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Abstract. The expediency of using probability-based approaches in the analysis of beams subjected to lateral-torsional 
buckling is discussed. The values of buckling resistance moments and their uncertainties for rolled and equivalent welded 
I sections as particular members of the designed structures are analyzed. The safety margins of buckling steel sections ex-
posed to permanent and variable vertical loads are modeled. The survival probability and reliability index of sections ex-
posed to lateral-torsional buckling are considered. The prediction of probability-based safety of rolled and welded beams 
in buildings and civil engineering works are provided and illustrated by numerical examples. 
Keywords: lateral-torsional buckling, safety margin, survival probability, welded beams. 

 
1. Introduction 

The lateral-torsional buckling occurs with certain con-
struction types of steel beams having deep I sections the 
compression flanges of which are insufficiently restrained 
against flexural action effects about the major axes of 
their sections caused by heavy gravity loads. Due to the 
buckled positions of deformed beams with open cross-
sections (Fig. 1), tensile and compressive stresses de-
velop in their top and bottom flanges, respectively. The 
dangerous values of these stresses caused by torsional 
and lateral flexure effects of vertically applied loads may 
cause the horizontal buckling of beam flanges because 
they cannot be completely prevented by beam webs. 
Beams with sufficient restrained to the compression 
flange are not susceptible to lateral-torsional buckling. 

The reliability class (RC) for buckling steel beams 
as particular members of the structures must be desig-
nated in the same consequences class than for the entire 
structure of buildings civil engineering works. Failures 
and collapses of deep I sections may be caused not only 
by the gross human errors of designers or erectors but 
also by statistical uncertainties of sustained and extraor-
dinary variable loads or some conditionalities of recom-
mendations and directions presented in semi-probabilistic 
design codes and standards. 

The lateral-torsional buckling criteria for unre-
strained beams may be generally expressed as the critical 
values of either their compressive bending stresses or 
ultimate bending moments. However, the buckling resis-
tance of beams depends not only on their geometric pa-
rameters, support conditions and torsional properties but 
also on mechanical and statistical features of rolled and 
equivalent welded sections. They may exert a significant 

influence on their structural safety. Regardless of fairly 
developed concepts of the theory of buckling resistances 
of beams, any semi-probabilistic analysis can lead to the 
groundless overestimation of the reliability indices of 
designed and erected important engineering structures. 

 

 
Fig. 1. Schematic representation of buckled beams 

 
A wide range of applied reliability issues can be nei-

ther formulated nor solved within deterministic or semi-
probabilistic approaches. Therefore, careful attention of 
designers must be given to the full-probabilistic analysis of 
buckling members. The probability-based analysis of 
beams exposed to lateral-torsional buckling may be inevi-
table in cases when their variable bending moments are 
caused by extreme extraordinary or recurrent static and 
dynamic loads. The probabilistic analysis of buckling mem-
bers subjected to sustained variable loads is fairly unsophis-
ticated. However, the structural safety prediction of mem-
bers subjected to intermittent recurrent loads may be rather 
complicated due to some mathematical difficulties. 
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The object of this paper is to assess the difference in 
reliability indices of rolled and welded beams with buck-
ling flanges and to encourage designers having minimum 
appropriate skills and experience to use probability-based 
methods in their design practice. 

 
2. Buckling resistance moment 

According to EN 1993-1-1 (2004), the beams loaded in 
the plane of the web and subject to major axis bending 
(Fig. 1) should be verified against lateral-torsional buck-
ling as follows: 

 RdbEd MM ,< , (1) 

where MEd is a design bending moment, 

 1, / MyyLTRdb fWM γχ=  (2) 

is a design buckling resistance moment expressed by its 
reduction factor χLT, appropriate section modulus Wy 
equal to Wpl,y, Wel, y and Weff,y for Class 1 or 2, 3 and 4 
cross-sections. When fy is the nominal (characteristic) 
value of yield strength and γM1=1.0 is its particular partial 
factor, the design yield strength is equal to fy/γM1= fy= fyk. 
Thus, a design buckling resistance moment is equal to its 
characteristic value, i. e. Mb,Rd  =Mb,Rk. 

For rolled and equivalent welded beams of constant 
cross sections, the values of reduction factors of buckling 
resistance moments may be determined from the equation:  
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where the value to determine the reduction factor, LTΦ , 
may be calculated as follows: 

 ( )[ ]275.04.015.0 LTLTLTLT λ+−λα+=Φ . (4) 

It consists of the imperfection factor αLT equal to 
0.21 or 0.34 and 0.49 or 0.76 for rolled and welded sec-
tions, respectively, and their non-dimensional slenderness 

 ( ) 5.0/ cryyLT MfW=λ , (5) 

when Mcr is the elastic critical moment for the lateral-
torsional buckling. Increasing an elastic critical moment, 
the non-dimentional slenderness of a beam, LTλ , de-
creases and the value of its buckling resistance moment 
may be improved.  

In the case of a beam of uniform cross-section that 
is symmetrical about the minor and major axis, the elastic 
critical moment for lateral-torsional buckling is given by 
the formula: 
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where C1, C2 – are factors depending on the loading and 
end restraint conditions, k and kw – are effective length 
factors, E – modulus of elasticity, G – shear modulus, L is 
the length of the beam between points which have lateral 
restraint, It – the torsion constant, Iw – the warping con-
stant, Iz – the second moment of area about the minor 
axis, zg = za – zs when za is the coordinate of the point of 
load application, zs is the ordinate of the shear centre. 

When the parameters fy and χLT of steel sections are 
treated as random statistically independent variables, their 
means and standard deviations may be expressed as: 

 
y

y
ym fk

f
f

δ95.01−
= , ymyy fff ×= δσ , (7) 

 LTLTm χ=χ , LTLTLT χ×δχ=σχ , (8) 

where the coefficients of variation of yield strength fy and 
reduction factor χLT may be defines as δfy ≈ 0.08 and 
δχLT,r ≈ 0.06 or δχLT,w ≈ 0.08–0.10. Therefore, the means 
and coefficients of variation of buckling resistance mo-
ments of rolled and welded sections may be expressed as: 

 ymyrLTmRb fWM r ,, χ= , (9) 

10.006.008.0 22
,

22
, =+=χ+= rLTyRb fM r δδδ , (10) 

( ) mbRymywLTmRb rw MfWM 9.085.0,, −=χ= , (11) 

12.0128.0113.0,
22

, ≈−=χ+= wLTyRb fM w δδδ . (12) 

Thus, the standard deviations of buckling resistance 
moments may be treated as the same values for rolled and 
welded sections expressed as 

mRbRbRb MMM ,,, ×= δσ . 
 

3. Safety margin of buckling beams 

The time-dependent safety margin of single (individual or 
component) steel beams (sections) may be defined as 
their performance process. According to Melchers (1999) 
and JCSS (2000), this safety margin may be expressed as 
a random process: 

 
( ) ( )[ ]

( ) ( ),
, ,

tMtM

MMtXgtZ

es qqqq

ggRbR

θ−θ

−θ−θ=θ=
 (13) 

where gM , ( )tM sq  and ( )tM eq  are the stochastically 
independent bending moments caused by permanent g, 
sustained qs and extraordinary qe loads (Fig. 2). The addi-
tional random variables (θ) represent the uncertainties of 
calculation models including uncertainties of their prob-
ability distributions. These variables may be modeled 
either by the density functions or simply as their means 

Rmθ , gmθ , qmθ  and standard deviations Rθσ , gθσ , 

qθσ (see Section 5.1). 
According to Ellingwood (1981), Raizer (1998) and 

EN 1990 (2002), EN 1994-1-1 (2004), the permanent 
bending  moment  gM   can be  described  by the  normal 
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Fig. 2. Model for structural safety analysis of beams 

 
distribution law. Therefore, for the sake of design simpli-
fications, it is expedient to present the expression (13) in 
the form: 

 ( )tSRtZ qc −=)( , (14) 

where the component 

 ggRbRc MMR θ−θ= ,  (15) 

may be treated as the conventional beam resistance which 
may be modeled by normal distribution irrespective of 
the fact that a distribution of the buckling resistance mo-
ment RbM ,  may only be close to this distribution (ISO 
2394 1998; Kala et al. 2009)  

 ( ) ( ) ( )tMtMtS es qqqqq θ+θ=  (16) 

is the variable bending moment process induced by ser-
vice live actions. 

The means and variances of the probability distibu-
tions of random functions cR  and Sq are: 

 gmgmRmbRmcm MMR θ−θ= , , (17) 
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where RmbM ,  is given by Eqs. (9) or (11),  

 ( ) 22
Rm,bR,bR,b MMM ×= δσ  (21) 

when the coefficient of correlation, RbM ,δ , is equal to 
0.10 and 0.12 for rolled and welded sections, respec-
tively. 

The sustained and extraordinary components of ser-
vice loads are modeled as time-variant stochastic proc-
esses. It is proposed to model the variable loads with a 
mean equal to ( )qkqk δ95.01/ + , where k0.95 is their char-
acteristic fractile factor. The variance of bending variable 
moments is expressed as: 

 ( ) 22
qmqq MMM ×= δσ . (22) 

In reality, the lognormal distribution may be used 
for sustained loads (JCSS 2000; EN 1990 2002; ISO 
2394 1998). The sum of sustained and intermittent ex-
traordinary load components may be assumed to be ex-
ponentially distributed (JCSS 2000; Vrouwenvelder 
2002). The Type 1 (Gumbel) distribution may be also 
used. Besides, the Gumbel distribution law is quite ap-
propriate for the probabilistic analysis of structures ex-
posed to recurrent extreme action effects. 

 
4. Survival probability and reliability index 

When the variable action effect ( )tSq  by (16) may be 
treated as the recurrent extreme bending moment, the 
time-dependent safety margin (14) may be expressed as a 
random sequence: 

 kckk SRZ −= ,  k=1, 2,…,  n–1, n, (23) 

where ckR  by Eq. (15) and kS  by Eq. (16) are the con-
ventional resistance and the variable extreme action effect 
at the sequence cut k the probability distributions of 
which are normal and Type 1, respectively; n is the num-
ber of extreme action effects during design working life 

nt  of the structures (Fig. 2) (Kudzys and Kliukas 2009). 
When ckR  and kS  are independent, the instantane-

ous survival probability of members at any cut k of their 
safety margin sequences, assuming that they were safe at 
time less then kt , may be calculated using formula: 

 { } ( ) ( )dxxFxfZPP kck SRkk ∫
∞
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where )(xf ckR  is the density function of conventional 

resistance ckR , 
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is the Gumbel distribution function of the recurrent action 
effect kS  the mean and standard deviation of which are 

kmS  by Eq. (19) and kSσ  from Eq. (20). 
The time-dependent survival probability of mem-

bers as series stochastic systems may be calculated using 
the numerical integration and Monte-Carlo simulation 
methods. However, it is more reasonable to use the unso-
phisticated analytical method of transformed conditional 
probabilities. 

When the conventional resistance may be treated as 
a stationary process, the long-term survival probability of 
beams obtains the following form: 
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where ( ) ( ) ( )lklklkkl ZZZZCovZZ σσ ×=ρ=ρ /,,  is the 
coefficient of auto correlation of random safety margin 
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sequence cuts; ( ) ( )[ ] ≈ρ−ρ+= 5.098.01/45.4 klkla  

( )[ ] 5.098.01/5.4 klρ−  is its bounded index; kP  is the 
instantaneous survival probability by Eq. (24). 

The probabilistic analysis of structures subjected to 
two stochastically independent variable extreme actions 
is presented by Kvedaras and Kudzys (2005), Kudzys 
(2005). This analysis is based on the fact that a member 
failure may occur not only under joint action effects but 
also when the value of one out of two actions is extreme 
or when the conventional bivariate distribution of two 
extreme action processes exists. 

When the variable action effect qq MS =  is distrib-
uted by the lognormal and exponential laws, the instanta-
neous probability (24) may be treated as the long-term 
survival probability and calculated by the analytical for-
mulae: 
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where the mean and variance for cR  are calculated from 
Eqs. (17) and (18). 

The survival probability of members may be intro-
duced by the generalized reliability index 

 { }( )01 >Φ=β − ZP , (29) 

where ( )•Φ−1  is the cumulative distribution function of 
the standard normal distribution. This index helps us 
specify the degree of reliability of members according to 
the consequences of their failure. 

According to Eurocode EN 1990 (2002), for an ul-
timate limit state design of structural members the mini-
mum values for the reliability index during the 50-year 
reference period are: =βmin  3.3, 3.8 and 4.3 when their 
reliability classes are RC1, RC2 and RC3, respectively. 
Beams and other particular members of the structure may 
be designated in the same reliability class as for the entire 
structure. 

 
5. Numerical illustrations 

5.1. Beams in engineering buildings of reliability class 
RC2 

Let us consider, as the numerical example, the compara-
tively deep sections unrestrained between beam supports 

and exposed to storage silos weights and heavy variable 
central loads acting at the centroidal beam axis. The char-
acteristic values of permanent, Gk, and leading variable, 
Qk, loads are equal to 16.55 kN/m and 116.0 kN/m, re-
spectively. Thus, the variable load is significantly larger 
than permanent one. The design values of load and bend-
ing moment are: Fd =1.35×16.55+1.5×116=196.3 kN/m 
and MEd = 825.6 kNm. The multiplication factor for ac-
tions 0.11 =FK  (EN 1990 2002). 

The length and the cross section depth of uniform 
beams HEA 550 of building silos (Fig. 3) are: 80.5=L m 
and 54.0=h m. The steel grade S275 belongs to Class 1 
of Standard EN 10025-2 for hot rolled structural steel. 
Thus, the nominal (characteristic) value of its yield 
strength 275=yf MPa. The distance between shear cen-

tres of beam flanges 516.0=sh m; the second moments 
of area about minor (z–z) axis for rolled and welded cross 
sections 44 m10082.1 −×=zl . 
 

 
Fig. 3. Scheme of storage silos 

 
Therefore, the warping constant of section is equal to 
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The torsion constant of section is equal to  
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Thus, according to Eq. (6), the elastic critical mo-

ment for lateral-torsional buckling is 
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According to Eq. (5), the non-dimentional slender-
ness for constant cross section is: 

 ( ) 86087174010275104446
5034 ../.

.
LT =×××= −λ . 

According to Eq. (4), the values of joint parameters 
for rolled and equivalent welded beams are: 

 ( )[ ] 83.086.075.04.086.021.015.0 2
, =⋅+−+=Φ rLT , 

and  ( )[ ] 89.086.075.04.086.049.015.0 2
, =⋅+−+=Φ wLT . 

Thus, according to Eq. (3), the reduction factors for 
buckling resistance moments of rolled and equivalent 
welded beams are: 

( )
84.0
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According to Eq. (2), the design buckling resistance 
moments for rolled and welded beams are: 

==××××= − kNm8.10720.1/102751044.4684.0 34
, dRb rM

kNm6.8250.16.825, =×=×>> FIEdkRb KMM r , 

==××××= − kNm3.9320.1/102751044.4673.0 34
, dRb wM

kNm6.825, >kRb wM . Thus, the welded sections are in 
perfect safety suitable for the retaining construction of silos. 

The values of means and variances of buckling re-
sistances of considered uniform sections are:  

 ( ) kNm128410.0645.11/8.1072, =×−=mRb rM , 

 ( ) ( )22
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 ( ) ( )22
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The values of means and variances of bending mo-
ments caused by permanent and sustained variable loads 
are: 

170.M gm = kNm, 149170100 22 .)..(M g =×=σ (kNm)2; 

7278.M qm = kNm, 12431727840 22 =×= )..(M qσ (kNm)2 
for the lognormal distribution of variable loads and 

1212.M qm = kNm, 44977)1.2120.1( 22 =×=qMσ (kNm)2  
for the exponential distribution of these loads. 

The mean values and standard deviations of model 
additional variables are: 0.1≈θ≈θ≈θ qmgmmR , and 

05.0≈θ rRσ , 10.0≈θ wRσ , 10.0≈θ≈θ qg σσ  (Hong 
and Lind 1996, Holicky 2005). Then, according to 
Eqs. (17)–(20), the revised statistical parameters of con-
ventional resistances and variable action effects of con-
sidered beams are:  
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kNm7.2787.2780.1 =×=qmS  and ×= 012 .Sqσ  

( )222 kNm1320810.07.27812431 =×+ for the lognormal 
distribution, 

kNm1.2121.2120.1 =×=qmS  and ×= 012 .Sqσ  

( )2222 kNm4542710.01.2121.212 =×+  for the expo-
nential distribution. 

According to Eqs. (27) and (28), the survival prob-
abilities of rolled and welded beams are equal to 0.99989 
and 0.99937 or 0.99588 and 0.99159 when the distribu-
tions of variable loads are lognormal or exponential, re-
spectively. The reliability indices of beams are presented 
in Fig. 4. 

 

 
Fig. 4. Reliability indices of rolled (1, 2) and welded (3, 4) 
sections HEA 550 when the distributions of variable loads are 
lognormal (1, 3) and exponential (2, 4) 
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Fig. 4 shows that the structural safety of sections 
HEA 550 may be insufficient in spite of their perfect 
safety data calculated according to Eurocode 3 (EN 1993-
1-1 2004) recommendations. 

 
5.2. Beams in engineering works of reliability class 
RC1 

The lenght and the cross-section depth of uniform beams 
HEA 500 are: m80.5=L  and m49.0=h . The steel 
grade S275 belongs to Class 1 of Standard EN 10025-2 
for hot rolled structural steel. The distance between shear 
centres of beam flanges m467.0=sh ; the second mo-
ments of area about minor (z–z) axis for rolled and 
welded cross-sections 44 m10037.1 −×=zI . Therefore, 
the warping constant of section is equal to 

66 m10654.5 −×=wI . 
The plastic section modulus of beams about major 

(y–y) axis 34
, m1076.39 −×== yply WW . When the pa-

rameters 1594.01=α  and m0371.01=D , the torsion 

constant of section is equal to 44 m1003174.0 −×=tI . 
Thus, the elastic critical moment for lateral-torsional 

buckling is m8.1555 kNM cr =  and the non-dimentional 

slenderness for constant cross-section 84.0=λLT . The 
values of joint parameters for rolled and equivalent 
welded beams are: 81.0, =Φ rLT  and 87.0, =Φ wLT . 
According to Eq. (3), the reduction factors for buckling 
resistance moments of rolled and equivalent welded 
beams are: 86.0, =χ rLT  and 74.0, =χ wLT . 

The multiplication factor for actions 901 .KF =  (EN 
1990 2002). Therefore, the bending moment of beams is 
equal to 825.6 × 0.9 = 743 kNm. The design buckling 
resistance moments for rolled and welded beams, respec-
tively, are: kNm3.940, =dRb rM kNm0.743>> , 

kNm1.809, =dRb wM kNm0.743> .  
According to Eq. (2), the means and variances of 

buckling resistances of considered uniform sections are: 

kNm5.1125, =mRb rM , ( )2,
2 kNm7.12666=rRbMσ ; 

kNm1.1008, =mRb wM , ( )2,
2 kNm8.14634=wRbMσ . 

According to Eqs. (17)–(20), the revised statistical pa-
rameters of considered beams are:  

kNm4.1055, =rmcR , r,cR2σ = 15931.5 (kNm)2, 

kNm1.938, =wmcR , w,cR2σ = 24896 (kNm)2; 

kNm7.278=qmS  and ( )22 kNm5.13207=qSσ  
for the lognormal distribution of sustained loads, 

kNm1.212=qmS  and ( )22 kNm45427=qSσ  for 
their exponential distribution. 

According to Eqs. (27) and (28), the survival prob-
abilities of rolled and welded beams are equal to 0.99962 
and 0.99807 or 0.99176 and 0.98417 when the distribu-
tions of variable loads are lognormal or exponential, re-
spectively. The reliability indices of beams are presented 
in Fig. 5. 

 

 
Fig. 5. Reliability indices of rolled (1, 2) and welded (3, 4) 
sections HEA 500 when the distributions of variable loads are 
lognormal (1, 3) and exponential (2,4) 

 
The data presented in Fig. 5 corroborate the 

evidence that beams (especially formed from welded 
sections) designed by Eurocode 3 (EN 1993-1-1 2004) 
recommendations may be insufficiently safe if they are 
subjected to lateral-torsional buckling. 

 
6. Conclusions 

The relevant semi-probabilistic method of partial safety 
factor design helps us assess the effect of mechanical 
features of rolled and welded steel sections on their slen-
dernesses and lateral-torsional buckling resistances. 
However, this method prevents us from estimating their 
reliability indices. The analysis data indicated that due to 
welding the design buckling resistance of beams de-
creases 13–14%. When the design values of buckling 
resistance moments of rolled sections exceed their design 
bending moments by 25–30% and their performance may 
be treated as perfectly sufficient, the structural safety of 
equivalent welded sections may be insufficient. 

It is not complicated to predict the survival probabil-
ity of beams subjected to lateral-torsional buckling and at 
the same time to ground their engineering decision by 
probability-based approaches presented in section 4 of 
this paper and its numerical illustrations. Therefore, in-
stead of assessing the design values of buckling resis-
tance and bending moments for rolled and welding 
beams, it is expedient to determine their reliability indi-
ces, compare them with specified values and select an 
objectively relevant structural decision. 

The probability-based prediction of structural safety 
for crucial constructions in a simple and easily percepti-
ble manner is acknowledged as the main task facing mod-
ern building and bridge engineers. Therefore, parallel 
with design code semi-probabilistic methods, the pre-
sented unsophisticated probability-based approaches may 
stimulate engineers to use probabilistic models in their 
design practice.  
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ŠONINIU SUKIMU KLUPDOMŲ VALCUOTŲJŲ IR SUVIRINTŲJŲ SIJŲ KONSTRUKCINĖ SAUGA 

A. Kudzys, O. Lukoševičienė, I. Baltrukėnaitė-Kroškienė 

S a n t r a u k a 

Aptariamas tikslingumas naudoti tikimybinius metodus skaičiuojant šoniniu sukimu klupdomas sijas. Analizuojamos val-
cuotųjų ir suvirintųjų I profiliuočių, kaip ypačiųjų elementų, klupdomųjų atsparių momentų vertės ir jų neapibrėžtys. Mo-
deliuojama nuolatine ir laikinąja vertikalia apkrova klupdomų plieninių profiliuočių ribinė sauga. Nagrinėjama šoniniu 
sukimu klupdomų profiliuočių išlikties tikimybė ir patikimumo indeksas. Pateiktas ir skaitiniu pavyzdžiu iliustruotas pas-
tatų ir inžinerinių statinių valcuotųjų ir suvirintųjų sijų tikimybinės saugos prognozavimas. 

Reikšminiai žodžiai: plieniniai profiliuočiai, klupdymas šoniniu sukimu, ribinė sauga, išlikties tikimybė, suvirintosios  
sijos. 
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