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Carrot is a globally important crop, yet efficient and accurate methods for quantifying
its most important agronomic traits are lacking. To address this problem, we developed
an automated image analysis platform that extracts components of size and shape for
carrot shoots and roots, which are necessary to advance carrot breeding and genetics.
This method reliably measured variation in shoot size and shape, petiole number,
petiole length, and petiole width as evidenced by high correlations with hundreds of
manual measurements. Similarly, root length and biomass were accurately measured
from the images. This platform also quantified shoot and root shapes in terms of
principal components, which do not have traditional, manually measurable equivalents.
We applied the pipeline in a study of a six-parent diallel population and an F2 mapping
population consisting of 316 individuals. We found high levels of repeatability within a
growing environment, with low to moderate repeatability across environments. We also
observed co-localization of quantitative trait loci for shoot and root characteristics on
chromosomes 1, 2, and 7, suggesting these traits are controlled by genetic linkage
and/or pleiotropy. By increasing the number of individuals and phenotypes that can be
reliably quantified, the development of a rapid, automated image analysis pipeline to
measure carrot shoot and root morphology will expand the scope and scale of breeding
and genetic studies.

Keywords: carrot, plant breeding, shoot architecture, storage root shape, image-based phenotyping

INTRODUCTION

Carrot is a globally important crop that originated in Central Asia (Vavilov, 1992; Iorizzo et al.,
2013) with a secondary center of diversity in Asia Minor (Banga, 1957). A hallmark of carrot
domestication is the capacity to develop a thickened storage root (Macko-Podgórni et al., 2017).
Selective breeding has since improved taproot size, shape, and uniformity, resulting in forms that
have served as the primary delimiter of variety classification since the 1600s (Simon et al., 2008).
By comparison, carrot shoots have received much less attention despite the practical limitation of
poor weed competitive ability during the seedling stage, with successful crop establishment often
requiring intensive herbicide application and hand weeding (Bellinder et al., 1997; Bell et al., 2000;
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Swanton et al., 2010; Colquhoun et al., 2017), or the fact that the
petioles must be sufficiently strong for the root to be mechanically
harvested (Rogers and Stevenson, 2006). Currently, a primary
breeding objective is to achieve rapidly growing, sturdy shoots
without compromising the size and shape of the storage root.
Therefore, methods to measure both shoots and roots more
objectively are required (Horgan, 2001). These methods should
be quantitative and objective, replacing traditional subjective
descriptors such as circular, obovate, obtriangular, and narrow
oblong to describe global root shape, or blunt, slightly pointed,
and strongly pointed to describe the distal end (or tip) of
the storage root. Similarly, methods should characterize shoot
architecture more comprehensively than typical measurements of
plant height, width, and biomass.

Image analysis has proven useful in describing several crop
shoot systems while growing in controlled environments, during
the field season, and after harvest (Furbank and Tester, 2011;
Lobet et al., 2013; Fahlgren et al., 2015). Notably, a similar
approach to characterizing carrot shoots must accommodate
some special issues. In contrast to many crops, carrots do not
produce a shoot structure by erecting a typical stem axis with
leaves. Instead, an apical meristem at or beneath the soil produces
leaves attached by petioles to internodes that do not elongate
during the vegetative phase of the crop cycle. The petiole of each
leaf, not the internode, elongates at an angle to lift and spread
the leaf blade. Thus, the cluster of petioles attached to the crown
of the root is a major architectural feature of the shoot structure
that a phenotyping method must capture.

In addition to attributes of individual plant parts, allocation
of resources between the shoot and root of plants plays a central
role in crop fitness and improvement (Lynch, 2007; Poorter
et al., 2012). Thus, a phenotyping platform for a root crop
such as carrot should measure both shoot and root traits. For
instance, what may appear to be a practically helpful change
in shoot architecture could negatively impact light interception
and therefore photosynthesis (Falster and Westoby, 2003), while
altered root structure could influence fibrous root architecture,
which plays a critical role in water and nutrient acquisition
(Lynch, 1995; York et al., 2013). The evidence of pleiotropic
relationships between root and shoot phenotypes in Arabidopsis
(Bouteillé et al., 2012), maize (Ruta et al., 2010; Dignat et al.,
2013), barley (Naz et al., 2014), soybean (Manavalan et al., 2015),
rice (Li et al., 2009), and lentil (Idrissi et al., 2016) is yet another
motivation to build a comprehensive root and shoot phenotyping
platform for carrot.

Any improved methods for measuring shoot and root
phenotypes in carrot would be useful in studies designed to
identify genetic loci that control these traits. To date, the
majority of genetic studies in carrot have focused on storage
root pigmentation, specifically anthocyanin content (Yildiz et al.,
2013; Cavagnaro et al., 2014) and carotenoid accumulation
(Buishand and Gabelman, 1979; Bradeen and Simon, 1998; Just
et al., 2007, 2009; Iorizzo et al., 2016; Ellison et al., 2017). More
recently, two potential domestication loci that influence carrot
morphology were identified on chromosome 2 for early flowering
(Vrn1; Alessandro et al., 2013) and storage root development
(DcAHLc1, Macko-Podgórni et al., 2014, 2017). Additionally,

the observation of a linear relationship between the logarithms
of shoot biomass and storage root biomass in carrot (Hole et al.,
1983; Turner et al., 2018) suggests potential genetic relationships,
but the causal genetic loci, the extent of polygenic control, and the
influence of pleiotropy on shoot and root architecture in carrot
have not yet been investigated.

For the reasons outlined above, carrot breeders are interested
to measure carrot root and shoot morphologies, preferably more
objectively (Horgan, 2001). More precise and objective data on
the traits of interest will increase the ability to leverage genomic
data and the potential for genetic gain in breeding projects.
Current limitations include the inability to measure some traits of
interest and the labor cost to collect hand measurements. These
bottlenecks can be addressed using automated image analysis
(Furbank and Tester, 2011; Fahlgren et al., 2015). Moreover,
increasing precision and sample size through automated image
analysis will support practical breeding efforts by decreasing
experimental error, thereby improving estimates of heritability,
facilitating the detection of causative genetic loci, and expanding
our understanding of quantitative inheritance (Kuijken et al.,
2015).

Here, we describe a relatively simple and low cost method
to acquire 2D images of whole, excavated carrot plants. This
is coupled with a set of custom computer algorithms that
quantify shoot architectural features as well as the size and
shape of storage roots. The entire pipeline is shown to detect
meaningful variation for traits of interest in two commonly used
experimental populations of carrot: a six-parent diallel mating
design (Turner et al., 2018) and an F2 mapping population
exhibiting segregation for root shape and shoot architecture. To
further demonstrate the utility of this phenotyping method for
genetic studies in carrot, we also applied multiple quantitative
trait loci (QTL) mapping (MQM) to hand and image measured
data from the F2 population. This pipeline, coupled with the
availability of a carrot genome (Iorizzo et al., 2016) and the
accessibility of high-throughput genotyping resources, will enable
further insight into the underlying genetics of complex shoot and
root traits in carrot.

MATERIALS AND METHODS

Plant Materials and Experimental Design
Samples included individual plants from two sources: a diallel
mating design with six diverse inbred parents and an F2
population that segregates for plant height, shoot biomass, and
storage root shape. Seeds were sown on 1.5 m plots with
1 m spacing between rows. Carrots were harvested and stored
at 1–2◦C prior to imaging. Field sites included the Desert
Research and Extension Center (Holtville, CA, United States)
and the University of Wisconsin Hancock Agricultural Research
Station (Hancock, WI, United States). Supplementary Figure S1
diagrams the sample size and sources of individuals used for
imaging and QTL mapping, which are described briefly below.

Diallel progenies were grown in a randomized complete block
design (RCBD) with two replicates in WI (2015) and CA (2016)
(see Turner et al., 2018 for additional details). The F2 population,
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L8708 × Z020, was identified from prior field screening as
segregating for plant height, shoot biomass, and root storage
shape and color. This population was derived from a cross
between L8708, an orange inbred line with a medium-long
storage root and compact shoots, and Z020, a yellow, cultivated
landrace from Uzbekistan with a short, blunt-tipped storage root
and broad, prostrate leaves. A single F1 plant was selected from
this cross and selfed to produce the F2 population used for
mapping in this study. F2 plants were grown at the CA location in
2013 (n = 63) and 2016 (n = 450) and at the WI location in 2016
(n = 77). Additional F2 plants of the same cross, but derived from
a different F1 plant, were also grown at CA in 2016 (n = 128) and
were used only for validation of image measurements.

Manual Measurements
A total of 1,041 carrot plants were measured manually and
photographed for the dual purpose of developing an automated
phenotyping method and determining the genetic architecture of
important traits. Hand measurements were recorded for shoot
height (cm), root length (cm), petiole number, shoot biomass (g),
and root biomass (g). Unless otherwise specified, the term ‘root’
will refer to the storage root in this report. Shoot height, measured
as the distance from the crown to the tip of the longest leaf,
was recorded in the field for three plants per plot of each diallel
entry and after harvest for each F2 individual. Root length was
measured as the distance from the crown to the tip of the storage
root, defined here as having a diameter greater than 2 mm. Petiole
number was recorded as the total number of fully expanded,
true leaves. Shoot biomass was sampled by removing all shoot
tissue more than 4 cm above the crown. For root biomass, fresh
weight was recorded for the entire root and for a subsample,
which was dried and extrapolated to estimate dry weight for
the entire root. Fresh weights were recorded immediately for
both shoot and root tissues. For dry shoot and root weights,
samples were dried at 60◦C in a forced-draft oven and values
were recorded after reaching constant mass. Ground truth data
for digital measurements of petiole length and diameter was
recorded for a subset of 100 images using ImageJ (Schneider et al.,
2012).

Image Acquisition and Preprocessing
Digital images were collected in tandem with hand
measurements. The imaging set-up consisted of a 2.5 cm
PVC frame (145 cm long × 100 cm wide × 136 cm tall) with
a white, non-reflective baseboard and a Nikon D3300 DSLR
camera mounted on a centered, overhead boom. The baseboard
was divided into upper and lower halves by a black, horizontal
line with a gap in the center where a carrot was positioned such
that its shoot lay above the line and the root below it (Figure 1A,
left). Arranging a plant on the baseboard involved some manual
manipulation. The time to stage a given plant and acquire an
image ranged from 1 to 2 min. A computer running custom
gphoto2 scripts controlled the camera (Gage et al., 2017). All
images were acquired in ambient light with an 18–55 mm lens
set to 18 mm and positioned 85 cm above the baseboard. Carrot
leaves were deliberately arranged to maximize the distance
between individual leaves.

FIGURE 1 | A high-throughput workflow to measure carrot morphology from
images. (A) A user collects a stack of individual carrot images, which are
uploaded from a local data store to the iRODS data system on CyVerse for
trait extraction. Following image processing, quantitative data is returned to
the user for downstream analyses. (B) Once uploaded to CyVerse, images are
processed in the Discovery Environment using custom algorithms via a
high-throughput computing (HTC) resource. The workflow is split into two
applications: the first extracts traits which are directly measured from the
image (e.g., area, bounding box, etc.), while the second uses a regression
model built from a validation set of 100 ground-truth measurements to predict
petiole number, petiole length, and petiole width.

Input files were raw Nikon Electronic File (NEF) images
(dimensions 6000× 4000 pixels) with uniform positioning of the
carrot crown on the focal plane. As part of the computational
workflow, raw NEF files were automatically converted to
Tagged Image Format (TIF) files with a resolution of 129 dots
per inch. These files served as the inputs for custom trait
extraction algorithms written in the MATLAB 9.0 language (The
MathWorks Inc., 2016). To separate the carrot plant from the
background, the red–green–blue (RGB) images were converted to
grayscale and to the hue-saturation-value (HSV) representation
of color. The S channel was subtracted from the grayscale image
and the Otsu threshold method was applied to produce a binary
image (MASK) in which pixels belonging to the carrot object
were white (1) and background pixels were black (0). Based
on the location of the horizontal black line on the baseboard,
images were automatically split into shoot and root sections for
corresponding morphometric analyses.

Computational Workflow
As described by Miller et al. (2017), a high-throughput
computational workflow was implemented using a community
cyberinfrastructure, which is publicly available as a software
tool through the CyVerse Discovery Environment web interface
(Figure 1). Briefly, image files were uploaded to the integrated
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rule-oriented data store system (iRODS) (Rajasekar et al., 2010)
managed by CyVerse (Merchant et al., 2016) (Figure 1). Each
image was processed as a separate computational job using
parallel computing enabled by the University of Wisconsin’s
Center for High-Throughput Computing. Scheduling, resource
matching, execution of analyses, and return of results were
managed by the HTCondor software (Thain et al., 2005). Results
were then returned to the data store holding the original images
(Figure 1A). This workflow proceeded without any manual
steps, returning the traits described below automatically in
approximately 2 min per image.

Image Analysis
All images were processed through a two-stage workflow
(Figure 1B) and data was returned as both individual CSV files
for each measurement and as an indexable JavaScript Object
Notation (JSON) file containing all measurements. For the shoot,
root, and whole carrot masks, data output included classic image
measurements of a bounding box (used to measure shoot height,
root length, and root width), convex hull, eccentricity, equivalent
diameter, Euler number, perimeter, and solidity. Measurements
of interest included shoot and root biomass profiles, petiole
width, petiole number, and petiole length, which are described
in detail below. File names, measurements, and data structure are
described in Supplementary Table S1.

Distribution of Shoot Biomass
Morphological features of the shoot were quantified from the
portion of the binarized image that lay above the horizontal line
marking the root–shoot junction. Each pixel in the plant mask
has a value of 1 (white) and each pixel outside of the mask is
black (value of 0). The diagram in Figure 2A demonstrates how
an elliptical grid originating at the crown was used to create a

shoot biomass profile (SBP). A running sum of each pixel value
(integral) along each sweep (θ =−π to π) of the grid determined
the amount of digital biomass (or shoot area) at each radius. The
entire distribution of digital biomass (white pixels) is given by:

SBP(r) =
∫ π

−π

MASK(r, θ)dθ

At the lowest values of r, the SBP primarily reflects petiole
material. The contribution of leaf blade material increases as r
increases, then decreases at r values that exceed the plant mask,
as shown in Figure 2A. The result was stored as an n-dimensional
vector, where n is the number of points along the radius, i.e.,
the number of sweeps used to build the distribution. The default
value of n is 1000. To document the fidelity of each analysis, the
algorithm also generates an image of the binarized carrot shoot
with overlays of the half elliptical grid and computed biomass
profile. The SBP determined in this way formed the basis for
subsequent shoot trait extraction methods.

Petiole Characteristics
To estimate petiole width, a Euclidean distance transformation
(EDT) was applied over the entire binary shoot image. The
EDT labels each pixel in the plant mask with a value equal
to the distance to the nearest contour pixel. Next, the image
was skeletonized. The EDT value at each skeleton point was
sampled to produce a distribution of values corresponding to
each pixel in the mask. This distribution was used as the input
for the prediction step using partial least squares (PLS) regression
(Wold, 1982; Wold et al., 1984) against the ground truth values
from ImageJ. The number of components to retain in the
PLS model was assessed using cross-validation with a one-fold
holdout.

FIGURE 2 | Steps to generate biomass profiles for the shoot and root of individual carrot plants. (A) An image mask of a carrot shoot is superimposed with half of an
elliptical grid. Holding each radius (r) of the grid constant, the image mask is integrated along each angular sweep (θ) to produce a shoot biomass profile with defined
regions belonging to the petioles and to the leaf blades. (B) For the carrot root mask, pixels are summed across each row to produce a root biomass profile.
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To predict the number of petioles in an image, the digital
shoot biomass (i.e., the sum of white pixels in the binary shoot
image) was divided by the algorithm-measured petiole width.
This was performed for every image of a shoot. The resulting
ratio of total mass divided by average petiole width value was
the input for PLS regression against the true counts, which were
collected by hand at the time the image was acquired. The number
of components to retain in the PLS model was assessed using
cross-validation with a one-fold holdout. The trained PLS model
accurately predicted the actual petiole counts even in cases of
moderate petiole overlap (see the Section “Results”).

To predict petiole length, the SBP was subjected to principal
components analysis. The principal components extracted from
the SBP and the ground truth values for petiole length, which
were collected from 100 images in ImageJ, were used to
train a two-layer feed forward neural network (Bhandarkar
et al., 1996). The prediction step was also performed with PLS
regression as was done for the petiole number. In this case, the
neural network method provided higher correlations than PLS
regression. Vectors for petiole counts, width, and length were
returned to the data store for subsequent analyses.

Root Shape
A root biomass profile was generated by recording the number
of white pixels along each horizontal sweep, which was returned
as a 1000-dimensional vector (Figure 2B). To focus exclusively
on shape differences, the root biomass profile was normalized by
both length and width prior to principal components analysis,
which was used to examine symmetrical shape variance. The
binarized root image with the root outline in green was also
returned to the data store for error checking.

Correlations and Repeatability
All downstream analyses were performed in R 3.3.2 (R Core
Team, 2016). Pearson’s correlation coefficient (r) and Spearman’s
rho (ρ) were used to compare manual- and image-measured
traits. For manual-measured and digital biomass, correlations
were estimated using a linear log–log relationship, following
established guidelines for allometric models of biomass
partitioning in carrot (Hole et al., 1983) and in seed plants
(Enquist and Niklas, 2002). When possible, algorithm-measured
values were converted from pixels to centimeters using reference
points of known size on the baseboard.

Repeatability, which describes the proportion of trait
variance attributable to differences among rather than within
individuals, was calculated using observations for 336 individual
plants representing 42 crosses from a six-parent diallel mating
design. Variance components were assessed using the linear
mixed-effects model, yijk = µ+ Gi + Ej + Bk(j) + GEij + Rijk
where yijk is the phenotype, Gi is the effect of genotype, Ej is the
effect of environment, Bk(j) is the effect of replication k within
environment j, GEij is the interaction between genotype i and
environment j, and Rijk is the residual error. Repeatability was

estimated on an entry-mean basis as σ2
G

(σ2
G+σ2

G×E/t+σ2
R/rt)

, where t is

the harmonic mean of test environments and r is the harmonic
mean number of replications in each environment. Similarly,

repeatability was calculated for each individual environment

as σ2
G

(σ2
G+σ2

R/r)
. The significance of genotype, environment, and

genotype by environment interaction (GxE) was evaluated using
two-way ANOVA.

DNA Extraction and Quantification
Following image capture, a 1.5 g leaf sample (fresh weight) was
collected from each F2 plant. Total genomic DNA was isolated
from ∼20 mg of lyophilized leaf tissue using the CTAB method
of Murray and Thompson (1980) with modifications by Boiteux
et al. (1999). DNA quality was assessed visually using 1% agarose
gel electrophoresis and double-stranded DNA was quantified
using the Quant-iTTM PicoGreen R© dsDNA assay kit (Life
Technologies, Grand Island, NY, United States). Concentrations
were normalized to 10 ng/µl.

Genotyping-by-Sequencing (GBS)
Genotyping-by-sequencing (GBS) was conducted following the
protocol of Elshire et al. (2011) and as described for carrot
(Arbizu et al., 2016; Iorizzo et al., 2016; Ellison et al., 2017).
Library construction and sequencing were performed by the
University of Wisconsin-Madison Biotechnology Center (WI,
United States) using half-sized reactions. Genomic DNA was
digested with ApeK1, barcoded, and pooled for sequencing with
85–95 pooled samples per Illumina HiSeq 2000 lane. Samples
were sequenced using single end, 100 nt reads and v3 SBS
reagents (Illumina, San Diego, CA, United States).

SNPs were called using the TASSEL-GBS pipeline version
5.2.31 (Bradbury et al., 2007; Glaubitz et al., 2014). Filtering was
conducted in VCFtools version 0.1.14 (Danecek et al., 2011) with
the following parameters: a minimum minor allele frequency of
0.1 and maximum missing data of 10% for both genotype and
marker.

Genetic Map Construction
Linkage maps were constructed using the JoinMap 4.1 software
(Van Ooijen, 2011). Markers and genotypes which deviated from
expected segregation ratios based on a Chi-square test (P< 0.001)
were excluded. All linkage groups were obtained at a LOD
threshold greater than 10. The regression mapping algorithm
was used with Kosambi’s mapping function to calculate the
distance between markers (Kosambi, 1943). Linkage groups were
achieved by aligning GBS sequences to the carrot genome (Iorizzo
et al., 2016) and corresponded to nine chromosomes. After initial
mapping, markers defined as having insufficient linkage were
flipped to the opposite phase and remapped. Two rounds of the
regression mapping algorithm were used to increase the number
of loci incorporated into the map.

QTL Mapping
QTL analysis was conducted in R 3.3.2 (R Core Team, 2016)
using the R/qtl package (Broman and Sen, 2009). Individuals
included 316 F2 plants from the CA2016 environment. Genotype
probabilities were calculated using a step value of one for the
entire linkage map and an assumed genotyping error rate of
0.001. Missing genotype data was replaced with the most probable
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values using the Viterbi algorithm (method = ‘argmax’) in the
‘fill.geno’ function.

Multiple QTL mapping (MQM) (Jansen and Stam, 1994)
was performed in R/qtl using the ‘mqmscan’ function with an
additive model and cofactor significance set to 0.001 (Arends
et al., 2010). Cofactors were set at a fixed marker interval of 5 cM.
Following scripts developed by Moore et al. (2013), genome-wide
LOD significance thresholds were determined for each phenotype
using parallel computing on the Open Science Grid (OSG)
(Pordes et al., 2007; Sfiligoi et al., 2009). Significance thresholds
were based on 10,000 random permutations (Churchill and
Doerge, 1994) with the assumed genotyping error rate set
to 0.001 and α = 0.01. For each QTL, confidence intervals
were determined using the 1.5 LOD drop off flanking the
most significant peak of the QTL. The linkage map was
plotted using R/LinkageMapView (Ouellette et al., 2018). Percent
variance explained (PVE) was calculated using the formula
PVE = 1− 10

−2
n LOD, where n is the number of individuals

(Broman and Sen, 2009). QTL were named using an abbreviation
for the trait (e.g., ht, height) suffixed with the chromosome (1–9),
and finally the serial number of QTLs on the chromosome (e.g.,
ht-2.1, ht-2.2).

RESULTS

Image Analysis
For the 1,041 images submitted through the analysis pipeline,
917 (88%) ran successfully and returned data. Of the 124 images
that failed, two were also missing hand measurements, eight had
root defects such as sprangle (i.e., branching of the root), 60 had
poor lighting or shadowing, eight overlapped with the edge of
the image or the black line separating the shoot and root, and
46 failed for reasons which were not readily identifiable, with
possible explanations including the presence of numerous fibrous
roots, interference of labels, and/or diminutive plant size.

Correlations Between Hand and
Algorithm Measurements
Overall, traits extracted automatically from images had strong
and significant (P < 0.001) correlations with their manually
measured analogs, ranging from r = 0.77 for petiole number to
r = 0.93 for root biomass. Relationships among manual- and
image-measured values for shoot height, shoot biomass, root
length, and root biomass are detailed in Figure 3. Shoot height
and root length each had correlations of r = 0.88 between manual
and image measurements, with larger correlations observed for
shoot biomass and shoot area (r = 0.91) and between root biomass
and root area (r = 0.93). Notably, correlations ranged from low
to moderate when comparing shoot to root attributes, such as
shoot height and root length (r = 0.18), and the correlation
between shoot and root biomass deviated from unity for both
manual measurements (r = 0.72) and for algorithm values
(r = 0.62).

Similarly, Figure 4 presents the strong correlations between
manual measurements and algorithm predictions for petiole

attributes, with manual measurements of petiole length and
width based on ground truth data from images. The highest
correlation was observed for petiole length (n = 100, r = 0.90,
ρ = 0.91), followed by petiole width (n = 100, r = 0.85,
ρ = 0.86), and petiole number (n = 910, r = 0.77, ρ = 0.84).
For petiole number, accuracy was noticeably reduced above 15
leaves, at which point it becomes difficult to predict individual
petioles given some degree of overlap in a 2D image. Similarly,
estimates may also be skewed for plants with dense, compact
shoots. Correlations among all phenotypes, including additional
measurements, are provided in Supplementary Figure S2.

Principal Components Analysis of Shoot
Biomass and Root Shape
For SBPs, principal components analysis identified differences in
the magnitude and location of biomass (Figure 5). The first two
principal components accounted for 80.3 percent of the variation
explained (PVE). Sweeping PC1 detected differences in overall
biomass accumulation (43.7 PVE), which is likely a combination
of increases in both petiole number and total leaf area. Sweeping
PC2 corresponded to decreasing petiole length and overall height
(36.6 PVE), capturing variation for shoot compactness.

To identify symmetrical differences in root shape, root
biomass profiles were rescaled to constant length and width
prior to principal components analysis. Principal components
detected differences in the contour of the roots, with the first
three principal components accounting for 88.6 PVE (Figure 6).
Changes in PC1 corresponded to differences in overall shape
(conical vs. cylindrical; 66.4 PVE). Variation in PC2 was
associated with the shape of the root tip from a tapered shape to a
blunt, rounded shape (16.6 PVE). For PC3, changes corresponded
to diameter in the longitudinal section (5.6 PVE).

Results differed slightly from findings using landmark analysis
by Horgan (2001), in which principal components for root shape
included variation for size (short and thick vs. long and thin;
72.0 PVE), tapering (cylinder vs. cone; 10.8 PVE), thickness (8.2
PVE), bending (3.4 PVE), asymmetry (2.0 PVE), and tapering
at the tip (0.9 PVE). Differences can be explained in part
by the decision to correct for aspect ratio (i.e., the ratio of
width to height), which allowed us to explain more variation
in shape independent of root length and width. Disparities
may also result from differences in measurement technique
and in the range of root shapes represented in each study.
Interestingly, our results are also similar to findings in Japanese
radish (Iwata et al., 1998), which identified principal components
for aspect ratio (73.9 PVE), bluntness at the distal end of
the root (14.2 PVE), and swelling in the middle of the root
(3.9 PVE).

Repeatability and Genotype by
Environment Interaction
Estimates of repeatability were moderate for most traits, ranging
from low (e.g., root length) to high (e.g., shoot height) and
were comparable between manual and image measurements
(Tables 1, 2). For shoot traits, repeatability across environments
was highest for both manual and image-derived measurements of
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FIGURE 3 | Correlation matrix of selected manual and algorithm measurements in carrot (n = 917 individuals). Trait distributions are on the diagonal, with Pearson’s
correlation coefficients (r) and Spearman’s rho (ρ) displayed on the upper triangle and linear relationships on the lower triangle. All correlations were significant at
P < 0.001. Trait key: S_height = shoot height (cm); S_BB = shoot bounding box height (cm); S_biomass = shoot biomass (g, fresh); S_area = digital shoot biomass
(px); R_length = root length (cm); R_BB = root bounding box height (cm); R_biomass = root biomass (g, fresh); R_area = digital root biomass (px). Note that biomass
traits are natural log transformed.

FIGURE 4 | Comparison of manual measurements to algorithm-derived values for petiole number (left, n = 910, R2 = 0.59, P ≤ 0.001), petiole length (middle,
n = 100, R2 = 0.81, P ≤ 0.001), and petiole width (right, n = 100, R2 = 0.72, P ≤ 0.001).

height (0.52 and 0.59, respectively) and petiole number (0.31 and
0.49, respectively), with low values observed for image-derived
measurements of shoot biomass (0.19) (Table 1). In general,

repeatability was relatively higher within rather than across
environments for most traits. For instance, petiole width, which
has a low repeatability across environments, had moderate to
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FIGURE 5 | Principal components analysis for shoot biomass profiles (n = 917 individuals). (A) The first two principal components (PC1 and PC2) detect variation for
the magnitude and location of carrot shoot biomass, respectively. Shoot biomass profiles are shown for the top three and leftmost three images. From left to right,
sweeping PC1 primarily reflected the amount of biomass (43.7% variation explained). From top to bottom, sweeping PC2 reflected where the biomass was
distributed (i.e., petiole length) (36.6% variation explained). (B) Correlation of shoot PC1 with biomass (P ≤ 0.001). (C) Correlation of shoot PC2 with shoot height
(P ≤ 0.001).

FIGURE 6 | Eigenvectors for principal components analysis of carrot root
shape after normalization for aspect ratio (n = 917 individuals). Lines represent
a parameter sweep of the principal component, capturing symmetrical
variation in root shape. (A) Changes in PC1 modified the extent of root
tapering (conical vs. cylindrical) and explained 66.4% of the observed
variation. (B) Changes in PC2 reflected the degree of tapering at the tip of the
root (i.e., tip fill) and explained 16.6% of the observed variation. (C) Changes
in PC3 captured variation for thickening in the longitudinal section of the root
and explained 5.6% of the observed variation.

high repeatability within environments (0.35 in WI2015 and 0.84
in CA2016).

Repeatability for root traits ranged from 0.01 for manual
measurements of root length to 0.32 for manually measured
root biomass, with a value of 0 observed for root PC2
(Table 2). Observations of low repeatability for root length and
shape characteristics may be due to low phenotypic variation
among the inbred parents, which were primarily selected for
divergent shoot characteristics, and/or GxE. As observed for
shoot traits, estimates of repeatability were generally higher
within environments, supporting the importance of GxE for these
phenotypes.

Compared to manual measurements, image derived values
successfully identified the lowest ranking line for shoot height
(L6038), shoot biomass (L6038), and root biomass (B7262)
(Tables 1, 2). Discrepancies between manual and image
measurements, for instance between the highest line for shoot
height based on manual measurements (Nbh2189A × B7262B)
and based on image measurements (Nbh2189A × P6139B), may
be due to differences in how the measurements were obtained
(e.g., measured at the plot level in the field or for individual
plants) and due the prevalence of missing observations in the
WI2015 season.

Significant GxE was observed for all traits except petiole
number (manual and image measurements), petiole length
(image), root biomass (manual), root width (image), shoot PC2,
shoot PC3, root PC1, and several traditional image measurements
(shoot solidity, shoot eccentricity, root eccentricity, root Euler
number, and root solidity) (Supplementary Table S2). Results
for manual measurements of shoot height, shoot biomass, and
root biomass are consistent with previous results reported by
Turner et al. (2018), which provides a detailed diallel analysis and
assessment of GxE for these traits. However, the significance of
GxE was inconsistent between manual and image measurements
of root biomass. Of the traits without significant GxE, all had
a significant genotype effect except shoot eccentricity and root
solidity, suggesting most traits measured in this study are useful
for distinguishing among lines and capturing GxE.

Genotyping and Genetic Linkage Map
Construction
A total of 116,030 SNPs were identified for 467 individuals. After
filtering for missing data and allele frequency, the final data
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TABLE 1 | Estimates of repeatability, trait ranges, and corresponding pedigrees for shoot characteristics in 42 inbreds and hybrids from a six-parent carrot diallel.

Repeatability

Trait WI2015 CA2016 Overall Value Genotype

Manual Shoot height (cm) 0.83 0.93 0.52 Min 32.58 ± 0.85 L6038B

Max 71.5 ± 1.68 Nbh2189A × B7262B

Shoot biomass (g; fresh) 0.81 0.78 0.45 Min 13.38 ± 1.13 L6038B

Max 83.55 ± 32.15 L7262A × Nbh2189B

Shoot biomass (g; dry) 0.88 0.71 0.51 Min 1.26 ± 0.14 L6038B

Max 14.6 ± 3.62 L7550A × P0159B

Petiole number 0.36 0.53 0.31 Min 2.17 ± 0.17 P0159B

Max 26.75 ± 0.35 P6139A

Image Shoot bounding box height (cm) 0.64 0.86 0.59 Min 29.12 ± 0.94 L6038B

Max 54.24 ± 2.25 Nbh2189A × P6139B

Shoot area (cm2) 0.03 0.83 0.19 Min 252.87 ± 24.39 L6038B

Max 768.93 ± 106.65 Nbh2189A × P0159B

Petiole number 0.41 0.46 0.49 Min 7.23 ± 0.4 L6038A

Max 16.04 ± 2.34 7262A × Nbh2189B

Petiole width (cm) 0.35 0.84 0.24 Min 0.32 ± 0.01 Nbh2189A × L6038B

Max 0.49 ± 0.02 Nbh2189A × B7262B

Petiole length (cm) 0.48 0.80 0.53 Min 6.6 ± 4.7 L6038A × P0159B

Max 33.34 ± 1.12 P6139A × Nbh2189B

Shoot PC1a 0.73 0.82 0.35 Min −26497.94 ± 9283.82 P0159A

Max 5639.89 ± 1880.02 L6038A × P6139B

Shoot PC2 a 0 0.84 0.31 Min −19350.49 ± 6184.13 Nbh2189A × P0159B

Max 15611.1 ± 1024.33 P0159B

aMeasurements of principal components are relative to the full data used in this study and values are presented as raw component scores. Measurements include values
measured manually and from images. Values are mean ± standard error.

TABLE 2 | Estimates of repeatability, trait ranges, and corresponding pedigrees for root characteristics in 42 inbreds and hybrids from a six-parent carrot diallel.

Repeatability

Trait WI2015 CA2016 Overall Value Genotype

Manual Root length (cm) 0.42 0.39 0.01 Min 20.58 ± 1.25 B7262B

Max 33.79 ± 1.43 L7550A × L6038B

Root biomass (g; fresh) 0.45 0.48 0.26 Min 25.37 ± 3.9 B7262B

Max 266.51 ± 63.22 L7550A × P0159B

Root biomass (g; dry) 0.48 0.55 0.32 Min 3.23 ± 0.67 B7262B

Max 34.54 ± 8.31 L7550A × P0159B

Image Root bounding box height (cm) 0.62 0.41 0.05 Min 10.1 ± 7.32 B7262A × L7550B

Max 32.15 ± 1.14 L7550B

Root bounding box width (cm) 0.38 0.26 0.12 Min 3.29 ± 0.28 P6139B

Max 8.97 ± 2.35 P0159A × Nbh2189B

Root area (cm2) 0.55 0.33 0.2 Min 21.12 ± 3.10 B7262B

Max 85.88 ± 16.06 P0159A × Nbh2189B

Root PC1a 0.21 0.36 0.21 Min −3.74 ± 0.66 B7262B

Max 3.37 ± 6.58 B7262A × L7550B

Root PC2a 0 0.1 0 Min −0.68 ± 0.32 Nbh2189A × P6139B

Max 2.32 ± 0.38 B7262A × L7550B

Root PC3a 0 0.56 0.12 Min −1.03 ± 0.06 P0159A × P0159B

Max 0.95 ± 0.2 L7550B

aMeasurements of principal components are relative to the full data used in this study and values are presented as raw component scores. Measurements include values
measured manually and from images. Values are mean ± standard error.
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FIGURE 7 | LOD curves for manually measured traits (top), image measured
traits which were analogous to manual measurements (middle), and traits that
were only measured from images (bottom). Arrows designate QTL that were
identified by image measurements but not by manual measurements.
Horizontal lines indicate the significant LOD thresholds for P < 0.05 (solid) and
P < 0.01 (dashed).

set contained 15,659 high quality SNPs. The linkage map was
constructed using 461 individuals and included a total of 640 high
quality SNP markers across nine chromosomes after removal
of markers that were redundant or had significant segregation
distortion, with the largest gaps observed on chromosomes 3, 4,
and 6 (Supplementary Figure S3). The total distance covered
was 719 cM with an average marker spacing of 1.1 cM and a
maximum marker spacing of 17.7 cM (Supplementary Table S3).
The density of this map is consistent with expectations for an
F2 population of this size and with other recent QTL studies for
maize (Li et al., 2017), Brachypodium (Jiang et al., 2017), barley
(Huang et al., 2018), and carrot (Ellison et al., 2017).

QTL for Shoot and Root Traits
Overall, seven significant QTL on chromosomes 1, 2, 3, 4,
5, and 7 were identified for manual measurements of carrot

shoot and root traits. Of these, six QTL were also detected
for traits extracted computationally from images (Figure 7).
Additionally, the use of image based measurements resulted in
the identification of two additional QTL for root PC1 and petiole
width on chromosomes 6 and 8, respectively. Significant QTL,
including the most significant marker and corresponding 1.5
LOD interval, are described in detail for shoot traits in Table 3
and for root traits in Table 4. In general, the total PVE was similar
for manually measured traits compared to their image-based
counterparts, the notable exception being root length, for which
the manual measurement only had 19 PVE compared to 41 PVE
for the image measurement.

We observed co-localization of QTL for shoot and root
traits on the distal ends of chromosomes 2 and 7, which was
consistent for both manual and image-based measurements.
Significant QTL on chromosome 2 were identified for manual
measurements of shoot height, shoot biomass, petiole number,
and root biomass, and for image-based measurements of shoot
height, shoot area, petiole number, petiole width, petiole length,
shoot PC2 (correlated with height), root length, root area, and
root PC2 (corresponding to the degree of tip fill). Similarly,
significant QTL on chromosome 7 included manually measured
shoot height, shoot biomass, and root biomass, and image
measured shoot height, shoot biomass, petiole width, petiole
length, root PC2 (tip fill), and root PC3 (associated with root
thickening). In general, the QTL on chromosomes 2 and 7 also
accounted for most of the PVE. For shoot traits, this ranged from
8% for petiole number to 53% for shoot height (Table 3) and, for
root traits, from 4% for root PC3 (root thickening) to 38% for
root PC2 (tip fill) (Table 4). Additional significant QTL explained
a relatively small proportion of the variance and are described
below.

Shoot Traits
For manual measurements of shoot height, a third QTL was
identified on chromosome 5 (5 PVE), which was not captured
by the corresponding image measurement. Additional QTL for
shoot biomass included regions on chromosomes 3 (6 PVE) and
4 (5 PVE), of which only the region on chromosome 3 was
found for the image-extracted trait (4 PVE). This same region
on chromosome 3 was also identified for petiole length (3 PVE)
and for shoot PC2 (5 PVE). For the image measurement of
petiole width, two QTL, which were not identified for any hand
measurements, were found on chromosomes 4 (5 PVE) and 8
(6 PVE). Despite strong correlation of shoot PC1 with shoot
biomass, no QTL were identified for shoot PC1.

Root Traits
In contrast to the region on chromosome 7 described above,
a QTL on the proximal end of chromosome 7 was identified
for manually measured root length (4 PVE), but not for the
corresponding image measurement. Two other QTL for root
length were identified on chromosomes 1 and 3 for both manual
(9 PVE and 6 PVE, respectively) and image (14 PVE and 7 PVE)
measurements. The same QTL on chromosome 3, which was
also identified for shoot biomass and petiole length, was detected
for root PC2. For image-based measurements of root length and
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TABLE 3 | Significant QTL (α = 0.05), LOD values, percent variance explained (PVE), and 1.5 LOD intervals for manual and image-based measurements of shoot traits in
carrot.

(Trait)
chromosome

QTL name Closest marker LOD value PVE Left marker Right marker 1.5 LOD
interval (Mb)

Manual (Height)

2 ht-2.1 S2_43085743 32.49 37.72 S2_42846844 S2_43581817 0.73

5 ht-5.1 S5_41414532 3.33 4.73 S5_6457993 S5_41951182 35.49

7 ht-7.1 S7_28224489 10.84 14.61 S7_15056433 S7_29551603 14.50

(Shoot biomass)

2 sb-2.1 S2_43085743 16.42 21.28 S2_42846844 S2_43581949 0.74

3 sb-3.1 S3_38999634 4.16 5.89 S3_23294327 S3_48725969 25.43

4 sb-4.1 S4_5516472 3.88 5.49 S4_2983852 S4_17556866 14.57

7 sb-7.1 S7_29473453 11.12 14.97 S7_20379319 S7_34717088 14.34

(Petiole number)

2 ln-2.1 S2_43085743 6.57 9.13 S2_42024242 S2_43581949 1.56

Image (Height)

2 ht-2.2 S2_43085743 28.67 34.15 S2_42846844 S2_43581998 0.74

7 ht-7.2 S7_20387007 8.43 11.56 S7_11718785 S7_31550284 19.83

(Shoot area)

2 sa-2.1 S2_43085743 10.73 14.48 S2_42846844 S2_43581949 0.74

3 sa-3.1 S3_38999634 3.02 4.30 S3_23294327 S3_48725969 25.43

7 sa-7.1 S7_31972865 5.28 7.41 S7_19018242 S7_34717088 15.70

(Petiole number)

2 ln-2.2 S2_43581949 5.81 8.12 S2_42342776 S2_43581949 1.24

(Petiole width)

1 pw-1.1 S1_33448879 6.69 9.29 S1_29083233 S1_49929471 20.85

2 pw-2.1 S2_43085743 2.90 4.13 S2_42342776 S2_43581949 1.24

4 pw-4.1 S4_5516472 3.76 5.33 S4_2983852 S4_17556866 14.57

7 pw-7.1 S7_33430504 8.94 12.22 S7_20379319 S7_34717088 14.34

8 pw-8.1 S8_2442141 4.05 5.73 S8_1370824 S8_5678858 4.31

(Petiole length)

2 pl-2.1 S2_43085743 18.16 23.26 S2_42846844 S2_43581949 0.74

3 pl-3.1 S3_23294327 2.15 3.09 S3_23294327 S3_49446360 26.15

7 pl-7.1 S7_28187058 7.25 10.02 S7_20387007 S7_31550284 11.16

(Shoot PC2)

2 spc2-2.1 S2_43085743 21.10 26.47 S2_42846844 S2_43581949 0.74

3 spc2-3.1 S3_48507169 3.27 4.66 S3_23294327 S3_50144206 26.85

biomass, another QTL was also identified on chromosome 4 (10
PVE and 4 PVE, respectively).

DISCUSSION

Plant phenomics has the potential to accelerate plant
improvement through increased scope, throughput, and
accuracy (Furbank and Tester, 2011; Bucksch et al., 2014;
Fahlgren et al., 2015). These advances are especially beneficial
in specialty crop breeding, as phenotypes are often complex
and population sizes are limited by the time required to
obtain measurements. This advantage is further realized in
biennial crops such as carrot, where breeding is accelerated to
annual cycle and phenotyping occurs in the narrow window
between the harvest of vegetative roots and planting of
vernalized roots for seed production (Simon, 2000; Simon et al.,
2008).

To facilitate crop improvement efforts in carrot, we present
a pipeline to assess whole-plant morphology, which to date has
lacked protocols for standardized, quantitative measurements.
This method will enable more in-depth genetic and phenotypic
studies in carrot by providing: (1) robust, reliable and repeatable
measurements of carrot morphology and (2) augmented
throughput, which improves the statistical power of subsequent
analyses by increasing sample size. Additionally, the phenotypes
measured by this pipeline encompass both theoretical and
applied importance for improvement of crop quality and yield,
providing a means to accelerate genetic gain for primary breeding
targets in carrot.

Image Analysis as a Promising Tool to
Measure Carrot Phenotypes
The efficacy of image analysis to estimate carrot shoot and root
morphology was validated on 917 field grown carrot plants from
multiple locations and commonly used experimental designs.
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TABLE 4 | Significant QTL (α = 0.05), LOD values, percent variance explained (PVE), and 1.5 LOD intervals for manual and image-based measurements of root traits in
carrot.

(Trait)
chromosome

QTL name Closest marker LOD value PVE Left marker Right marker 1.5 LOD
interval (Mb)

Hand (Length)

1 rl-1.1 S1_38352734 6.47 9.00 S1_25151874 S1_49277871 24.13

3 rl-3.1 S3_37060244 4.39 6.20 S3_23294327 S3_43735481 20.44

7 rl-7.1 S7_833073 3.15 4.49 S7_442640 S7_3313327 2.87

(Biomass)

2 rb-2.1 S2_43085743 4.42 6.24 S2_42024242 S2_43581949 1.56

7 rb-7.1 S7_28224489 3.99 5.65 S7_11718785 S7_34717122 23.00

Image (Length)

1 rl-1.2 S1_38352734 10.44 14.11 S1_33448879 S1_47240093 13.79

2 rl-2.1 S2_43085743 7.21 9.98 S2_42024242 S2_43581949 1.56

3 rl-3.2 S3_23294327 5.23 7.33 S3_23294327 S3_36496196 13.20

4 rl-4.1 S4_5516472 7.43 10.26 S4_2983852 S4_8969556 5.99

(Area)

2 ra-2.1 S2_43085743 3.80 5.38 S2_42024242 S2_43581949 1.56

4 ra-4.1 S4_5516472 2.84 4.06 S4_2983852 S4_8969556 5.99

(PC2)

2 rpc2-2.1 S2_43085743 21.10 26.47 S2_42846844 S2_43581949 0.74

3 rpc2-3.1 S3_48507169 3.27 4.66 S3_23294327 S3_50144206 26.85

7 rpc2-7.1 S7_28187058 8.78 12.01 S7_19018242 S7_32082761 13.06

(PC3)

7 rpc3-7.1 S7_15056433 2.80 4.00 S7_442640 S7_35971570 35.53

We anticipate that this analysis will be equally suitable for
plants grown in the greenhouse or in other environments.
In addition to providing measurements not attainable by
hand, throughput for image analysis took approximately one
third of the time needed for collection of the equivalent
hand measurements. This time difference can be explained
by the ability to capture multiple traits of interest from an
image, which requires one step for data collection (image
acquisition), compared to multiple manual measurements for
individual traits, which can require several steps (e.g., biomass,
which requires sampling, weighing, drying, and reweighing).
Additionally, rapid processing of samples may also reduce
potential errors during data entry and variation due to differences
in the duration of storage prior to measurements (Fiorani
and Schurr, 2013; Lobet et al., 2013; Bucksch et al., 2014).
The throughput of this method could be further improved
by decreasing the time and precision required to stage plants,
barcoding individual plants, and including a marker of known
size during imaging to automatically convert pixels to metric
units.

The high correlation between image-extracted traits and
hand-measured analogs (r > 0.7) provides evidence that this is a
reliable method to capture phenotypic diversity and quantitative
trait variation for important breeding targets in carrot. By
enabling precise measurements for larger population sizes, the
power of subsequent genetic investigations will be improved
to enable more precise estimates of heritability and ultimately
to better inform breeding strategies to increase genetic gain
(Fiorani and Schurr, 2013; Kuijken et al., 2015). Additionally,
a distinct advantage of this approach is the ability to measure

shape parameters, which do not have an objective or practical
hand measurement equivalent. Previous work on carrot shoot
morphology includes image analysis of leaflet shape (Horgan
et al., 2001) and an assessment of phenotypic and genotypic
diversity for shoot height in commercially available carrot
germplasm (Luby et al., 2016). However, this is the first
method to implement an automated, quantitative assessment of
carrot shoot architecture. The capability to capture variation
for shoot morphology will benefit future investigations into
the improvement of crop establishment and weed competitive
ability in carrot, which are increasingly important for successful
crop production (Colquhoun et al., 2017; Turner et al.,
2018).

Carrot root shape has been extensively studied in the
context of variety classification and crop quality. Previous
work to quantify root shape includes the use of power
law curves (Bleasdale and Thompson, 1963), machine vision
(Howarth et al., 1992), landmark analysis (Horgan, 2001;
Horgan et al., 2001), X-ray computed tomography (Rosenfeld
et al., 2002), and quality assessment using geometric criteria
(Koszela et al., 2013). The scope of these approaches was
restricted to assessing varietal and quality differences in root
shape, independent of haulm characteristics, and was limited to
commercially available varieties. We build upon these methods
by characterizing root shape without landmarks (Horgan et al.,
2001), expanding the methodology to capture shoot architecture,
and demonstrating the detection of subtle but biologically
important variation in diverse genetic resource populations.
Deviations from previous reports of principal components for
carrot root shape can be partly explained by the decision
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to normalize for root length and width (i.e., aspect ratio),
a step which can be omitted if aspect ratio is a trait of
interest. It is also worth noting that the scope of our approach
could be improved with the inclusion of additional root
classes, such as Paris Market and Kuroda types (Simon et al.,
2008).

Identification of QTL for Shoot and Root
Characteristics
Vegetative plant organs often evolve as phenotypic modules,
and consequently tend to be highly correlated and share
evolutionary tracts (Bouchet et al., 2017). We observed strong
correlations among shoot and root biomass and petiole number,
consistent with recently reported results for developmental
phenotypes in maize (Bouchet et al., 2017) and with the
general observation that plant organs tend to evolve as
phenotypic modules (Murren, 2002; Pigliucci and Preston,
2004). Despite the strong correlation between shoot and root
biomass, the deviation of this linear relationship from unity
could also suggest that carrot growth may depart from a
steady state, with biomass allocation in the shoot not directly
proportional to biomass in the storage root (Poorter et al.,
2012). Alternatively, this disparity could also result from an
inability to account for fibrous root mass, which is lost during
harvest.

For the F2 population in this study, a total of seven unique
QTL were detected for carrot shoot and root morphology, which
are traits of primary interest to improve carrot quality and yield.
Of these, three QTL had large effects and accounted for over 10
PVE for a given trait, while the remainder had small to moderate
effects. QTL for image measurements tended to overlap with
QTL for manual measurements, providing confirmation that this
pipeline can be used reliably for genetic studies of shoot and root
morphology in carrot. Notably, QTL for several traits in this study
had various amounts of overlap with previously identified QTL
for root swelling on chromosomes 2, 3, 4, and 5 (Macko-Podgórni
et al., 2017).

We report evidence for the co-localization of QTL for shoot
traits (height, petiole number, biomass, petiole width, and petiole
length) and root characteristics (length, biomass, and tip fill)
on the distal end for the long arm of chromosome 2. This
suggests a pleiotropic basis and/or tight genetic linkage for
the morphological integration of shoot and root architecture
in carrot. This finding is also consistent with the recent
identification of a QTL and selective sweep on a nearby region of
chromosome 2, which included the identification of a candidate
domestication gene in carrot (DcAHLc1) (Macko-Podgórni et al.,
2017). DcAHLc1 is a regulatory gene in the AT-HOOK MOTIF
CONTAINING NUCLEAR LOCALIZED (AHL) family, which
is highly conserved across monocot and dicot species and
influences plant growth and development (Zhao et al., 2013).
Members of the AHL gene family have been linked to shoot
and root characteristics in other species, including hypocotyl
elongation (Street et al., 2008; Xiao et al., 2009), increased plant
biomass (Jiang et al., 2004), root growth (Zhou et al., 2013),
and phytohormone regulation (Rashotte et al., 2003; Matsushita
et al., 2007; Vom Endt et al., 2007). Interestingly, in this study

we also find a member of the AHL gene family within the
confidence interval for the QTL identified on chromosome 2
(Supplementary Table S4). While our findings support evidence
that the region on chromosome 2 is important for carrot growth
and development, they differ from the findings of Macko-
Podgórni et al. (2017) in two important ways: (1) we did not
observe overlap between the support intervals of significant QTL
on chromosome 2 in this study and the DcAHLc1 gene and (2) we
did not find any significant QTL for image-based measurements
of root width, although we did observe a significant QTL for
root PC2, which captures variation in the amount of tapering
(or swelling) at the tip of the root. A likely explanation for not
finding the DcAHLc1 gene to contribute to root shape in our
study, which used a cross between domesticated breeding stocks,
is that Macko-Podgórni et al. (2017) used a wild × domesticated
cross (D. carota subsp. commutatus × 2874B), in which the
DcAHLc1 gene is segregating. Together, these findings suggest
the possibility of additional candidate gene(s) on chromosome
2 and tight linkage among genes influencing carrot shoot and
root development, which are inherited together as a suite of
traits.

By providing a foundation for future genetic mapping
and genome-wide association studies, the significant QTL
detected in this study will contribute to the development of
marker-assisted selection and fine mapping efforts for carrot
shoot and root morphology, which will require development
of populations with higher marker density and mapping
resolution. Further research will be necessary to validate the
prevalence and importance these regions in different genetic
backgrounds, over the course of developmental stages, and across
environments.

CONCLUSION AND FUTURE
DIRECTIONS

The development of an automated image analysis pipeline for
carrot shoot and root morphology provides new opportunities
for crop improvement and to elucidate the underlying genetics
for quantitative traits. The design for image collection is simple,
low-cost, and could be easily adapted for use in other crops
with similar morphology. Ideally, this methodology could be
expanded to other important crops, e.g., cassava, beet, radish,
and other members of the Apiaceae family, such as celery,
parsnip, parsley, and cilantro, which have widespread culinary
uses but lack substantial research investment. Images are also
an ideal medium to facilitate collaborations, as they transfer
multidimensional information for which analysis is standardized
and automated (Lobet et al., 2013). As such, the ability to
analyze and share carrot images through public repositories is an
opportunity to increase the scope, archival, and reproducibility of
carrot research.

Data from this method can be used in numerous applications
for carrot breeding and research. Morphological variation
can be rapidly assessed and cataloged for diverse genetic
backgrounds, providing a resource to better inform experimental
design and population selection for more in-depth analysis.
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This pipeline can be used in tandem with physiological studies,
for instance to evaluate the effects of gibberellic acid and
cytokinin, which are known to influence carrot shoot and root
morphology (Wang et al., 2015a,b). Phenotypic data can also
be integrated into predictive models for carrot growth and
development by imaging plants at various developmental stages,
permitting further investigation of allometric relationships
between the shoot and root. In future studies, it will also be
important to consider the relationship between fibrous root
architecture, which provides a source of photosynthates, water,
and soil-borne nutrients, and the storage root, which serves as
a sink for these metabolites that are essential for vegetative and
reproductive growth.

This approach is specifically tailored for a carrot breeding
program, but could also complement existing image analysis
software and methods for detailed analyses. For example,
research on the genetic basis of lateral branching in carrot roots
is underway using RootNav (Pound et al., 2013) and SmartRoot
(Lobet et al., 2011), which are well established methodologies
to quantify root system architecture. Potential improvements
and expansions of our method include incorporation of uniform
lighting and a marker of known size, as well as extension of carrot
phenotyping to field-scale measurements over the course of the
growing season.

The method presented in this study provides an initial
step in automated phenotyping for carrot. By enabling rapid,
precise measurements of important agronomic characteristics
in carrot, this platform will allow carrot breeders to measure
greater population sizes, increasing throughput and supporting
downstream analyses.
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