Fazli et al., 2012a,b; Khan et al., 2014; Liu et al.,
2017b).

fNIRS is an optical based neuroimaging technique for
measuring the cortical concentration changes in the oxygenated
(oxy-Hb) and deoxygenated (deoxy-Hb) hemoglobin. It is
portable, wearable (Piper et al., 2014; Mckendrick et al., 2015),
non-invasive and can even be battery-operated and wireless,
and hence particularly suitable for brain-computer interfacing
in everyday settings (Ayaz et al., 2011, 2013; Liu et al.,
2017a,b). Several studies in the literature adopted fNIRS to
investigate the classification of neural signals during listening

comprehension, speech production or related topics. Power
et al. (2010) investigated the classification of music and mental
arithmetic conditions and a 77% accuracy has been achieved
(Power et al., 2010). The same group in 2012 investigated
the three-class classification problem of differentiating mental
arithmetic, mental singing and no-control state and a 56.2%
accuracy has been achieved (Power et al., 2012). Telkemeyer
et al. (2011) investigated the acoustic processing of non-linguistic
sounds in infants combining EEG and fNIRS (Telkemeyer et al.,
2011). Herff et al. (2012) adopted fNIRS for differentiating
between speech and not speaking conditions (Herff et al., 2012).
They achieved 71% and 61% for classifying overt speech/not
speaking and silent speech/not speaking, respectively. Moghimi
et al. (2012) investigated the classification of music excerpts with
different emotional content using only fNIRS. They were able
to differentiate excerpts with positive and negative emotions
with 72% accuracy (Moghimi et al., 2012). Putze et al. (2014)
combined EEG and fNIRS for differentiating visual and auditory
perception processes from each other and achieved 98% accuracy
(Putze et al., 2014).

To study fNIRS-based speech recognition, we used the data
from our previous study which included fNIRS recordings while
participants (N = 19) were listening to English stories (Liu et al.,
2017c). We divided the fNIRS signals into several segments (each
corresponding to a part of a story) and machine learning was
applied for identifying which part of the stories a participant was
listening to using only fNIRS signal.

A major obstacle in the classification of fNIRS signal is the
individual variations caused by the different size and shape of
the head/brain across the subjects. For some subjects, their head
shape resulted in channels being rejected due to bad contact.
Conventionally, this problem can be alleviated by acquiring
additional information such as the 3D coordinates of the sensors
and results from a structural magnetic resonance imaging scan.
This information can be used to estimate the exact location
of the brain a sensor was measuring from and transform
all data to a standard brain space (Tsuzuki and Dan, 2014).
However, the conventional approach can be time consuming,
costly and it doesn’t take into account the individual differences
in brain activation regions which could also deteriorate the
accuracy of fNIRS signal classification. As a solution to this
problem, we applied spatial filters for extracting latent variables
that have minimum between-subject variations. Spatial filters
find linear combination of the optodes (i.e., fNIRS sensors) to
linearly transform the raw data. We consider two spatial filtering
techniques: GCCA (Shen et al., 2014) and SRM (Chen et al.,
2015). Each of these techniques finds a set of subject-specific
spatial filters to extract latent variables. GCCA extracts the 1st
latent variable that maximizes the between-subject correlations
in the signal time course. It then extracts the 2nd latent variable
to maximize the between-subject correlations subject to the
constrain that it is uncorrelated with the 1st latent variable.
This procedure is repeated until no more latent variable could
be found. For SRM, it finds spatial filters which minimize the
sum of squared error between extracted latent variables and the
estimated component time courses that are shared among all
subjects.
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METHODS

Participants
Nineteen participants from our previous study (Liu et al., 2017c)
who have completed the listening comprehension of both story
E1 and E2 were used for the analysis in this study.

Signal Acquisition
Two continuous wave optical brain imaging devices were used
simultaneously on each participant to record brain activity
from prefrontal cortex (PFC) and parietal cortex (PL) using 40
measurement locations (optodes) (Figure 1). Anterior prefrontal
cortex was recorded in 2Hz by a 16-optode continuous wave
fNIRS system (fNIR Imager Model 1100; fNIR Devices, LLC)
first described by Chance et al. (1998) and developed in our
lab at Drexel University (Izzetoglu et al., 2005; Ayaz et al.,
2011). Parietal cortex was recorded in 10Hz using a 24-optode
continuous wave Hitachi fNIRS system (ETG 4000; Hitachi
Medical Systems). Please refer to Liu et al. (2017c) for a detailed
description of the signal acquisition.

Signal Processing
Raw light intensities were converted into concentration
changes in oxygenated-hemoglobin (HbO) and deoxygenated-
hemoglobin (HbR) concentrations using the modified
Beer-Lambert law (Cope and Delpy, 1988). The raw signal
and hemoglobin concentration changes were inspected both
visually and also using the automated SMAR algorithm (Ayaz
et al., 2010), which uses a coefficient-of-variation based approach
to assess signal quality, reject problematic channels with bad
contact or saturated raw light intensity. Two optodes, 1 and
15, were over the hairline for most participants and hence
were rejected from the study. One more optode (optode 37)
was rejected from the study because it has been rejected in
more than 40% of the subjects. The HbO and HbR signals
were band-pass filtered from 0.01 to 0.1Hz using a 4-th order
zero-phase infinite impulse response (IIR) filter for reducing
artifacts from physiological signals (Ayaz et al., 2011). The
cut-off frequencies reflect common settings addressing global
drifts (<0.01Hz) and systemic interferences such as Mayer
wave (∼0.1Hz), respiration rate (>0.2Hz) and cardiac cycles
(>0.5Hz). We then downsampled the signals to 1Hz. We
rejected the first 30 s of each story because they may be affected
by transient global increases or decreases in response amplitude
caused by the start of listening comprehension. For each story,
the signal time courses were divided into segments of 100 s
duration. A total of 9 segments were extracted from the two
stories.

Feature Extraction
fNIRS signals vary considerably from subject to subject due to
the different head size, head shape, and spatial locations of brain
functional regions. For reducing the between-subject variations,
two spatial filtering approaches were considered: the shared
response model (SRM) and generalized canonical correlation
analysis (GCCA).

Shared Response Model
The SRM was proposed by Chen et al. (2015) for identifying
the shared brain responses among subjects by estimating subject-
specific spatial filters. More specifically, the spatial filters Wi for
subject i were estimated as below:

minwi, s
∑

i
||WT

i Xi − S||2F

s.t.Wi
TWi = Ik (1)

where Xi ∈ R
vi×t(i = 1, . . . ,N) is the fNIRS signals of subject

i with vi channels and t time points. In this study max
i
(vi) =

37(optodes) × 2
(

HbO/HbR
)

= 74. For a subject, some optodes
were rejected due to over the hairline, ambient light leakage or
severe motion artifact contamination. Wi ∈ R

vi×k is the spatial
filters of subject i and the parameter k represents the number of
spatial filters to be estimated. Parameter k needs to be selected
by the experimenter. And S ∈ R

k×t is the corresponding time
series of responses shared by all participants. For each subject,
X̃i = WT

i Xi is then used as feature for classification.

Generalized Canonical Correlation Analysis
GCCA estimates subject-specific spatial filters for extracting
orthogonal components that are maximally correlated among the
subjects. We denote Xi ∈ R

vi×t(i = 1, . . . ,N) the fNIRS signals
of subject iwith vi channels and t time points andWi ∈ R

vi×k(i =
1, . . . ,N) the spatial filters for subject i. GCCA maximizes the
following:

φ (W) = tr(WTXXTW) (2)

s.t.WTDW = It

where X =
[

XT
1 , . . . ,X

T
N

]T
∈ R

v×t (v = v1 + . . . + vN),

W =
[

WT
1 , . . . ,W

T
N

]T
∈ R

v×k and D =







X1X
T
1 · · · 0

...
. . .

...

0 · · · XNX
T
N







is a block diagonal matrix. This could be achieved by solving the
following generalized eigenvalue problem:

XXTw = λDw

After the spatial filters were estimated, the latent variables X̃i =

WT
i Xi is used as features for classification.

Inter-subject Correlation
For gaining an intuitive understanding of the relative importance
of the fNIRS channels in characterizing the story segments, we
calculated the inter-subject correlation for each fNIRS channel j
as follows:

rj =
1

19

19
∑

i=1

ρ(x
j
i, x

j
i)

where ρ(·) denotes Pearson’s correlation, x
j
i is the fNIRS time

course of subject i, x
j
i is the average time course of all other
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FIGURE 1 | (A) fNIRS acquisition setup. Red circles indicate emitters; blue circles indicate detectors; White squares indicate measurement channels between emitters

and detectors. (B) Schematic representation of the same optode locations on head surface which is used to show results. Written informed consent was obtained

from the participant and adapted from Liu et al. (2017c).

FIGURE 2 | Story sub-segments classification procedure. Spatial filters were estimated from 8 story segments to minimize between-subject variations and then

applied to the 9th segment that has been left out. The 30 s. of data immediately before and after the 9th segment was rejected from training data. This procedure is

repeated until all segment has been left out exactly once for a leave-one-segment-out cross-validation. During each iteration of the cross-validation, the spatially

filtered segment that has been left out were further divided into 2 or 4 sub-segments, forming a 2-class or 4-class classification problem. The sub-segments from 18

or 19 subjects were used to estimate a predictive model and its classification performance is evaluated on the one or two subjects that has been left out for

performing an inner 10-fold cross-validation.

subjects except subject i. The inter-subject correlation reflects
the consistency of the signal cross different subjects. To test the
significance of the inter-subject correlation, a phase-scrambling
random permutation procedure as used in (Lerner et al., 2011)
was adopted. More specifically, the Fourier transform was
applied on a fNIRS time course, the phase of the frequency
components was randomized and the inverse Fourier transform
was applied to obtain a phase-scrambled time course. This

procedure was repeated 1,000 times for estimating the null
distributions of the inter-subject correlations. In our study, there
are 34 (optodes) × 2 (HbO/HbR) = 74 fNIRS channels. To
correct for multiple comparison, themaximum statistic approach
was applied (Nichols and Holmes, 2002), i.e., in each of the 1,000
iterations, the maximum inter-subject correlation values among
the 74 phase-scrambled fNIRS time courses were calculated
(rmax = maxj=1...74rj) for estimating the null distribution of rmax.
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The null hypothesis of a fNIRS channel is rejected if its inter-
subject correlation is higher than 95% of the samples in the null
distribution of rmax.

Classification and Performance Evaluation
For classification, the fNIRS time courses of the signal segments
were used as feature, a principal components analysis was
adopted for dimensional reduction and the logistic regression
was adopted for classification. A leave-one-segment-out cross-
validation was performed to apply spatial filtering for reducing
between-subject variations and a 10-fold cross-validation was
performed to evaluate story segments classification. We denote
X
p
i (i = 1, . . . ,N; p = 1, . . . , 9) the fNIRS time courses of subject

i and story segment p. The performance evaluation procedure is
as follows:

For story segment p = 1, . . . , 9:

• Spatial filter training:

All story segments except segment p {X
j
i, j 6= p, i = 1, . . . ,N}

were used as training set for estimating K spatial filters for

each subject (Wp =
[

WT
1p, . . . ,W

T
Np

]T
∈ R

v×K) adopting

FIGURE 3 | Inter-subject correlation. Black “+” sign represents significant

channels.

SRM or GCCA. Before applying spatial filtering, the fNIRS
optodes were normalized to have a mean of zeros and standard
deviation of ones. The 30 s. long data immediately before and
after the testing segments were rejected from training data.

• Spatial filter testing:
The spatial filters estimated in training were applied to the
story segment p (the testing set) to extract spatial components
X̃
p
i .

• Classification:
The estimated X̃

p
i (or X

p
i if spatial filtering is not applied) were

divided into four 25 s sub-segments (four-class classification
problem) or two 50 s sub-segments (binary classification
problem) for investigating story segments classification. For
the four-class classification problem, there were 4 (classes) ×
19 (subjects)= 76 samples and each sample included k (latent
variables)× 25 (time points)= 25k features. For the two-class
classification problem, there were 2 (classes)× 19 (subjects)=
38 samples and each sample included k (latent variables)× 50
(time points)= 50k features. The 10-fold cross-validation was
then applied to the 76 (four-class problem) or 38 (two-class
problem) samples for estimating the classification accuracy.
More specifically, we randomly divided the subjects into 10
groups. Using the data from 9 groups as training subjects, we
first applied PCA to reduce the dimensionality of the data.
The largest principal components that explained 99.9% of
the variance of the data were extracted. A logistic regression
analysis was performed using the principal components as
features. The classification accuracy of the group that has been
left out was then estimated applying the PCA and classifier
coefficients learned from training data. The classification
accuracy using story segment p as testing segment and subject
i as one of the testing subject is denoted as acc

p
i .

For each subject i, we compared the average classification
accuracy acci = 1

9

∑9
p=1 acc

p
i achieved with SRM-estimated

spatial filter, with GCCA-estimated spatial filter and without
applying any spatial filter. Figure 2 illustrates the procedure for
estimating story segments classification accuracies.

FIGURE 4 | SRM estimated spatial filters. The spatial filters for each subject were estimated with SRM k = 1 spatial filter. The topographical maps show the Pearson’s

correlation between the extracted latent variable and the fNIRS channels.
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FIGURE 5 | GCCA estimated spatial filters. The topographical maps show the Pearson’s correlation between the extracted latent variable that was most correlated

among subjects and the fNIRS channels.

RESULTS

Inter-subject Correlation
The inter-subject correlations were shown in Figure 3. It can be
seen that the subjects were significantly correlated in the parietal
areas. The significant optodes cover parts of supramarginal gyrus,
angular gyrus, superior parietal gyrus, and postcentral gyrus
(please refer to Figure 8 and Table S1 of Liu et al., 2017c, for the
fNIRS optode locations).

SRM Estimated Spatial Filters
Figure 4 shows the correlation between SRM extracted latent
variable (k = 1 spatial filter) and fNIRS channels. It can be seen
that the latent variable is mostly negatively correlated with HbO
and positively correlated with HbR.

GCCA Estimated Spatial Filters
Figure 5 shows the correlation between GCCA extracted latent
variable (the variable that is most correlated among subjects) and
fNIRS channels. It can be seen that the correlation pattern varies
for different subjects.

Classification
Figure 6 shows the classification results for the three approaches
(SRM, GCCA or no spatial filtering) with different story segment
duration. We first estimated using all 74 spatial components
for classification [there are 37 (optodes) × 2 [HbO/HbR] = 74
channels]. All three approaches achieved significantly better than
chance level accuracy (FDR q < 0.05). The chance level accuracy
is 50% for the binary classification and 25% for the 4-class
classification problem. Without spatial filtering, 63.2 ± 11.8%
and 38.0 ± 9.8% (mean ± standard deviation) accuracy have
been achieved for the two-class (50 s. sub-segment) and four-
class (25 s. sub-segment) problem, respectively. GCCA achieved
74.7± 8.5% and 43.6±13.2% accuracy for the two-class problem
and four-class problem, respectively. For the two-class problem,
GCCA significantly outperformed the accuracy achieved without
spatial filtering (FDR q < 0.05). SRM achieved 72.0± 10.5% and

FIGURE 6 | Comparing the classification accuracy using SRM (K = 74 latent

variables), GCCA (K = 74 latent variables), and without spatial filter. The results

for two classification problems are shown: 4-class (25 s. sub-segment

duration) and binary (50 s. sub-segment duration). The error bar stands for

bootstrapped 95% confidence interval. Methods with statistically significant

differences (FDR q < 0.05) are marked by red bars and asterisks.

43.8 ± 12.1% accuracy for the two-class and four-class problem,
respectively. No other significant differences between the three
approaches has been found.

The effect of different number of spatial components on
GCCA and SRM accuracy is shown in Figure 7. It can be
seen that the highest accuracy was achieved using all 74 spatial
components.

DISCUSSION

In this study, we applied machine learning to identify among
several story segments the one that was listened by a subject based
on the brain’s hemodynamic response measured with fNIRS.
An inter-subject correlation analysis revealed that the time
courses of fNIRS were significantly correlated at parietal areas,
suggesting that signal was most consistent at parietal optodes,
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FIGURE 7 | Classification accuracies of GCCA and SRM with different number of spatial components.

and parietal optodes may have provided the most information
for characterizing the story segments. To reduce the between-
subject variations caused by inter-subject differences such as head
size, head shape, and brain activation regions, spatial filters were
applied to extract latent variables which are linear combinations
of the fNIRS optodes. Without spatial filtering, a story segment
classification accuracy of 63.2% and 38.0% have been achieved for
the binary classification problem (50 s. story segment duration)
and 4-class classification problem (25 s. story segment duration),
respectively. After applying GCCA spatial filters, a classification
accuracy of 74.7% and 43.6% have been achieved for the binary
and 4-class classification problems, respectively. This is better
than the results achieved without spatial filtering. Applying SMR
spatial filters resulted in better classification accuracy compared
to no spatial filter but it is not as effective as GCCA especially for
the binary classification problem.

Although we performed the classification of fNIRS signals in
response to the listening comprehension of stories, we speculate
that it is also plausible to classify overt or even covert speech
production based on the evidences that a listener’s brain mirrors
the speaker’s brain with a delay (Stephens et al., 2010; Liu
et al., 2017c). Further evidences can be found in an fNIRS-based
speaking mode classification study (Herff et al., 2012). In the
study, the binary classifications of overt speech/not speaking and
silent speech/not speaking were investigated and an accuracy of
71% and 61% have been achieved, respectively.

It is worth pointing out that we only utilized fNIRS from
37 locations in the prefrontal and parietal lobe. With full head
fNIRS coverage and increased optode density, we expect an even
better story segment classification performance for allowing the
identification of shorter speech from a larger pool of candidate
speeches.

Despite the promising results, the current study is limited in
the following aspects. First, the audio clips have been played to
the subjects only once, i.e., the stories were novel to all subjects.
How well the predictive models can perform for stories that
has been repeatedly played to the subjects are still unknown.
Second, we evaluated the performance of the spatial filters on
story segments with a total duration of 900 s. The stories have
been played to the participants on the same day within 2 h. How

well the spatial filters can generalize to longer stories and for
stories played on different days remain to be seen. We speculate
that estimating the spatial filters using longer stories with
more varieties in the story content and applying regularization
techniques can help improve generalization. Finally, our accuracy
still needs improvement for real-world setups and 25–50 s time
course length is not suitable for most of the neuroprosthetic
applications. Further development in fNIRS signal acquisition
and processing is needed for improving decoding accuracy and
decreasing the time course length. Incorporating information
from other modalities such as EEG may also help.

In summary, we showed that it is possible to identify
speech from fNIRS data with machine learning techniques. The
application of spatial filters reduced the inter-subject variations
in the data and help improved classification performance. The
current study is a step toward a BCI that reconstructs speech
contents from brain signals for helping locked-in syndrome
patients or healthy individuals to augment human-computer
interaction as a new type of neural prosthetic system. However,
there is a long way before such BCI can be achieved. As
the next step, studies could be conducted using high density
fNIRS covering more areas of the brain and incorporating
information from other modalities such as EEG for improving
the classification accuracy of shorter speeches.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of Institutional Review Board of Drexel
University. The protocol was approved by the Institutional
Review Board of Drexel University. All subjects gave written
informed consent in accordance with the Declaration of Helsinki.

AUTHOR CONTRIBUTIONS

YL performed the experiment, collected the fNIRS data, analyzed
the data, and prepared/wrote the manuscript. HA initiated and
supervised the study, designed the experiment, analyzed the data,
discussed, and interpreted the results as well as prepared/revised
the manuscript.

Frontiers in Neuroscience | www.frontiersin.org 7 October 2018 | Volume 12 | Article 695

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Liu and Ayaz fNIRS Based Speech Recognition

REFERENCES

AlSaleh, M. M., Arvaneh, M., Christensen, H., and Moore, R. K. (2016).

“Brain-computer interface technology for speech recognition: a review,”

in 2016 Asia-Pacific Signal and Information Processing Association Annual

Summit and Conference (APSIPA) (Jeju), 1–5. doi: 10.1109/APSIPA.2016.

7820826

Ayaz, H., Izzetoglu, M., Shewokis, P. A., and Onaral, B. (2010). “Sliding-

window motion artifact rejection for functional near-infrared spectroscopy,”

in Engineering in Medicine and Biology Society (EMBC), 2010

Annual International Conference of the IEEE (Buenos Aires: IEEE),

6567–6570.

Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P. A., Mckendrick, R., and

Parasuraman, R. (2013). Continuous monitoring of brain dynamics with

functional near infrared spectroscopy as a tool for neuroergonomic research:

Empirical examples and a technological development. Front. Human Neurosci.

7:871. doi: 10.3389/fnhum.2013.00871

Ayaz, H., Shewokis, A. P., Bunce, S., Schultheis, M., and Onaral, B. (2009).

“Assessment of cognitive neural correlates for a functional near infrared-

based brain computer interface system,” in Foundations of Augmented

Cognition. Neuroergonomics and Operational Neuroscience, eds D.

Schmorrow, I. Estabrooke, and M. Grootjen. (San Diego, CA: Springer),

699–708.

Ayaz, H., Shewokis, P. A., Curtin, A., Izzetoglu, M., Izzetoglu, K., and Onaral,

B. (2011). Using mazesuite and functional near infrared spectroscopy to study

learning in spatial navigation. J. Visual. Exp. 56:e3443. doi: 10.3791/3443

Brumberg, J. S., Wright, E. J., Andreasen, D. S., Guenther, F. H.,

and Kennedy, P. R. (2011). Classification of intended phoneme

production from chronic intracortical microelectrode recordings in

speech-motor cortex. Front. Neurosci. 5:65. doi: 10.3389/fnins.2011.

00065

Chakrabarti, S., Sandberg, H. M., Brumberg, J. S., and Krusienski, D. J. (2015).

Progress in speech decoding from the electrocorticogram. Biomed. Eng. Lett. 5,

10–21. doi: 10.1007/s13534-015-0175-1

Chance, B., Anday, E., Nioka, S., Zhou, S., Hong, L., Worden, K., et al. (1998). A

novel method for fast imaging of brain function, non-invasively, with light.Opt

Express 2, 411–423. doi: 10.1364/OE.2.000411

Chen, P.-H., Chen, J., Yeshurun, Y., Hasson, U., Haxby, J. V., and Ramadge, P.

J. (2015). “A reduced-dimension fMRI shared response model,” in Proceedings

of the 28th International Conference on Neural Information Processing Systems

(Montreal: MIT Press).

Cope, M., and Delpy, D. T. (1988). System for long-term measurement

of cerebral blood and tissue oxygenation on newborn infants by near

infra-red transillumination. Med. Biol. Eng. Comput. 26, 289–294.

doi: 10.1007/BF02447083

Fazli, S., Mehnert, J., Steinbrink, J., and Blankertz, B. (2012a). “Using NIRS as a

predictor for EEG-based BCI performance,” in Engineering in Medicine and

Biology Society (EMBC), 2012 Annual International Conference of the IEEE

(San Diego, CA), 4911–4914.

Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Müller, K.-

R., et al. (2012b). Enhanced performance by a hybrid NIRS–EEG brain

computer interface. Neuroimage 59, 519–529. doi: 10.1016/j.neuroimage.2011.

07.084

Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., and Keysers, C.

(2012). Brain-to-brain coupling: a mechanism for creating and sharing

a social world. Trends Cogn. Sci. 16, 114–121. doi: 10.1016/j.tics.2011.

12.007

Herff, C., Heger, D., De Pesters, A., Telaar, D., Brunner, P., Schalk,

G., et al. (2015). Brain-to-text: decoding spoken phrases from phone

representations in the brain. Front. Neurosci. 9:217. doi: 10.3389/fnins.2015.

00217

Herff, C., Putze, F., Heger, D., Guan, C., and Schultz, T. (2012). Speaking

mode recognition from functional near infrared spectroscopy. Conf.

Proc. IEEE Eng. Med. Biol. Soc. 2012:1715–8. doi: 10.1109/EMBC.2012.63

46279

Herff, C., and Schultz, T. (2016). Automatic speech recognition from neural

signals: a focused review. Front. Neurosci. 10:429. doi: 10.3389/fnins.2016.

00429

Hoefle, S., Engel, A., Basilio, R., Alluri, V., Toiviainen, P., Cagy, M., et al. (2018).

Identifying musical pieces from fMRI data using encoding and decoding

models. Sci. Rep. 8:2266. doi: 10.1038/s41598-018-20732-3

Izzetoglu, M., Izzetoglu, K., Bunce, S., Ayaz, H., Devaraj, A., Onaral, B.,

et al. (2005). Functional near-infrared neuroimaging. IEEE Trans.

Neural Syst. Rehabil. Eng. 13, 153–159. doi: 10.1109/TNSRE.2005.8

47377

Khan, M. J., Hong, M. J., and Hong, K.-S. (2014). Decoding of four movement

directions using hybrid NIRS-EEG brain-computer interface. Front. Human

Neurosci. 8:244. doi: 10.3389/fnhum.2014.00244

Lerner, Y., Honey, C. J., Silbert, L. J., and Hasson, U. (2011). Topographic mapping

of a hierarchy of temporal receptive windows using a narrated story. J. Neurosci.

31, 2906–2915. doi: 10.1523/JNEUROSCI.3684-10.2011

Liu, Y., Ayaz, H., and Shewokis, P. A. (2017a). Mental workload classification

with concurrent electroencephalography and functional near-infrared

spectroscopy. Brain Comput. Interf. 4, 175–185. doi: 10.1080/2326263X.2017.13

04020

Liu, Y., Ayaz, H., and Shewokis, P. A. (2017b). Multisubject “Learning” for mental

workload classification using concurrent EEG, fNIRS, and physiological

measures. Front. Human Neurosci. 11:389. doi: 10.3389/fnhum.2017.

00389

Liu, Y., Piazza, E. A., Simony, E., Shewokis, P. A., Onaral, B., Hasson,

U., et al. (2017c). Measuring speaker–listener neural coupling with

functional near infrared spectroscopy. Sci. Rep. 7:43293. doi: 10.1038/srep

43293

Martin, S., Brunner, P., Iturrate, I., Millán, J. D. R., Schalk, G., Knight,

R. T., et al. (2016). Word pair classification during imagined speech

using direct brain recordings. Sci. Rep. 6:25803. doi: 10.1038/srep

25803

Mckendrick, R., Parasuraman, R., and Ayaz, H. (2015). Wearable functional Near

Infrared Spectroscopy (fNIRS) and transcranial Direct Current Stimulation

(tDCS): Expanding Vistas for Neurocognitive Augmentation. Front. Syst.

Neurosci. 9:27. doi: 10.3389/fnsys.2015.00027

Moghimi, S., Kushki, A., Power, S., Guerguerian, A. M., and Chau, T. (2012).

Automatic detection of a prefrontal cortical response to emotionally rated

music using multi-channel near-infrared spectroscopy. J. Neural Eng. 9:026022.

doi: 10.1088/1741-2560/9/2/026022

Nichols, T. E., and Holmes, A. P. (2002). Nonparametric permutation tests for

functional neuroimaging: a primer with examples.Hum. Brain Mapp. 15, 1–25.

doi: 10.1002/hbm.1058

O’Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., Foxe, J. J., Shinn-

Cunningham, B. G., et al. (2015). Attentional selection in a cocktail party

environment can be decoded from single-trial EEG. Cerebral Cortex 25,

1697–1706. doi: 10.1093/cercor/bht355

Piper, S. K., Krueger, A., Koch, S. P., Mehnert, J., Habermehl, C.,

Steinbrink, J., et al. (2014). A wearable multi-channel fNIRS system

for brain imaging in freely moving subjects. NeuroImage 85, 64–71.

doi: 10.1016/j.neuroimage.2013.06.062

Power, S. D., Falk, T. H., and Chau, T. (2010). Classification of prefrontal activity

due to mental arithmetic and music imagery using hidden Markov models

and frequency domain near-infrared spectroscopy. J. Neural Eng. 7:026002.

doi: 10.1088/1741-2560/7/2/026002

Power, S. D., Kushki, A., and Chau, T. (2012). Automatic single-trial

discrimination of mental arithmetic, mental singing and the no-control state

from prefrontal activity: toward a three-state NIRS-BCI. BMC Res. Notes 5:141.

doi: 10.1186/1756-0500-5-141

Putze, F., Hesslinger, S., Tse, C.-Y., Huang, Y., Herff, C., Guan, C., et al. (2014).

Hybrid fNIRS-EEG based classification of auditory and visual perception

processes. Front. Neurosci. 8:373. doi: 10.3389/fnins.2014.00373

Shen, C., Sun, M., Tang, M., and Priebe, C. E. (2014). Generalized canonical

correlation analysis for classification. J. Multi. Analys. 130, 310–322.

doi: 10.1016/j.jmva.2014.05.011

Stephens, G. J., Silbert, L. J., and Hasson, U. (2010). Speaker–

listener neural coupling underlies successful communication. Proc.

Natl. Acad. Sci. U.S.A. 107, 14425–14430. doi: 10.1073/pnas.10086

62107

Telkemeyer, S., Rossi, S., Nierhaus, T., Steinbrink, J., Obrig, H., and

Wartenburger, I. (2011). Acoustic processing of temporally modulated

Frontiers in Neuroscience | www.frontiersin.org 8 October 2018 | Volume 12 | Article 695

https://doi.org/10.1109/APSIPA.2016.7820826
https://doi.org/10.3389/fnhum.2013.00871
https://doi.org/10.3791/3443
https://doi.org/10.3389/fnins.2011.00065
https://doi.org/10.1007/s13534-015-0175-1
https://doi.org/10.1364/OE.2.000411
https://doi.org/10.1007/BF02447083
https://doi.org/10.1016/j.neuroimage.2011.07.084
https://doi.org/10.1016/j.tics.2011.12.007
https://doi.org/10.3389/fnins.2015.00217
https://doi.org/10.1109/EMBC.2012.6346279
https://doi.org/10.3389/fnins.2016.00429
https://doi.org/10.1038/s41598-018-20732-3
https://doi.org/10.1109/TNSRE.2005.847377
https://doi.org/10.3389/fnhum.2014.00244
https://doi.org/10.1523/JNEUROSCI.3684-10.2011
https://doi.org/10.1080/2326263X.2017.1304020
https://doi.org/10.3389/fnhum.2017.00389
https://doi.org/10.1038/srep43293
https://doi.org/10.1038/srep25803
https://doi.org/10.3389/fnsys.2015.00027
https://doi.org/10.1088/1741-2560/9/2/026022
https://doi.org/10.1002/hbm.1058
https://doi.org/10.1093/cercor/bht355
https://doi.org/10.1016/j.neuroimage.2013.06.062
https://doi.org/10.1088/1741-2560/7/2/026002
https://doi.org/10.1186/1756-0500-5-141
https://doi.org/10.3389/fnins.2014.00373
https://doi.org/10.1016/j.jmva.2014.05.011
https://doi.org/10.1073/pnas.1008662107
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Liu and Ayaz fNIRS Based Speech Recognition

sounds in infants: evidence from a combined near-infrared spectroscopy

and EEG study. Front. Psychol. 2:62. doi: 10.3389/fpsyg.2011.

00062

Tsuzuki, D., and Dan, I. (2014). Spatial registration for functional near-

infrared spectroscopy: From channel position on the scalp to cortical

location in individual and group analyses. NeuroImage 85, 92–103.

doi: 10.1016/j.neuroimage.2013.07.025

Vodrahalli, K., Chen, P.-H., Liang, Y., Baldassano, C., Chen, J., Yong,

E., et al. (2017). Mapping between fMRI responses to movies and

their natural language annotations. Neuroimage 180(Pt A):223–231.

doi: 10.1016/j.neuroimage.2017.06.042

Yoshimura, N., Nishimoto, A., Belkacem, A. N., Shin, D., Kambara, H.,

Hanakawa, T., et al. (2016). Decoding of covert vowel articulation

using electroencephalography cortical currents. Front. Neurosci. 10:175.

doi: 10.3389/fnins.2016.00175

Conflict of Interest Statement: fNIR Devices, LLC manufactures the optical brain

imaging instrument and licensed IP and know-how from Drexel University. HA

was involved in the technology development and thus offered a minor share in the

new startup firm fNIR Devices, LLC.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2018 Liu and Ayaz. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 9 October 2018 | Volume 12 | Article 695

https://doi.org/10.3389/fpsyg.2011.00062
https://doi.org/10.1016/j.neuroimage.2013.07.025
https://doi.org/10.1016/j.neuroimage.2017.06.042
https://doi.org/10.3389/fnins.2016.00175
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Speech Recognition via fNIRS Based Brain Signals
	Introduction
	MethodS
	Participants
	Signal Acquisition
	Signal Processing
	Feature Extraction
	Shared Response Model
	Generalized Canonical Correlation Analysis

	Inter-subject Correlation
	Classification and Performance Evaluation

	Results
	Inter-subject Correlation
	SRM Estimated Spatial Filters
	GCCA Estimated Spatial Filters
	Classification

	Discussion
	Ethics Statement
	Author Contributions
	References


