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The fact that perception and behavior depend on the simultaneous and coordinated
activity of neural populations is well established. Understanding encoding through
neuronal population activity is however complicated by the statistical dependencies
between the activities of neurons, which can be present in terms of both their mean
(signal correlations) and their response variability (noise correlations). Here, we review the
state of knowledge regarding population coding and the influence of correlated variability
in the electrosensory pathways of the weakly electric fish Apteronotus leptorhynchus.
We summarize known population coding strategies at the peripheral level, which are
largely unaffected by noise correlations. We then move on to the hindbrain, where
existing data from the electrosensory lateral line lobe (ELL) shows the presence of
noise correlations. We summarize the current knowledge regarding the mechanistic
origins of noise correlations and known mechanisms of stimulus dependent correlation
shaping in ELL. We finish by considering future directions for understanding population
coding in the electrosensory pathways of weakly electric fish, highlighting the benefits
of this model system for understanding the origins and impact of noise correlations on
population coding.

Keywords: population coding, correlated variability, noise correlations, stimulus encoding, feedback, electric fish,
correlation shaping, electrosensory lateral line lobe

INTERPRETATION OF POPULATION ACTIVITY REQUIRES
CONSIDERING CORRELATIONS BETWEEN THE ACTIVITIES OF
DIFFERENT NEURONS

Understanding the concerted activity of neural populations remains a central problem in
systems neuroscience. While simultaneous recordings of multiple neurons (i.e., population
activity) has become increasingly feasible across animal models and brain areas, interpreting
these data are often complicated. This is because neuronal activities are often not independent
of one another, but rather show correlations. Such correlations have been found almost
ubiquitously across species and brain areas (for review see Cohen and Kohn, 2011; Doiron
et al., 2016), and it has been shown that they can have substantial impact, of either
detrimental or beneficial nature, on signal encoding performance at the population level
(Averbeck et al., 2006; Salinas and Sejnowski, 2011). Albeit their acknowledged importance
(for review see Nirenberg and Latham, 2003; Averbeck et al., 2006; Cohen and Kohn,
2011; Salinas and Sejnowski, 2011; Rothschild and Mizrahi, 2015; Kohn et al., 2016),
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the origins and the functional implications of correlations for
coding remain poorly understood in many cases.

Here we review the current state of knowledge regarding how
electrosensory neural populations encode behaviorally relevant
stimuli in wave-type weakly electric fish. This model system is
well described in terms of its anatomy and single cell physiology
and readily accessible for in vivo recordings. As such, this system
benefits from unique advantages when, e.g., considering realistic
decoding of population activity and how this leads to behavior as
well as for understanding population coding in more naturalistic
experimental paradigms (e.g., when recording from unrestrained
animals during active exploration and sensing).

Decomposing Correlations
When evaluating the statistical dependency between the spike
trains of two neurons, their correlations (raw-correlation)
can be decomposed into two types of correlations (Perkel
et al., 1967). First, signal correlations, which are correlations
between the mean activity of two neurons responding to
stimuli. Second, noise correlations, which are correlations
between the trial-to-trial variabilities of the neural responses
to repeated presentations of a given stimulus (we will use
the terms “noise correlations” and “correlated variability”
as synonyms throughout this manuscript). It is important
to note that simultaneous recordings are required to infer
noise but not signal correlations. Theory predicts that the
correlation structure (i.e., the relationship between signal and
noise correlations) will determine their impact on information
transmission (Averbeck et al., 2006; Kohn et al., 2016). To
exemplify this, let us consider the simultaneous responses of
a pair of neurons (Figure 1) to repeated presentations of
two stimuli (black and light gray dots in Figures 1A,B). For
each of the stimuli, the responses of the two neurons show
variability and scatter around their mean (gray areas show
the 95% probability distributions, white crosses indicate the
means).

The neuron pair shown in Figure 1A has an opposing
correlation structure: the average responses of the two
neurons are positively correlated (i.e., both increase their
mean response when stimulus 2 is presented vs. stimulus
1) and as such their signal correlations are positive (see
insets, red curves). If the variabilities of the two neuron
responses to repeated presentations of the same stimulus
were independent, the probability distributions around the
means would be circular in shape. Instead, they have an
elliptical shape with the main axis being oriented from top
left to bottom right. As such, the response variabilities are
not independent but rather correlated. Indeed, whenever
the response of neuron 1 is higher than its mean response,
the response of neuron 2 tends to be lower than its mean
response and vice versa. Thus the variabilities are negatively
correlated, and noise correlations are negative (see insets, blue
curves). This opposing correlation structure (positive signal
and negative noise correlations, see orientation of red and
blue arrows) is beneficial for stimulus encoding and by using
a decision criterion (dotted line) it is possible to perfectly

discriminate between population responses to the two different
stimuli.

In Figure 1B, we show a different pair of neurons with a
parallel correlation structure (i.e., positive signal and positive
noise correlations). In this case, the distributions of the neural
variabilities have an elliptical shape whose main axis is oriented
from bottom left to upper right, which is parallel to the
changes seen in mean responses to the different stimuli (white
crosses, see orientation of red and blue arrows). As a result, the
two response distributions show considerable overlap and the
decision criterion (dotted line) results in impaired performance
compared to the opposing correlation structure discussed above.
This exemplifies that the presence of noise correlations can
either be detrimental or beneficial for stimulus encoding and
that their effect needs to be evaluated on a case by case
basis.

The insets in Figures 1A,B show examples of how correlations
are typically quantified. Cross correlograms (CCGs, inset top)
quantify the number of coincident events per unit time relative
to chance as a function of lag (i.e., the amount by which a
spike train is shifted relative to the other). The integration and
normalization of such CCGs produces a correlation coefficient
that quantifies the correlation at infinite timescale (Shadlen and
Newsome, 1998). Recently, however, the use of spike count
correlations (inset bottom) has become more and more common.
For this, the spike trains are binned into time windows of
a defined width “t,” and the number of spikes falling within
each bin is counted. The resultant spike count timeseries are
compared by calculating the Pearson’s correlation coefficient.
By reiterating the analysis with different width of the spike
count window “t,” correlations can be analyzed at different
timescales. Signal and noise correlations can be obtained from
spike trains using standard computational methodology such as
shuffle predictor and computing response residuals (Perkel et al.,
1967).

In the absence of stimulation, raw-correlations between neural
activities are often termed “baseline correlations.” These baseline
correlations represent the limit that noise correlations will tend
toward as stimulus amplitude goes to zero (Hofmann and
Chacron, 2017). Therefore, it is expected that the presence of
baseline correlations predicts the presence of noise correlation
under stimulation.

Effects of Correlated Variability on
Stimulus Encoding
One could argue that the detrimental effects of noise correlations
toward stimulus discrimination in the example shown
(Figure 1B) might seem minimal. This is because most of
the responses will still be categorized correctly based on the
decision criterion (Figure 1B) and only a minor part of the
responses will be attributed to the wrong stimulus. It should,
however, be noted that the shown example considers only
two neurons and that perception is typically determined by
integrating the activities of much larger neural populations.
It was shown theoretically that small pairwise correlations
can have strong effects on signal encoding when large neural
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FIGURE 1 | Types of neural correlations and their impact on population coding. (A) Responses (e.g., firing rate) of two neurons to repeated presentations of two
different stimuli. The responses to stimulus 1 (black dots, light shading is 95% interval of the distribution) are lower than those to stimulus 2 (gray dots and dark
shading) on average. The average responses (white crosses) co-vary positively (red arrow) indicating the presence of positive signal correlations. The trial-to-trial
variabilities in the responses to repeated presentation of a given stimulus (e.g., scattering of black dots) co-vary negatively (blue arrow), which indicates the presence
of negative noise correlations. In this example, the noise correlations aid stimulus discriminability compared to a case with independent responses (distributions
would be circular). This is because noise correlations have an opposite sign compared to signal correlations, i.e., correlation structure is opposite, thereby leading to
a decrease in the overlap between both distributions. Dotted line shows the best possible discrimination criterion, which allows for perfect discrimination in this case.
Inset: quantification of the correlations shown in the example using cross-correlograms (CCGs, top) and spike count correlations as a function of timescale (bottom).
(B) Same as (A) but with parallel correlation structure (i.e., signal and noise correlations are positive). Stimulus discriminability is impaired in this example: the overlap
between distributions is increased due to the presence of noise correlations and using the discrimination criterion (dotted line) does not serve to discriminate
between responses [compare to (A)]. (C) Even weak noise correlations have strong implications for coding on a population level. In absence of correlations,
information in a population increases monotonically with increasing the number of neurons that are read out (solid line). With an opposite correlation structure [as in
(A)], the amount of information surpasses the independent case very quickly (upper dotted line). With a parallel correlation structure [as in (B)], the growth of
information is decreased and saturates. (D) Inputs to the two neurons consist of common (solid lines) as well as independent inputs (dotted lines). Signal correlations
arise from inputs (independent AND shared) with similar tuning to a common signal. Noise correlations in turn arise from common inputs. Data in (C) illustrated after
(Zohary et al., 1994; Averbeck et al., 2006).

populations are considered (Zohary et al., 1994; Latham
and Nirenberg, 2005; Schneidman et al., 2006) (Figure 1C).
In the absence of noise correlations (i.e., when trial-to-trial
variabilities are independent), the amount of information
represented by the population activity grows as more neurons
are considered for analysis (Figure 1C, solid line). The effects
of trial-to-trial variability on the population information
highly depend on the correlation structure. With an opposing
structure (top dotted line; noise and signal correlations have
an opposing sign), the growth of information quickly surpasses
the independent case. In contrast, a parallel correlation

structure (bottom dotted line; noise and signal correlations
have the same sign) will lead to a reduction in information
growth and quick saturation (Zohary et al., 1994). Thus,
the presence of noise correlations alone does not suffice to
assess their impact on signal encoding as they could be either
detrimental (Zohary et al., 1994; Moreno-Bote et al., 2014)
or beneficial (Abbott and Dayan, 1999; Romo et al., 2003)
and their actual effect highly depends on the correlation
structure as well as on the subsequent decoding by downstream
brain areas. In that regard, various different decoders can be
used (Pouget et al., 2000) and many studies have assumed
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linear decoders (i.e., relevant quantities are estimated based
on weighted linear sums of neuronal responses) (Seung and
Sompolinsky, 1993; Zohary et al., 1994; Sanger, 1996; Abbott
and Dayan, 1999; Liu et al., 2013; Pitkow et al., 2015). Such
decoders are attractive because they are easy to implement and
optimize on neural data to quantify the effects of correlations.
However, knowledge gained from these require comparison
to physiologically plausible decoding strategies which are,
in general, nonlinear and thus can in theory extract much
more information than linear decoding strategies (Shamir
and Sompolinsky, 2004). The effects of various decoders
on determining how correlations influence information
transmission has been reviewed in detail elsewhere (Kohn et al.,
2016).

Recent studies have shown that noise correlations are not
static but can change in magnitude based on various factors such
as the animal’s state (Poulet and Petersen, 2008; Ecker et al., 2014;
Erisken et al., 2014; Vinck et al., 2015), the animal’s attention
(Steinmetz et al., 2000; Cohen and Maunsell, 2009), adaptation to
stimuli (Gutnisky and Dragoi, 2008), or in a stimulus-dependent
fashion (Chacron and Bastian, 2008; Snyder et al., 2014; Tan et al.,
2014; Franke et al., 2016; Zylberberg et al., 2016). The plasticity of
noise correlations greatly complicates understanding their effect
on information coding.

The Mechanistic Origins of Correlations
in vivo Remain Poorly Understood
While correlations, both signal and noise, are found ubiquitously
in the CNS, in many cases understanding their mechanistic
origins remains elusive. On the one hand, it is clear that signal
and noise correlations in pairs of neurons will highly depend
on their input connectivity (Figure 1D). Signal correlations
arise when two neurons receive inputs that encode the same
signal and are also tuned to this signal (i.e., they both respond
to this signal). Noise correlations are generally thought to
arise because of shared neuronal input (Shadlen and Newsome,
1998; Renart et al., 2010; Kanitscheider et al., 2015). The
activity of these common inputs (Figure 1D, solid lines) will
influence the membrane potential of the receiving neurons
similarly and thus introduce noise correlations between their
spiking activities. Independent inputs (dotted lines) will usually
dilute that stochasticity, thereby decreasing noise correlations
potentially. Thus, noise correlations are likely to depend on the
network architecture and activity (Bujan et al., 2015; Doiron
et al., 2016). For example, it was shown that the balance between
excitatory and inhibitory inputs might be one key determinant of
correlation magnitude (Renart et al., 2010; Litwin-Kumar et al.,
2011).

There has been progress made toward understanding the
mechanistic origins of neural correlations and their effects
on coding, and it has become clear that such understanding
will require detailed knowledge of the anatomical connections.
Nonetheless, the connections of neural networks forming
circuits in the brain and their inputs and outputs are often
numerous, divers, and highly complicated. Toward this end, the
electrosensory pathway benefits from a relatively simple and

well-characterized anatomy, which should be advantageous for
the investigation of the basic mechanisms underlying correlated
variability.

ELECTROSENSORY STIMULI:
ELECTROLOCATION AND SOCIAL
INTERACTION IN APTERONOTUS

Wave-type weakly electric fish such as A. leptorhynchus emit
a quasi-sinusoidal electric signal referred to as the “electric
organ discharge” (EOD) thereby building up an oscillatory field
surrounding their body (Figure 2A, top). It is important to realize
that this ongoing EOD acts as a carrier signal during active
sensing and that it is the perturbations of the EOD that carry
information about the sensory environment. These are picked
up by a distributed array of electroreceptors in the skin of the
animal (Carr et al., 1982). The animal can detect both amplitude
modulations (AMs) as well as frequency modulations (FMs) of
the EOD via separate pathways. In the following, we will focus
on the AM coding pathway and will henceforth refer to the AM
as the stimulus.

Electrosensory stimuli occur in different behavioral contexts.
During prey capture (Nelson and MacIver, 1999), animals detect
and localize (i.e., “electrolocation”) small prey items that cause
weak and spatially localized AMs of the EOD (Figure 2A). Several
studies have shown that the resulting pattern of stimulation
carries important information about the distance, size, and
conductivity of an object and the relative speed and angle of
the motion between object and fish (Rasnow, 1996; Nelson
and MacIver, 1999; Nelson et al., 2002; Babineau et al., 2006;
Hofmann et al., 2017; Pedraja et al., 2018).

Another behavioral context is that of interactions with
conspecific fish (i.e., “electrocommunication”) (Ramcharitar
et al., 2005; Kelly et al., 2008; Henninger et al., 2018). When
two individuals are in close vicinity to one another, interaction
between their EODs will create a sinusoidal stimulus (i.e., a beat)
whose frequency is equal to the EOD frequency difference and
ranges between a few Hz to several hundred Hz (Figure 2B). It
is important to note that such stimuli are spatially diffuse and
extend to most if not all the electroreceptors.

During social interaction, fish can emit short-term alterations
of their EOD frequency with the purpose of active social
communication (Hagedorn and Heiligenberg, 1985; Zupanc and
Maler, 1993; Zakon et al., 2002; Benda et al., 2005; Zupanc et al.,
2006; Hupé et al., 2008). Such events are called chirps and always
occur on top of the beat (Figure 2C). There are different types
of chirps (Zakon et al., 2002) and in the following we will focus
on so called “small chirps,” which are typically aggressive call
signals. Chirps are produced through brief (1T: 13–16 ms) and
small (1F: 30–50 Hz) excursions in the EOD frequency of one
fish (Figure 2C, middle). As a result, the periodic signature of the
AM is interrupted by a high-frequency transient that resets the
phase of the AM (Figure 2C, bottom). Importantly, for a given
chirp with a fixed 1F and 1T, the exact waveform of the chirp will
look very different depending on the AM phase at which the chirp
is emitted. Chirps will cause diverse responses in pyramidal cells
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FIGURE 2 | Natural electrosensory stimuli. (A) Local amplitude modulations (AM) of the EOD are caused by objects with a conductivity different to that of water (e.g.,
rocks or prey) during relative motion (top). The emitted EOD (middle) and the exact AM waveform will depend on the nature of the movement and the objects
properties. The shown example (bottom), depicts an AM (dotted line) as it would be caused by the fish moving on a linear trajectory along a uniform conductive
object (i.e., a metal sphere). Note that the EOD AM will be spatially localized and thus not spatially uniform across all receptors. (B) Global AMs are caused by
interactions between the electric fields of conspecifics in proximity (top). The EODs emitted by each fish (middle, black, and magenta traces), will, due to their
frequency difference, go in and out of phase repetitively (see phase shift). The periodic constructive and destructive interference between the signals will result in a
compound signal (6 EOD, bottom) with a sinusoidal AM at the frequency difference between the two EODs. This AM will be approximately spatially uniform across
the fish’s skin. (C) Weakly electric fish communicate with conspecifics by emitting active modulations of their electric field called “chirps” (top). These consist of
transient Gaussian-like increases in EOD frequency of one fish (middle) of a specific duration (1T) and frequency excursion amplitude (1F). As a result (bottom) the
present AM (dotted line) is interrupted with a high-frequency transient (dotted line with gray shading). The resultant waveform of a chirp with a given 1T and 1F is
very heterogeneous in Apteronotus leptorhynchus and depends on the beat phase at which the chirp is emitted. Thus, while the emitted signal of two chirps might
be exactly the same, the waveform detected by the receiver will likely differ. (D) Relative motion between fish (top) will result in a change in EOD amplitude as seen
from the focal fish (middle, see magenta trace, black fish is assumed as the focal fish). In the compound signal, (6 EOD, bottom) the AM (dotted line) will, therefore,
be amplitude modulated. Envelopes caused by relative motion typically have power at frequencies below 2 Hz and have been shown to be of behavioral relevance.

(for review see Marsat et al., 2012), but different chirp waveforms
of the same chirp will give rise to similar behavioral responses
(Hupé et al., 2008; Metzen et al., 2016a).

So far, we have only considered stimuli that consist of changes
in the mean EOD amplitude. These are sometimes referred to
as “first-order” stimuli. However, it is clear that rather than

being stationary, fish move extensively during social interactions,
thereby causing changes in the amplitude of the beat stimuli
(Hupé and Lewis, 2008). Such “second-order” stimuli have been
termed “movement envelopes” (Yu et al., 2012; Stamper et al.,
2013; Metzen and Chacron, 2014). As an example, let us consider
one fish looming toward a conspecific (Figure 2D, top). As seen
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from the perspective of the moving fish, the EOD amplitude of its
conspecific will grow during the looming motion, thereby causing
an increase in the beat amplitude termed envelope (Figure 2D,
middle and bottom). Such movement envelopes typically contain
power at very low (<1 Hz) frequencies (Fotowat et al., 2013;
Metzen and Chacron, 2014). Movement envelopes will elicit
behavioral responses in which the animal’s EOD frequency
“tracks” the envelope stimulus (Metzen and Chacron, 2014).

Most studies investigating neuronal coding in weakly electric
fish were performed in immobilized animals (note that the EOD
persists after immobilization in species such as A. leptorhynchus).
However, electrosensory behaviors consist of changes in the
animal’s electric field and, as such, can be also be elicited in
immobilized animals (Hitschfeld et al., 2009). Investigators have
taken advantage of this fact to gain better understanding as to
the nature of the electrosensory neural circuits that give rise to
behavior (Heiligenberg, 1991). Recent studies have shown that
the responses of electrosensory neurons to stimuli associated
with different contexts strongly determine behavioral output

(Deemyad et al., 2013; Huang et al., 2016, 2018; Metzen et al.,
2016a, 2018; Metzen and Chacron, 2017). Some of these results
pertaining to population coding are described below.

THE ANATOMY OF THE
ELECTROSENSORY PATHWAY

At the peripheral level, electrosensory stimuli (AM of the
EOD) are detected by about 16,000 tuberous electroreceptors
or electrosensory afferents (EA) that are distributed across the
animals’ body and embedded in its skin (Carr et al., 1982). At
baseline (i.e., in the absence of stimulation), each EA fires with
a specific firing probability but phase locked to the EOD carrier
wave and stimulation will cause changes in the firing probability
(Scheich et al., 1973; Bastian, 1981).

EAs project to the hindbrain (Figure 3, bottom left), the
first processing station in the brain, where they trifurcate to
make synaptic contact with pyramidal cells in the electrosensory

FIGURE 3 | Anatomy of the electrosensory pathway. EOD AMs are detected by electroreceptors distributed in the fish’s skin, from where they send EAs to the
electrosensory lateral line lobe (ELL) in the hindbrain (bottom left). The ELL is a cerebellum like structure with ascending (black arrows) and descending (orange
arrows) projections and is organized in three parallel segments, the lateral (blue), the centro-lateral (magenta), and the centro-medial (green) segments (top left). The
body surface is represented somatotopically in each segment. Moreover, pyramidal cells within all segments are arranged in a columnar organization with every
column consisting of six cells (right). Three of these are on-type, as they receive direct excitatory input from EAs through basal dendrites therefore responding with an
increase in firing rate to increases in EOD amplitude. The other three cells are Off-type, as they receive afferent signals via inhibitory interneurons (gr) and thus
respond with a decrease in firing rate to increases in EOD amplitude. For each neuron type (i.e., On or Off), there is one superficial, one intermediate and one deep
cell to be found within every ELL column. These differ in the amount of descending inputs they receive. Pyramidal neurons are the output neurons of the ELL that
project to the midbrain torus semicircularis from where signals are processed and relayed to higher order brain areas to ultimately generate behavioral output. All
pyramidal neurons receive descending inputs that originate from midbrain projections to the nucleus praeminentialis (nP) and projects in a somatotopically ordered
fashion to the ELL (direct pathway). In addition, superficial and intermediate pyramidal neurons receive indirect descending inputs from the eminentia granularis
posterior (EGP) onto their large apical dendritic arborizations in a spatially diffuse manner (indirect pathway). These inputs originate from the outputs of deep
pyramidal neurons to EGP indirectly through nP. Descending inputs to ELL are excitatory via direct synapses between parallel fibers and apical dendrites and
inhibitory through local interneurons in the molecular layer (not shown). EAs, electrosensory afferents; CLS, centrolateral segment; CMS, centromedial segment;
EGP, eminentia granularis posterior; ELL, electrosensory lateral line lobe; gr, granule cell; LS, lateral segment; nP, nucleus praeminentialis.
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lateral line lobe (ELL). The ELL is organized in three parallel
somatotopic maps of the body surface: the lateral, the centro-
lateral, and the centro-medial segment (LS, CLS, and CMS) (Bell
and Maler, 2005; Krahe et al., 2008; Krahe and Maler, 2014). All
three segments are composed of columns as a repetitive motif
(Figure 3, top left), with each column consisting of six different
pyramidal neurons (Maler, 2009a) (Figure 3, right). Three of
these neurons (“on”) receive direct excitatory input from EAs
and respond with increases in their firing rate to increases in the
AM. The three other neurons (“off”) receive the EA input via an
inhibitory granular interneuron (“gr”) and thus instead respond
to increases in the AM with decreases in firing rate (Maler et al.,
1981; Saunders and Bastian, 1984; Bastian and Courtright, 1991).
Pyramidal neurons are the sole output neurons of the hindbrain
and project to the midbrain torus semicircularis (Figure 3,
bottom left) where sensory information is further processed, and
forwarded to various stages in the forebrain ultimately giving
rise to behavior. There are three classes of pyramidal neurons:
superficial, intermediate, and deep neurons, named after where
their cell body is located within the pyramidal cell layer of the
ELL (Maler et al., 1981). The three classes differ in terms of their
cell morphology, physiology, and connectivity. Superficial cells
have low baseline firing rates, large apical dendritic arborization
that extend widely through the molecular layer, and receive
huge amounts of descending inputs (orange), deep cells have
high baseline firing rates and receive little to no descending
inputs (Bastian, 1986; Bastian and Courtright, 1991; Bastian and
Nguyenkim, 2001; Bastian et al., 2004; Chacron et al., 2005a). The
properties of intermediate cells are in between the others.

There are two major types of descending pathways to ELL
that originate from higher brain areas (Figure 3, orange). Inputs
from the nucleus praeminentialis (nP, commonly termed direct
feedback pathway) as well as from the eminentia granularis
posterior (EGP, commonly termed indirect feedback pathway)
form parallel fibers in ELL that make contact with the apical
dendrites of pyramidal neurons. Direct contacts of parallel fibers
with pyramidal neurons are excitatory, indirect contacts through
interneurons in the molecular layer are inhibitory. Both types of
descending inputs can strongly affect the responses of single ELL
pyramidal cells to stimulation (Bastian, 1986; Bastian et al., 2004;
Chacron et al., 2005c; Bol et al., 2011; Clarke and Maler, 2017;
Metzen et al., 2018). The detailed anatomy and function of these
pathways have been reviewed elsewhere (Bastian, 1999; Berman
and Maler, 1999).

POPULATION CODING BY
ELECTROSENSORY AFFERENTS

Correlation-Based Coding of Chirps by
Electrosensory Afferents
As described above, chirp waveforms of a given chirp are very
heterogeneous in nature depending on the phase of the AM
at which they are emitted (“chirp phase”). Nonetheless, chirps
occur with equal probability at any phase of the beat during
electrocommunication (Aumentado-Armstrong et al., 2015). The

chirp waveforms can, depending on the chirp phase, consist of
sharp increases, sharp decreases (Figure 4A, top traces, gray
shading) or biphasic high-frequency transients in the AM. All
these different chirp waveforms, however, were shown to elicit
similar behavioral responses (Metzen et al., 2016a) suggesting
that the social content of a given chirp is independent of the beat
phase. At the level of EAs, the heterogeneous chirp waveforms
will elicit very heterogeneous responses in the firing activities
of single EAs (Figure 4A, middle curves) that have been well-
characterized (Benda et al., 2005, 2006; Walz et al., 2014). As a
result, the responses of EAs, in terms of their firing rate, are highly
different depending on the chirp phase (Figure 4B, dotted line)
while the behavioral responses are ultimately not (Figure 4B,
orange line). Chirp stimulation increased the similarity of the
firing patterns of pairs of EAs, thereby causing an increase in
their correlations (Figure 4A, bottom) (Metzen et al., 2016a).
These increases in correlations were very similar across the
different possible waveforms of a given chirp (i.e., correlation-
based responses were invariant) (Figure 4B, solid black line). This
correlation response closely resembled the behavioral invariance
to different chirp waveforms (Figure 4B, compare black and
orange solid lines).

Interestingly, these results were similar for both simultaneous
and non-simultaneous recordings. As explained above,
non-simultaneous recordings cannot be used to infer noise
correlations but only signal correlations. This suggests that
changes in EA’s correlations are primarily driven by changes
in signal correlations and that noise correlations between
EAs are either negligible or do not affect such coding. This is
supported by other studies showing that correlations between
EA baseline activities are negligible except at the EOD frequency
and higher harmonics (Chacron et al., 2005b). Based on
recordings from several other processing stations (i.e., ELL
and Torus semicircularis), Metzen et al. (2016a) show how
EA correlations can be decoded in a physiologically plausible
manner by combining and integrating parallel inputs along the
ascending electrosensory pathway. Interestingly the correlation-
based detectability of chirps depends on stimulus background:
increasing beat frequency impairs detectability. Importantly
the behavioral detection performance declines in parallel with
correlation based coding performance (Metzen and Chacron,
2017). These results strongly suggest that correlations in EA
activity are decoded by downstream brain areas to give rise to
behavior.

Correlation-Based Coding of Envelopes
by Electrosensory Afferents
Recent studies have focused on understanding how EA’s respond
to envelopes through changes in firing rate (Metzen and Chacron,
2015). While envelopes do not elicit changes of the EA’s average
firing rate (as compared to baseline), it was found that they caused
changes in the similarity of firing patterns (Figure 4C, gray boxes)
and thus in the correlation between EA’s. Therefore, they could be
detected when analyzing the firing patterns of the EA population.
In fact the correlation magnitude in the EA population nicely
tracks the envelope waveform (Figure 4C, solid lines) (Metzen
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FIGURE 4 | Population coding of electrosensory afferents. (A) Top: Stimulus waveforms (gray shading) resulting from chirps with a fixed 1T and 1F emitted during
different phases of the AM (EOD not shown). The waveform of the chirp on the left consists of a sharp increase of the AM, while it is a sharp decrease for the chirp
on the right. The social meaning of these chirps, however, is exactly the same as established in behavioral experiments. Middle: Firing rate responses of
simultaneously recorded EAs. EAs encode the waveform of the AM faithfully, which results in very heterogeneous response waveforms between the two different
chirps (compare left and right). Bottom: The time varying correlations between EAs increase during the chirp event. The increase in the correlation coefficient is
similar between different chirps (left vs right). (B) Quantification of responses to chirps of different phases. Responses are very heterogeneous for the different chirp
phases based on firing rate (FR, triangles and dotted line) while responses are invariant based on correlations (rraw dots and solid black line). Importantly, behavioral
responses were also invariant (orange dots and solid line) implying that correlations can better predict behavior than the single neuron firing rate. (C) Envelope signal
(solid line on top) and time varying correlation coefficient (rraw) of two EAs. During low envelope amplitudes, the firing of EAs is heterogeneous (see raster plots in
lower gray window) while during high envelope amplitudes firing is more similar between EAs (see upper gray window). The changes in correlation coefficients closely
track the envelope signal (compare two solid black traces). (D) The relationship of correlation coefficients and envelope amplitude is linear and strong (for the shown
example r2 = 0.76). Inset: similar results were obtained when using simultaneous and non-simultaneous recordings of EAs suggesting that noise correlations are of
little relevance for signal encoding at the stage of afferents. Data in (A,B) from (Metzen et al., 2016a), in (C,D) from (Metzen et al., 2015b).

et al., 2015b), and there was a strong relationship between the
envelope and correlation (Figure 4D). This indicates that also
second-order stimulus features are encoded through neuronal
correlations, which might give rise to previously observed
behavioral responses by which the animal’s EOD frequency tracks
the detailed time course of the envelope in an almost one-to-one
fashion (Metzen and Chacron, 2014).

As found during EA correlation encoding of chirps, results
were almost independent of whether simultaneous or non-
simultaneous recordings were used for the analysis (Figure 4D,
inset), suggesting that changes in correlation are primarily, if
not exclusively, driven by changes in signal correlations between
EA’s. Interestingly, theory predicts that such envelope coding by
correlated activity was optimal for a given level of variability
(Metzen et al., 2015a; Grewe et al., 2017), a prediction that was
verified experimentally (Metzen et al., 2015b). Moreover, such
coding appears to be a general feature of sensory processing, with

similar results found in the coding vestibular afferents (Metzen
et al., 2015b) and acoustic processing (deCharms and Merzenich,
1996) in non-human primates, as well as in LGN of the cats visual
system (Dan et al., 1998).

ELL PYRAMIDAL NEURONS EXHIBIT
CORRELATED VARIABILITY:
MECHANISMS AND IMPLICATIONS FOR
CODING

ELL pyramidal neurons receive convergent input from EA
projections: Anatomical studies have shown that up to about 65%
of inputs are shared between pyramidal neurons in neighboring
columns (Maler, 2009b). As such, it is expected that, unlike EA’s,
pyramidal cells in the hindbrain will display both signal and noise
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correlations, i.e., exhibit correlated variability. In this section,
we will start by reviewing how correlations between the baseline
activities of ELL pyramidal cells arise and demonstrate that these
serve as a good predictor of noise correlations under stimulation.
We then move on and review the state of knowledge regarding
the presence and plasticity of noise correlations in ELL.

Mechanisms Mediating Baseline
Correlations
Under baseline conditions, ELL pyramidal neurons fire action
potentials in an irregular pattern switching between bursts
and single spikes (Figure 5A) (Bastian and Nguyenkim, 2001;

Metzen et al., 2016b) with discharge rates in the range of
a few to about 40 Hz (Bastian and Courtright, 1991). The
spike trains of simultaneously recorded neighboring pyramidal
neurons are typically correlated in the absence of stimulation
(Chacron and Bastian, 2008; Hofmann and Chacron, 2017). The
magnitude of these baseline correlations (i.e., raw-correlations
recorded in absence of stimulation; see section “Decomposing
Correlations” ), will typically increase from small (<10 ms)
to large (>1 s) time windows (Figure 5B). Similarly, when
calculating a cross-correlogram (CCG) a prominent peak near
lag zero is visible, but coincident events above chance level are
also found at higher lags, e.g., at 50 ms or higher (Figure 5C).
The magnitude of baseline correlations is independent of the

FIGURE 5 | Baseline correlations in ELL pyramidal neurons. (A) ELL spiking activity of simultaneously recorded neighboring ELL neurons (n1 and n2) are typically not
independent under baseline conditions (AM; no stimulus present). Many of the detected spikes (red triangles) in one neuron are nearly coincident with spikes in the
other neuron. (B) Spike count correlations (rbaseline; i.e., rraw computed for spike trains recorded in absence of stimulation) as a function of time scale (t) for the
neurons shown in (A). Correlations are positive in the example and increase from low to high time windows. (C) The CCG for the example in (A) shows a broad peak
of coincident events near lag 0, but also for higher lags (up to ca. 50 ms) coincident events are above chance level (0). By integrating and normalizing the CCG, a
correlation coefficient can be obtained quantifying the correlations at all (i.e., infinite) timescales (for the example: r = 0.42). (D) Baseline correlations for pairs of
pyramidal neurons consisting of same type neurons (i.e., On–On or Off–Off) are positive on average, for opposite type neurons (On–Off) negative on average (shown
are mean ± SEM). Despite their sign, the overall magnitude is the same. (E) The magnitude of baseline correlations is closely related to the amount of receptive field
overlap for the ELL CLS segment. Data in (A–D) from (Hofmann and Chacron, 2017), data in (E) from (Chacron and Bastian, 2008).

Frontiers in Integrative Neuroscience | www.frontiersin.org 9 November 2018 | Volume 12 | Article 56

https://www.frontiersin.org/journals/integrative-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-12-00056 November 24, 2018 Time: 19:43 # 10

Hofmann and Chacron Population Coding in Electric Sensing

difference in firing rate between the neurons in a pair and is
stationary over time (Hofmann and Chacron, 2017). Baseline
correlations are on average positive between pairs of the same
type (i.e., on–on and off–off) and negative between opposite
type pairs (on–off) (Figure 5D). By mapping the receptive
fields (RF, the area on the skin or in the environment within
which a stimulus causes a response in the neuron) of pyramidal
neurons, Chacron and Bastian (2008) were able to show a positive
correlation between the amount of RF overlap of neuron pairs
and their baseline correlation magnitude (Figure 5E). Such RF
overlap is likely to be caused by shared EA input between
pyramidal neurons (Maler, 2009a).

The average RF size and overlap between neighboring neurons
was estimated to differ between ELL segments and decrease
from the lateral segment (LS) over the centro lateral segment
(CLS) to the centro medial segment (CMS) (Maler, 2009a). Based
on the relationship between baseline correlation magnitude
and RF overlap (Figure 5E) one would consequently predict
baseline correlations to decrease from LS to CMS. This is
not true, however, as the correlation magnitudes were found

to be similar on average, in all three segments (Figure 6A)
(Hofmann and Chacron, 2017). These similar magnitudes of
baseline correlations most likely originate from different RF
properties as described below.

ELL RFs are organized in an antagonistic center-surround
organization (Shumway, 1989; Bastian et al., 2002). This means,
for an on-type cell, stimulation within the RF center will cause
an increase in firing rate, while stimulation within the RF
surround will instead cause a decrease in firing rate. Thus, when
considering the RFs of two neighboring ELL pyramidal neurons,
one must consider up to eight different areas of RF overlap,
depending on their spacing (Figure 6B). These areas will give
either excitatory (“+”) or inhibitory (“−”) input to each of
the two neurons, or will not project to a given neuron (“0”).
Comparing the inputs, each neuron receives from each of the
areas of overlap, one can expect these signals to be positively
correlated (“+corr”), negatively correlated (“−corr”), or not
correlated (“no corr”) (Figure 6B, labels). The balance between
these inputs will determine the amount of input correlations.
The correlation magnitude measured in a pair of pyramidal

FIGURE 6 | Baseline correlation magnitudes are similar across the ELL segments and determined by receptive field organization. (A) Population averages of baseline
correlation magnitude as a function of timescale for the three ELL segments (see labels, shown are mean ± SEM). Despite varying degrees of receptive field (RF)
overlap, the average magnitude of correlations was similar in all segments. (B) Two adjacent RFs (RF1 and RF2, respectively) with a center-surround (blue–red)
organization will have up to eight areas over RF overlap. The inputs from these areas will be correlated (+corr), negatively correlated (–corr) or uncorrelated (no corr).
The relation of these areas (in terms of size and strength) will determine the correlations between the inputs that the two pyramidal neurons receive. (C) In a
numerical simulation, varying the RF structure (i.e., relative size and strength of the RF surround) led to differences in the magnitude of baseline correlations (all values
at t = 100 ms). Interestingly, physiologically plausible magnitudes [r ≈ 0.2, compare to (A)] of correlations can be found for very different RF relations (area enclosed
by red dotted lines, see red markers on colorbar). (D) From the numerical simulations and previously published qualitative physiological data (Shumway, 1989), the
similar magnitudes in correlations between the segments (left) can, despite the varying degree of RF center overlap (middle), be explained by a compensation
through the RF surround that varies (antagonistically to RF center overlap) between the segments (right). All data from (Hofmann and Chacron, 2017). ∗Statistical
significance; n.s., not significant.
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neurons will depend on their input correlations and the amount
of correlation transfer in these neurons (Shea-Brown et al., 2008;
Bujan et al., 2015).

Using mathematical models and numerical simulations, it
was found that changing the relative strength and size of the
RF surround relative to that of the RF center impacts the
magnitude of baseline correlations (Figure 6C). Interestingly,
many and very different RF topographies and balances led to
correlation magnitudes within the physiological range (Hofmann
and Chacron, 2017) (Figure 6C, red). As such, it is not
only interactions between the RF centers but also interactions
between the centers and the surrounds, as well as interactions
between the RF surrounds themselves that contributes toward
determining correlation magnitude. Therefore, the similar
correlation magnitudes seen across the three ELL segments occur
because decreases in RF center overlap when going from LS
to CMS are effectively “compensated for” by the concomitant
impact of signals from the RF surrounds (Figure 6D) (Shumway,
1989; Hofmann and Chacron, 2017). As mentioned above, the
presence of baseline correlations in the absence of stimulation
strongly suggests that noise correlations will be present during
stimulation.

Baseline Correlations Predict Noise
Correlations Under Stimulation in ELL
Pyramidal Cells
Under stimulation, pyramidal neurons will typically encode
the stimulus waveform through changes in firing pattern while
the overall firing rate changes only minimally on average
(Figure 7A). This is generally attributed to gain control and
the cancelation of redundant signals via descending pathways
(i.e., indirect feedback) (Bastian, 1986, 1999; Bastian and
Bratton, 1990; Bratton and Bastian, 1990; Chacron et al., 2005c)
causing pyramidal neurons to adapt to both first- and second-
order stimuli (Bastian et al., 2004; Huang et al., 2016; Zhang
and Chacron, 2016). Simultaneously recorded spike trains of
pyramidal neurons will display both signal and noise correlations
(Figures 7B,C). Using previously published data (Chacron and
Bastian, 2008; Hofmann and Chacron, 2017), we investigated the
relationship between baseline correlations and noise correlations
and found a strong relationship between them (Figure 7D).
This confirms our earlier prediction that baseline correlations
are a precursor for the presence of noise correlations under
the assumption of weak stimulus amplitudes (Hofmann and
Chacron, 2017). We note that the magnitude of noise correlations
was systematically lower compared to the magnitude of baseline
correlations (compare slope of fits to identity line) while the sign
was preserved between same and opposite type pairs (Figure 7D,
dots vs. triangles).

We further compared noise and signal correlations and found
that the correlation structure in ELL is mostly parallel (i.e., signal
and noise correlations typically have the same sign) (Figure 7E,
compare also to Figures 1A,B). However, when considering
either same or opposite-type pairs separately, there was no
significant relationship between signal and noise correlation
magnitudes (Figure 7E). As expected, both signal and noise

correlations seem to contribute to the overall (raw-) correlation in
ELL as, for both, significant relations were found (Figures 7F,G).
The relationship between raw and noise correlations extends over
a larger range (range of rnoise: −0.35 to 0.39) as compared to
the relation between raw and signal correlations (range of rsignal:
−0.28 to 0.37). Furthermore, the spread of the data is less (error
areas of the fits are smaller). This could be seen as indication
that noise correlations more strongly determine raw correlations
between ELL spike trains than signal correlations are.

Based on the observed correlation structure (Figure 7E), one
would predict that information transmission is compromised
when assuming a decoder that relies on the linear sum of
responses. It is, however, important to note that experimental
data has shown that such a decoding scheme is most likely
not completely accurate (Vonderschen and Chacron, 2011;
Aumentado-Armstrong et al., 2015). Nevertheless, these results
highlight the important fact that noise correlations between ELL
pyramidal cell activities should not be assumed to be negligible
and cannot be ignored when investigating population coding
(Lewis and Maler, 2001; Marsat and Maler, 2010; Jung et al., 2016;
Allen and Marsat, 2018).

Plasticity of Correlated Variability in ELL
Similar to what is reported in other brain areas, noise correlations
in ELL are highly plastic (see also “Effects of Correlated
Variability on Stimulus Encoding” section). Indeed, it was shown
that their magnitude strongly depend on the stimulus’ spatial
extent (Chacron and Bastian, 2008; Litwin-Kumar et al., 2012;
Simmonds and Chacron, 2015). Specifically, correlations in a
given pair are low when using stimuli whose spatial extent mimics
those caused by conspecifics (global stimulation; Figure 8A)
compared to when using stimuli with the same temporal profile
but whose spatial extent mimics those caused by prey (local
stimulation; Figure 8B).

This effect is timescale specific: on short timescales (<10 ms)
correlations slightly increased under global stimulation while
on longer timescales (>10 ms), correlations strongly decreased
(Litwin-Kumar et al., 2012) (Figures 8C,D, arrows). Litwin-
Kumar et al. (2012) showed that this correlation shaping was
in part due to changes in signal correlation, which reflects
previously described changes in the response properties of single
ELL pyramidal neurons (Chacron et al., 2005c; Chacron, 2006).
Moreover, noise correlations were in general weaker under global
stimulation than under local stimulation (Figures 8E,F, arrows).

It was shown, both by mathematical modeling and
experimental manipulation, that the reduction of noise
correlations under global stimulation is due to activation of
the indirect feedback pathway (Simmonds and Chacron, 2015).
This descending input pathway is diffuse and activated only
under global but not local stimulation (Bastian et al., 2004).
As explained above (see section “The Mechanistic Origins
of Correlations in vivo Remain Poorly Understood”), noise
correlations likely arise due to the shared noise in common
inputs. For ELL, these are the afferent inputs from EAs
(Figure 9A, bottom). As for the descending inputs, it is assumed
that the granule cells within the EGP do not fire in the absence
of stimulation but are active during stimulation. Further, it is
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FIGURE 7 | Baseline correlations predict the presence of noise correlations during stimulation. (A) Spiking activity of two neighboring pyramidal neurons (n1 and n2)
during stimulation with a 0–120 Hz AM (AM, top trace). Spiking pattern encodes the AM while the average firing rate of neurons increased very little (shown neurons
are the same as in Figures 5A–C). (B) Spike count correlations (r) as a function of time window (t) for raw (black), signal (red), and noise correlations (blue).
Correlation structure of the shown example is parallel, i.e., both signal and noise correlations are positive. (C) CCGs for raw signal and noise correlations show
prominent peaks near lag 0 extending to lags of ca. 20 ms. Note that, while the absolute peak of raw correlations is higher compared to baseline correlations
(Figure 5C), the width of the peak is reduced. Correlations coefficient as determined from the CCG were: rraw = 0.27 and rnoise = 0.12. (D) Relation between the
magnitude of noise (rnoise) and baseline correlations (rbaseline) for same (triangles) and opposite (dots) type pairs. Note that, for both datasets a strong positive relation
was found. While the sign is preserved the magnitude of rnoise is slightly reduced compared to rbaseline as the slope of the fits (red lines) are lower than that of the identity

(Continued)
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FIGURE 7 | Continued
line (dotted line). The relationship shows that based on the presence of correlations under baseline conditions, noise correlations can be expected to be present
under stimulation. The gap between the two population arises as only pairs with an absolute rbaseline above 0.1 were included in the analysis (see also Chacron and
Bastian, 2008). (E) The magnitudes of signal and noise correlations were not systematically dependent on each other (red lines, fit to individual datasets, slopes were
not significant). However, their sign seems to be preserved in general, i.e. correlation structure in ELL is on average parallel. (F,G) Raw correlations as a function of
signal (F) and noise correlations (G). In both cases, strong and significant relationships were found indicating that both components contribute to the overall
correlation coefficient. However, noise correlations vary over a larger range, and the relationship was stronger suggesting that the impact of noise correlations slightly
outweighs that of signal correlations. Data in (A–C) re-analyzed from Hofmann and Chacron (2017). Data in (D–G) reanalyzed from Chacron and Bastian (2008).

FIGURE 8 | The spatial structure of stimulation shapes the magnitude and timescale of correlations between ELL pyramidal neuron activities. (A) Global stimulation
resembles interaction between the electric field of conspecifics (compare Figures 2B,C). During such a stimulation, the sensory surface is stimulated uniformly with
all EAs receiving a similar signal. At sufficient strength, global stimulation will activate descending inputs to ELL. (B) Local stimulation resembles electrolocation
signals, i.e., interactions between the electric field and objects in the environment (compare Figure 2A). During such a stimulation, only a sub-portion of the sensory
surface is stimulated. Under local stimulation, neuronal feedback is inactive (C,D) Population raw correlations during local (gray) and global (black) stimulation shown
as spike count correlations as a function of timescale (C) and CCGs (D). Correlations at high timescales are strongly reduced while correlations at low timescales
may be slightly increased. Inset: the correlation coefficients as obtained from the CCGs were strongly reduced under global stimulation. (E,F) Same as (C,D) but for
population noise correlations. Similar, to raw-correlations, a massive reduction of noise correlations was found during global stimulation. This implies that the
reduction in noise correlations is driving the reduction in raw-correlations. ∗Statistical significance.

assumed that the trial-to-trial variability in the granule cell firing
activities contribute independent noise to the pyramidal cells due
to the diffuse nature of the descending inputs (Figure 9A, left).

Activation of the indirect feedback during global stimulation
will therefore “dilute” noise correlations between pyramidal
cells. Indeed, experimentally blocking this pathway during
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global stimulation led to an increase in noise correlations
supporting this hypothesis (Figures 9B,C, arrows). As such, the
descending inputs during global stimulation can be implicated
as one functional component with which correlation plasticity
is achieved in ELL. If and how this affects the processing of
behavioral relevant signals is discussed below.

FUTURE DIRECTIONS

In the following, we highlight interesting future avenues of
research on population coding in the electrosensory system.

Noise correlations have been shown within the CLS segment
(Chacron and Bastian, 2008; Simmonds and Chacron, 2015).
Furthermore, the presence of baseline correlations was shown
for all segments (Hofmann and Chacron, 2017) which, with the
re-analyzed data presented here (Figure 7D), strongly implies
that noise correlations will be present during stimulation in all
ELL segments. Systematic assessments of differences in noise
correlations between pairs of different pyramidal neuron types
(i.e., superficial, intermediate, and deep) have not been done

FIGURE 9 | Pharmacological inactivation of descending inputs increases ELL
correlations. (A) Feedforward projections of EAs to ELL pyramidal neurons are
sources or shared noise generating noise correlations between neurons in
close vicinity. Descending inputs from the EGP (indirect feedback) are spatially
diffuse and carry independent noise. Feedback activation will thus dilute noise
correlations as predicted by computational modeling leading to a decrease of
noise correlation under global stimulation. The descending inputs from EGP
can be pharmacologically blocked by releasing the agent CNQX in the vicinity
of the apical dendrites interrupting synaptic transmission. (B,C) Population
noise correlations during global stimulation and inactivation of the indirect EGP
feedback through application of CNQX to the apical dendrites of ELL neurons.
While noise correlations are low under global stimulation (control, blue), a large
increase in noise correlations was found after feedback inactivation (EGP
block, orange). In fact, noise correlations after feedback inactivation closely
resembled those observed under local stimulation. Data illustrated after
(Chacron and Bastian, 2008; Litwin-Kumar et al., 2012; Simmonds and
Chacron, 2015). ∗Statistical significance.

so far. Baseline correlation magnitude was reported to weakly
correlate with the average baseline firing rate in CLS pairs
(Hofmann and Chacron, 2017), suggesting that pairs of deep cells
tend to display slightly higher correlation magnitude. Whether
this holds true for noise correlations under stimulation has not
been investigated to date. Further studies are also needed to assess
how pyramidal cell heterogeneities affect correlation plasticity.
Specifically, as deep cells receive less descending inputs in
comparison to intermediate and superficial neurons, we predict
that the reduction in noise correlation during global stimulation
will be less pronounced in these cell pairs.

The initial estimation of correlation structure (Figure 7E)
suggests that noise correlations might influence signal encoding
in a detrimental fashion with respect to many of the analytical
tools that were used in the past. However, it is important to
note that it remains to be shown directly if and how they
influence signal encoding, which will require evaluation from
the decoding perspective also. For this, recordings from areas
downstream of ELL such as the midbrain torus semicircularis
will be required. There, the diversity of cell classes and response
properties (Vonderschen and Chacron, 2011; McGillivray et al.,
2012; Aumentado-Armstrong et al., 2015; Sproule et al., 2015)
could imply that different decoding strategies are used for
different stimuli.

One important area of research concerns how natural
electrocommunication stimuli (i.e., chirps) are encoded within
the electrosensory pathway. As mentioned above, most studies
have focused on how single EA’s or ELL pyramidal cells encode
such stimuli. While extrapolations to the population level
were attempted, the potential effects of noise correlations were
generally neglected (Marsat et al., 2009; Allen and Marsat, 2018).
However, the fact that the baseline activities of LS pyramidal cells
are correlated at timescales commensurate with those of chirps
suggests that noise correlations need to be taken into account in
future studies. Simultaneous recordings of ELL neurons during
stimulation with chirps will be required to verify the above
prediction and ascertain their effects on population coding.
Further, the potential impact of noise correlations on population
coding of chirps will require investigation of the decoding
in downstream midbrain neurons. These integrate converging
inputs from ELL pyramidal neurons and experimental studies
have shown that some midbrain neurons, due to their non-
linear integration of inputs from on- and off-type ELL pyramidal
neurons, responded to chirps in a selective manner (Vonderschen
and Chacron, 2011; Aumentado-Armstrong et al., 2015; Metzen
et al., 2016a). Future studies should consider these more
physiologically realistic decoding schemes, in particular we
predict that pooling the activities of on- and off-type cells will
reduce their overall responses to the beat, thereby making the
response to the chirp more detectable.

With regard to electrosensory envelopes, previous studies
have largely focused on understanding the encoding by single
ELL pyramidal cells (Huang and Chacron, 2016; Huang et al.,
2016; Zhang and Chacron, 2016; Metzen et al., 2018). Further
studies are needed to understand the role and impact of noise
correlations on population coding of envelopes. Here, responses
of on- and off-type ELL pyramidal cells, while responding in and
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out of phase to first-order stimuli, respectively, actually respond
largely in phase to second order stimuli such as envelopes (Huang
and Chacron, 2016). From this, one would expect to find ELL
signal correlations to be positive with regard to the envelope on
average. However, the experimentally observed negative baseline
correlations between opposite type pairs, would predict that these
display negative noise correlations in response to envelopes. As
such, noise correlations are predicted to be beneficial for envelope
coding in such pairs. Further studies are needed to verify this
prediction.

Finally, it should be noted that theoretical studies have
suggested that noise correlations themselves could directly
encode stimuli, therefore forming an independent channel
of information transmission in the brain (Averbeck et al.,
2006). The documented correlation plasticity in ELL,
together with the nature of electrosensory stimuli being
intertwined with an active sensing carrier signal, could be
an example in which such a correlation code is realized
in the brain. If plasticity of noise correlations can be
found due to stimulus attributes other than the stimulus
spatial extend, is unclear, however, and remains to be
investigated.

While many of the above discussed assessments of neuronal
encoding are based on recordings from immobilized animals,
it is important to note that weakly electric fish, on top of
being able to display electrical behaviors when immobilized,
show elaborate behaviors and astonishing cognitive abilities and
are getting more and more attention for the study of various
aspects of active sensing behaviors (Nelson and MacIver, 2006;
Engelmann et al., 2008; von der Emde et al., 2010; Hofmann
et al., 2013, 2017; Pedraja et al., 2018). Recent technological
advances such as electrophysiological recordings from freely
moving aquatic animals are rapidly evolving (Fotowat et al., 2013;

Vinepinsky et al., 2017). Being able to perform such recordings
in freely behaving electric fish will allow to combine the
investigations of population coding aspects in active sensing
contexts – two of the most prominent research streams in
neuroscience. Specific questions will likely be: How are active
sensing movements generated and controlled through neuronal
populations, how do population codes contribute to decision
making during active sensing movements, and how do neuron
populations encode sensory signals discriminating re- and ex-
afferent signals at the population level. Based on the vast body of
knowledge regarding behavior, anatomy and physiology weakly
electric fish promise to evolve into an exciting model system to
study the neuronal control of active sensing behaviors.
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