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Abstract

The Strain Energy Density (SED) fatigue criterion is based on a material control radius. The value of this

length is therefore required for an accurate assessment of the fatigue strength of any, especially severely, notched

components. The singularity-based control radius is initially obtained by considering the hypothetical perfectly

sharp V-notched specimen. The effect of the notch radius on the inverse search is then investigated with numerical

simulations, and a new analytical procedure is introduced for the determination of the (actual) control radius. This

procedure is applied to the experimental data of three metal alloys with different load ratios and manufacturing

conditions.
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Nomenclature

SED Strain Energy Density

NSIF Notch Stress Intensity Factor

FE Finite Element (method)

SLM Selective Laser Melting (additive manufacturing)

TCD Theory of Critical Distances

LM Line Method according to the TCD

2α V-notch opening angle

D Specimen bar diameter

A Notch depth

R Notch radius

R′ Dimensionless notch radius

r0 Circular control area centre position

R0 Mode I material-dependent control radius based on the singularity assumption

R′0 Dimensionless mode I control radius based on the singularity assumption

R1 Mode I material-dependent control radius

R′1 Dimensionless mode I control radius

E Young’s modulus

ν Poisson’s ratio

s Williams’ power law singularity exponent

W 1 Mode I SED

∆W 1 SED associated with the fatigue full range

∆W 1,plain SED associated with the fatigue full range of a mono-axial load

W 1,maxref SED estimated with the maximum explored FE mesh refinement

e Order of magnitude of the FE model element size

δ Percentage relative deviation of the FE analysis

KN NSIF of the V-notched specimen

KN,UU NSIF for unitary nominal stress and unitary half diameter

∆Kth Threshold stress intensity factor full range

∆σfl Plain specimen fatigue limit full range

σN Notched specimen (net) nominal stress
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∆σN,fl Notched specimen nominal stress, fatigue limit full range

σa Plain specimen stress amplitude

σN,a Notched specimen (net) nominal stress amplitude

R Fatigue load ratio

Kf Fatigue stress concentration factor of the V-notched specimen

L Critical distance

Lth Threshold-based critical distance

R1,th Threshold-based control radius

R′1,InvFun Inverse search evaluation of the dimensionless control radius

R′1,FE FE evaluation of the dimensionless control radius

ε Percentage relative difference between the FE and the inverse search control radii

R′0,min Minimum value allowed for R′0

Kf,max Maximum fatigue stress concentration factor

Kt Stress concentration factor of the V-notched specimen

S Sensitivity of the control radius inverse search

ai,bi j,ck Procedure coefficient arrays for the control radius inverse search

di,ei j Procedure coefficient arrays for the direct problem

1. Introduction

The concepts of “elementary volume” and “structural support length” were used for the first time by Neuber

in his pioneering and illuminating works [1, 2]. The underlying idea is that the notch stress averaged over a short

distance that is normal to the notch edge is the fatigue strength-effective parameter in the presence of sharp or

point notches. Later on, Sheppard [3] proposed the idea that a quantity averaged over a finite size volume controls

the fatigue behaviour of sharp notches by means of a single parameter, the average value of the circumferential

σθθ stress. Since the first work by Beltrami [4], the Strain Energy Density (SED) has been employed to assess

the static and fatigue behaviour of unnotched and notched components following many different SED-based

approaches. Dealing with cracked components, and then notched components, the strain energy density factor

S was defined by Sih [5] as the product of the strain energy density by a critical distance from the point of

singularity. The failure was thought to be controlled by a critical value Sc, while the direction of the crack

propagation was determined by imposing a minimum condition on S. Gillemot [6] calculated the deformation

energy required for crack initiation in a unit volume of material, and extensively investigated the absorbed specific
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fracture energy and its relationship with the critical value of J-integral and the critical value of S.

More recently, Lazzarin and Zambardi [7] proposed a strain energy density criterion stating that brittle failure

occurs when the mean value of the strain energy density over a control volume (which becomes an area in two

dimensional cases) is equal to a critical energy Wc. The SED approach as originally proposed, is based on the

accurate definition of the control volume which is considered a material-dependent parameter. The radius of the

control volume is a function of the ultimate tensile strength, the fracture toughness, and Poisson’s ratio in the

case of static loadings. Under cyclic loading, the critical radius similarly depends on the unnotched specimen

fatigue limit, the threshold stress intensity factor range, and Poisson’s ratio. This method was first formalized

and applied to perfectly sharp (zero radius) V-notches, and a successful example was the application to welded

joints proposed by Livieri and Lazzarin [8]. Welded specimens and structures with the weld bead geometry

simplified just as the nominal 135◦ V-notch were also modelled by Fischer et al. [9, 10], again assuming a zero

radius. In fact, this geometry feature is unreliable, and difficult to measure for weldments. Under this perfectly

sharp (worst-case condition) hypothesis, the FE-based peak stress method can be efficiently applied and linked

to the SED evaluation [11, 12]. The SED approach was then extended to blunt notches, and a thorough analytical

approach that takes into account the effect of the notch radius was provided by Lazzarin and Berto [13]. A

complete review of the volume-based SED approach including a final synthesis of more than 1900 experimental

data from static and fatigue tests is reported in a review by Berto and Lazzarin [14]. Very different materials are

considered with a control radius ranging from 0.4 µm to 500 µm.

The brittle fracture with U and V-notched specimens has been investigated by applying the SED criterion under

mixed loading (in-plane) with different angles and local notch radius, showing the versatility of the method

[15, 16, 17, 18, 19]. Multiaxial fatigue, including the mode III notch stress intensity factor, was also proposed

and experimentally examined by Berto et al. [20, 21, 22]. One significant result was that the control radius

was found to be dependent on the loading type under out of plane loading, thus two different critical radii were

introduced, usually referred to as R1 and R3, for modes I and III respectively. However, Vantadori et al. [23]

proposed the evaluation of a strain-based multiaxial LCF criterion at a unique verification point whose position

is dependent on both R1 and R3.

From the above discussion, it is clear that a robust notch fatigue assessment necessitates an accurate determination

of thematerial’s characteristic control radius. Concerning themode I type of loading, which is the only focus of the

present paper, R1 can be determined by imposing the SED equivalence of two different geometric configurations

of fatigue loaded components [24, 25, 26]. Accordingly, in the original formulation of this approach, which

is suitable for high-cycle fatigue strength prediction, it is assumed that a smooth sample under fatigue limit
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∆σfl loading and a cracked member under near-threshold ∆Kth condition show the same SED averaged over

R1. When both fatigue characteristics ∆σfl and ∆Kth are known, R1 can be easily determined by imposing the

aforementioned energy equivalence. However, this method has various shortcomings, already discussed in [27]

and here briefly summarized: (i) though well documented in the ASTM standard [28], the determination of ∆Kth

is experimentally challenging, especially with negative load ratios; (ii) this approach cannot be extended to the

medium cycle fatigue regime as it is not clear which fracture mechanics parameter is representative of the crack

growth resistance in the finite life regime.

To overcome these difficulties, the cracked specimen can be replaced with a notched specimen configuration,

whereby the notch fatigue strength ∆σN,fl can be determined more easily and in a wide range of fatigue lives.

Berto et al. [21, 29] and Radaj [11] determined R1 using closed-form equations derived from the concept of the

Notch Stress Intensity Factor (NSIF), i.e. based on the assumption of a perfectly sharp notch and stress field

dominated by the singular term only. This approach needs to be modified when the non-singular stress terms

significantly contribute to SED. This is especially true for a relatively large notch radius, for which the unavoidable

deviation from the ideal sharp geometry perturbs the singular stress term, especially when R1 is smaller than

the local notch radius. The scenario is further complicated by the absence of a standardized procedure for R1

determination, thus it is not clear which notched sample configuration is best for this purpose. Our research

group recently tackled similar problem [27] by using an inverse search procedure for a robust determination of

the critical distance length L necessary for fatigue calculations within the framework of the Theory of Critical

Distances [30, 31, 32, 33]. This procedure is a development of the approach followed in [34, 35, 36, 37, 38, 39],

as it is based on an optimized geometry of a rounded V-notched cylindrical specimen, wherein the notch depth is

devised to maximize the intensity of the singular stress term. In this way, the resulting steep stress gradient at the

notch tip makes the inverse search robust against the experimental uncertainty affecting the input of the method,

i.e. the fatigue notch factor Kf. In our previous work [40], the role of the notch radius was extensively analysed,

concluding that accurate L estimations, which are consistent with those derived from the crack threshold, are

obtained if the notch is sharp enough, namely when the notch radius is in the order of 0.2 mm or less. However,

an arbitrary small radius cannot be obtained, or at least is difficult to control. Therefore, the easiest and most

reliable manufacturing method is to replicate the (turning) tool nose radius, simply by imposing a segmented

trajectory to the tool and obtaining the minimum radius. More recently, we used the same optimal notch geometry

in [41] to combine the TCD with several multiaxial fatigue criteria, and again the related critical distances were

determined.

The present paper extends our methodology to a robust inverse search determination of the control radius R1.
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The procedure relies on a first approximation estimate of R1 based on the NSIF singular stress field. This value

is then corrected with an analytical procedure based on the interpolation of accurate numerical finite element

simulations. In order to avoid too large a set of required coefficients, only the two main notch angles 60◦ and

90◦ are considered, combined with three Poisson’s ratio values typical of metallic materials, i.e. 0.27, 0.3 and

0.33. MATLAB® functions for inverse and direct estimation of R1 and Kf, respectively, are provided in the online

version of the present article. The user of this method is thus not required to carry out FE calculations of the

SED of the notched sample.

The analysis was performed on a dimensionless geometry, allowing an inverse search of a specimen of any size,

and including a large range of ratios between the notch radius and the notch depth. The proposed procedure

is applied to determine the control radius R1 of two common structural materials, i.e. 42CrMo4 quenched and

tempered (Q+T) steel and 7075-T6 aluminium alloy, and an additively manufactured Ti-6Al-4V alloy based on

the fatigue experimentation carried out in two of our previous works [40] and [42], respectively. Finally, the

method is validated by calculating the fatigue strength of a sample batch with a blunt notch and extended to the

finite life regime.

2. Theoretical background

2.1. Notch and SED geometrical parameters

For the inverse search of the SED control radius, the V-notched cylindrical geometry is considered the most

effective for the specimen, since it can be easily machined by turning, also with a small notch radius, and is

not affected by any edge effects. The load applied to the specimen is axial, to induce a mode I loading on the

notch, and the nominal stress parameter is defined as the uniform stress on the notch net area σN, Fig. 1 (a).

A non-symmetrical notch, with the bisector not perpendicularly inclined to the specimen axis, would generate

an additional mode II loading, thus potentially involving another material radius aimed at this load type [43].

Similarly, the torsion load would induce mode III and then R3 would also be involved. However, in order to have

a robust determination of R1, only a pure mode I loading is pursued in this work.

The geometrical parameters are defined in Fig. 1 (a). Besides the notch opening angle 2α and the external

diameter D, the specimen geometry is fully defined by the notch depth A and the notch radius R. The control

radius R1 is centred at a distance r0 from the notch tip moving along the notch bisector, and r0 is a function of

both the notch radius R and the notch opening angle 2α1. The centre position of the control radius is r0 = 0.4R

for 2α = 60◦ and r0 = 0.333R for 2α = 90◦ which are the only two angles considered in this study.

1In the present paper the notch opening angle is 2α , in agreement with the SED literature, while in our previous paper Santus et al.
[27], the notch opening angle is α .
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Figure 1: (a) V-notched specimen dimensions and material dependent size of the circular area where the strain energy is averaged. (b)
Initial assumption based on singular stress distribution.

Without losing general validity of the results, the geometrical parameters are made non-dimensional by normal-

ization with respect to the external radius D/2. The following analyses are limited to the special value of the

non-dimensional notch depth A/(D/2) = 0.3, which was found in [27] to maximize the intensity of the singular

stress term ahead of the notch tip. Once this size has been fixed along with the notch opening angle 2α (either

60◦ or 90◦), the only remaining free geometrical parameter is the non-dimensional notch radius R′ = R/(D/2).

In a similar fashion, we refer to the dimensionless material dependent control radius R′1 = R1/(D/2).

2.2. Analytical determination of the singularity-based control radius

Assuming a linear elastic material model and a perfectly sharp (zero radius) notch shown in Fig. 1 (b), the

strain energy density SED is:

W 1 =
I1

4E(1− s)(π−α)

(√
2πKN

R1
s

)2

+higher order terms (1)

Where I1 is a non-dimensional parameter, which is a function of 2α and material Poisson’s ratio ν and is

determined from numerical analyses (reported below). The singular stress term approximation of Eq. 1 is

initially considered:

W 1 =
I1

4E(1− s)(π−α)

(√
2πKN

R0
s

)2

(2)

where R0 is a first approximation of R1 simply under the assumption of dominant singular stress term, and KN is

the NSIF2 defined as:

σy(x) =
KN

xs (3)

2In the present paper, KN is deprived of the constant factor
√

2π unlike in other relevant literature [26].
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where s is the power law singularity exponent3, or degree of singularity according to Williams’ analysis [44].

The dimensionless NSIF for unitary net stress and unitary length scale is defined as:

KN,UU =
KN

σN(D/2)s (4)

By combining Eq. 2 and 4, the average strain energy associated with the fatigue limit stress range is:

∆W 1 =
I1

4E(1− s)(π−α)

(√
2πKN,UU

R′0
s

)2

∆σ
2
N,fl (5)

where the singularity-based control radius is introduced in the dimensionless form R′0 = R0/(D/2) in agreement

with the dimensionless radii previously introduced.

In the case of a plain sample under the same loading condition, the average SED is given by:

∆W 1,plain =
1

2E
∆σ

2
fl (6)

By imposing the equality of Eq. 5 and 6, owing to an equally critical loading condition:

I1

4E(1− s)(π−α)

(√
2πKN,UU

R′0
s

)2

∆σ
2
N,fl =

1
2E

∆σ
2
fl (7)

Equation 7 can be inverted to obtain the singularity-based radius R′0:

R′0 =

(
KN,UU

Kf

√
πI1

(1− s)(π−α)

)1/s

(8)

where Kf = ∆σfl/∆σN,fl is the fatigue notch factor. Similar expressions have already been derived for R0 (see for

instance [20, 29]), however, Eq. 8 is formulated to emphasize the role of Kf.

In the present analysis, Kf is assumed to be known from fatigue experiments carried out on notched and plain

specimens under the same load ratio. In principle, a single load ratio can be considered and the fatigue analyses

extended to different load ratios by introducing the SED load ratio-dependency proposed in [24, 45]. However,

this approach is not investigated here.

Although the singularity assumption underpinning Eq. 8 may lead to inconsistent estimations especially for large

notch radiuses or short control radiuses, R′0 is regarded as the input of the inverse search procedure of the actual

control radius R′1. This requires finite element (FE) simulations to incorporate the effect of the actual radiused

notch tip.

3Williams’ eigenvalue λ1 is usual in the literature, while its complement to 1, s = 1−λ1, is introduced here for a simpler power law
form.
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3. Finite Element analysis

Table 1 lists the values of the parameters KN and s, which control the singular stress state in the perfectly

sharp notch (zero radius). They were calculated using the FEmodel devised in [27]. In that previous work, a very

refinedmesh close to the notch apex was used to accurately capture the theoretical power law singularity predicted

by the Williams’ analysis [44]. The strain energy density W 1 was instead calculated using the axisymmetric FE

model depicted in Fig. 2 (a), where the discretization of the critical volume of radius R1 is obtained by creating

a circular area in the FE model centred in the notch tip. It was thus possible to determine the SED directly

from the subset of elements belonging to this area, thus limiting discretization errors as much as possible in

the definition of the critical volume contour. The FE model employs quadratic 8-node elements PLANE183

available in ANSYS® element library.

For the V-notched geometry specifically investigated in the present paper, Eq. 1 fitted very well by reducing the

higher order terms to just a constant. The coefficient I1 can thus be determined. Its best-fit values are listed in

Table 1 for the notch opening angle α and Poisson’s ν values explored in the present paper.

Table 1: Coefficients for the singularity-based analysis of the V-notched specimen.
I1 m

2α s KN,UU ν = 0.27 ν = 0.30 ν = 0.33 ν = 0.27 ν = 0.30 ν = 0.33
60◦ 0.487779 0.2866 0.84387 0.79271 0.73898 0.96829 0.97696 0.98745
90◦ 0.455516 0.3210 0.81715 0.77192 0.72467 0.97352 0.98043 0.98884

The FE model devised to estimate W 1 in the critical volume at the tip of the rounded notch is shown in Fig. 2

(b). Also in this case, a circular arrangement of quadrilateral elements is used for an accurate representation of

the critical volume contour. The mesh level refinement is the same as that used in the FE model of the perfectly

sharp-notched specimen. The FEmodel was employed to build up a wideW 1 database with the following notched

sample configuration parameters:

R′1 = {0.0025,0.005,0.0075,0.01,0.015,0.02,0.03,0.04,0.05,0.06,0.07,0.08} (9)

and the dimensionless notch radius:

R′ = {0.01,0.02,0.05,0.075,0.1,0.15,0.2} (10)

for all the combinations 2α = {60◦,90◦} and ν = {0.27,0.30,0.33}.

This numerical database was used to calculate the inversion functions (explained in the next section), which were

then analytically modelled to solve the inversion problem with a satisfactorily accurate approximation, without

the need to repeat the specific FE analysis for any single radius ratio value.
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Axisymmetric plane model with D/2 = 1, A = 0.3

Minimum elem. 

size = 810-4

Number of elements: approx. 8104

R1

(a)

Axisymmetric plane model with D/2 = 1, A = 0.3, 

R = {0.01,…,0.2} 

Minimum elem. 

size = 810-4

Number of elements: approx. 5104(b)

Figure 2: Parametric FE axisymmetric plane model of a perfectly sharp specimen (a) and a radiused specimen (b), where the lenticular
area is created in the model geometry.

An analysis of the FE mesh sensitivity was performed for a single case used as a reference, namely R′ = 0.1. A

percentage relative deviation was calculated to obtain the order of magnitude of the numerical error:

δ = 100
W 1−W 1,maxref

W 1,maxref
(11)

where W 1 is the SED calculated with any mesh level, while W 1,maxref is the SED obtained with the most refined

explored mesh with a dimensionless element size e/(D/2) = 3×10−4.

As shown in Fig. 3, the relative deviation of the SED decreases with increasing size of the control radius.

Moreover, being an energy-based evaluation, this deviation declines quite fast with respect to the element size.

10



The slope ratio is 3 to 1 in a log-log scale, or in other words δ is proportional to e3. After this convergence

analysis, the level of the mesh refinement was set to obtain W 1 estimations in agreement with those published

in [29] when the plane strain element behaviour is enforced, leading to a relative element size of 8×10−4. This

mesh resolution was then applied to the whole set of analyses, keeping the relative deviation below 10−4% for all

the explored control radius values. Accurate SED estimations were also obtained even with coarser meshes [14],

consisting in a few tens of elements in the critical lenticular area. However, this refined mesh was implemented

here to obtain an extremely accurate model aimed at setting the numerical values of the coefficients for the

calculation procedure introduced below.
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Figure 3: FE mesh convergence analysis of the SED, with respect to the relative element size, for various control radius values.

4. SED control radius inverse search

4.1. Procedure formulation of the inverse search

As evident from Eq. 1, the singular stress term is dominant only in the vicinity of the notch tip. Moving

away from it, other higher order stress terms significantly contribute toW 1. This effect is visible in Fig. 4, where

the numerically estimated dimensionless control radius R′1 progressively deviates from its first approximation R′0

with the increasing control radius. Thus, the following simple linear relationship is proposed for calculating the

actual value of R′1 for the perfectly sharp V-notched specimen:

R′1 = m(α,ν)R′0 (12)

where the angular coefficient m depends on α and ν and its best-fit estimation is listed in Table 1. Interestingly,

m is quite close to unity, meaning that the effect of the higher order terms is almost negligible even for a relatively
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large control radius size provided that the notch radius is (hypothetically) zero.
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Figure 4: Linear dependency between the singularity-based control radius and the (actual) control radius for the perfectly sharp V-notch
with opening angle 2α = 60◦ (a) and 2α = 90◦ (b).

When the control radius is estimated from W 1 calculated for a rounded V-notched specimen, its singular stress-

based estimation R′0 must also be corrected for the effect of the notch radius. This situation is exemplified by

Figs. 5 (a) and (b), which show the map (dotted values) of R′1 vs. R′0, parametric in R′, for notch angles 2α = 60◦

and 2α = 90◦, respectively, and ν = 0.3. It is evident that the relationship R′1 vs. R′0 gradually deviates from the

linearity with increasing R′.

This non-linear dependency of R′1 upon R′0 is modelled here by proposing a summation of half-integer exponent
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Figure 5: Dependency between the singularity-based control radius and the (actual) control radius for different radiused V-notches with
opening angle 2α = 60◦ (a) and 2α = 90◦ (b).

terms, after the linear term previously introduced:

R′1(α,ν ,R′) = m(α,ν)R′0 +
4

∑
i=1

ai(α,ν ,R′)R′0
1− i

2 (13)

where the functions ai(α,ν ,R′) are expected to tend to zero for vanishingly small R′ and hence the perfectly

sharp notch. Therefore, the following expression is proposed for modelling their dependency on R′:

ai(α,ν ,R′) =
5

∑
j=1

bi j(α,ν)R′
j
2 (14)

The entire calculation is in dimensionless form, and then, after Eq. 13, the physical size of the control radius can
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be easily obtained:

R1 = R′1
D
2

(15)

The constants bi j were calculated separately for the explored values of α and ν by fitting the data corresponding

to the conditions imposed by the FE analyses. In order to also keep the fitting accurate in the region of low

R′ values, the error variance to be minimized was normalized with respect to each data point. A reasonable

compromise between the number of parameters needed to define the inversion function and the accuracy and

stability in the numerical solution of Eqs. 13, 14 was obtained by assuming the maxima for the indexes i, j as 4

and 5, respectively.

The fitting capability of Eqs. 13, 14 is shown in Fig. 5 (solid curves). The relative error of the inverse function

to predict the (actual) control radius R′1 is defined as:

ε = 100
R′1,InvFun−R′1,FE

R′1,FE
(16)

where the subscripts “InvFun” and “FE” obviously denote the value of the estimated control radius from the

inverse function and the numerical model, respectively. ε is plotted in Figs. 6 (a) and (b) as a function of R′1

and R′ for notch angles 2α equal to 60◦ and 90◦, respectively, and ν = 0.3. The error is very low (less than

1%) in large portions of the explored domain, except for R′ values lower than 0.0075, where the absolute error

increases up to about 5%. Nonetheless, such an error level is considered acceptable in this region, in view of the

low values of R′1,FE which greatly enhance the relative deviation of R′1,InvFun from R′1,FE.

This procedure is considered reliable up to a relatively large control radius, such as R′0 = 0.08 for which the

corresponding R′1 is quite similar for any notch radius, as shown in Fig. 5. On the other hand, the inversion

procedure may return a value of R′1 close to zero for a small R′0, depending on the notch radius R′. The satisfaction

of this limit condition can be expressed in terms of a minimum value for R′0, for which a summation expression

is again proposed:

R′0,min =
3

∑
k=1

ckR′
k+1

2 (17)

where ck are fitting coefficients tabulated in Appendix A. Whenever R′0 is larger than R′0,min, the output control

radius R1 is reliable and positive. On the other hand, when R′0 approaches R′0,min, the output result R1 reduces to a

vanishingly small value. Under this condition, the volume, within which the strain energy is averaged, is so small

that the obtained SED equals the peak value achieved at the notch tip. In this situation, the corresponding fatigue

notch factor Kf is the highest possible and obviously is equal to the (theoretical) stress concentration factor Kt

of the notch. Figure 7 shows this minimum radius and the corresponding condition of the highest fatigue notch

factor Kf,max = Kt depending on the notch radius R′ and for the two explored opening angles α .
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Figure 6: Percentage relative difference between the FE control radius and the inverse search procedure result for the opening angle
2α = 60◦ (a) and 2α = 90◦ (b).

4.2. Inverse search sensitivity

The proposed inverse search is considered valid in the R′0 range of between the minimum R′0,min andmaximum

value of 0.8. However, although performed in this range, the inverse search may be ill-posed whenever the control

volume encloses a low gradient stress distribution. This situation occurs in two circumstances, i.e. (i) when the

control radius R1 is too small with respect to the notch radius R, or (ii) when R1 is relatively large with respect

to the external specimen radius D/2. If it is too small, the stress acting on the control volume is close to the

peak value at the notch root. If it is larger, the average stress distribution is not affected by high gradient stress

concentration produced by the notch. In order to identify the conditions of ill-posed inverse search, a sensitivity

indicator S is defined as:

S =− 1
R1

dR1

dKf
(18)

Clearly, Eq. 18 expresses the sensitivity of the control radius to the uncertainty on the input of the inverse search,
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Figure 7: (a) Minimum singularity-based control radius leading to zero (actual) control radius. (b) Maximum fatigue notch factor
corresponding to the minimum control radius.

i.e. the fatigue notch factor Kf. In Fig. 8, S exhibits a minimum at a certain value of R′1, which depends on the

notch radius. Performing the inverse search at R′1 values that are far from this optimal value renders its estimation

very sensitive to small deviations of the input Kf. Interestingly, the sharpest explored notch (R′ = 0.01) sets

a lower bound on the sensitivity parameter S, although for large values of the control radius, the notch radius

increasingly plays a less important role. It might appear that the sharper the notch, the more accurate the R′1

inverse search, but in fact the choice of the notch radius is not only dictated by accuracy, but also has to take into

account manufacturing issues. The next section shows that satisfactory results are obtained with notch radius

R = 0.2 mm and diameter D = 20 mm, or 7.7 mm for additively manufactured specimens, made of materials
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with control radii of between 35 µm and 200 µm. However, in the case of materials with an even smaller control

radius, a tooltip with a sharpness of R = 0.1 mm is recommended.

10
-4

10
-3

10
-2

10
-1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

S
en

si
ti

v
it

y
, 
S

Dimensionless control radius, R
'

1

        2

  60°     90°

  R
'
 = 0.01

  R
'
 = 0.02

  R
'
 = 0.05

  R
'
 = 0.1

  R
'
 = 0.2

 = 0.3

Figure 8: Sensitivity of the control radius inverse search with respect to the fatigue notch factor, for different opening angles and notch
radii.

4.3. Inverse search procedure summary

The proposed inverse search procedure can be summarized in the following steps:

1. Experimentally obtain the fatigue limit of the plain and the V-notched specimen, the latter with a preferably

sharp notch, and obtain the fatigue notch factor Kf;

2. Convert Kf into the singularity-based control radius R′0 (Eq. 8), after introducing the correct values for the

parameters s,KN,UU and I1 listed in Table 1.

3. Verify that the obtained R′0 is higher than the minimum allowed value R′0,min (Eq. 17).

4. Obtain R′1 from Eq. 13, using the best-fit coefficients available in Appendix A;

5. Determine the (actual) control radius by multiplying R′1 by the specimen external radius (Eq. 15).

This procedure is implemented in MATLAB® script files provided in the online version of this paper. Here, the

dependence on Poisson’s ratio ν is linearly interpolated for any value in the range 0.27−0.33. The use of these

scripts is briefly explained in Appendix B.

4.4. Notched specimen fatigue strength determination

The availability of a large and accurate set of numerical simulations is also exploited in order to derive an

analytical procedure for determining the fatigue strength of the specimen, assuming the known material length

R1. In other words, the input and output variables of Fig. 5 are reversed with respect to the inverse search. This
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task, referred herein to as direct problem, basically consists in the inversion of Eq. 13, which is here proposed

through the following equation:

R′0(α,ν ,R′) =
R′1

m(α,ν)
+d1(α,ν ,R′)+

4

∑
i=2

di(α,ν ,R′)R′1
i
2 (19)

where the notch radius dependency of the coefficients di is modelled as:

di(α,ν ,R′) =
5

∑
j=1

ei j(α,ν)R′
j
2 (20)

The ei j values are available in Appendix A and the software implementation is provided and briefly explained

in Appendix B. After the singularity-based R′0 is found with Eq. 19, Kf is then obtained just by inverting Eq. 8:

Kf =
KN,UU

R′0
s

√
πI1

(1− s)(π−α)
(21)

Finally, the fatigue limit stress amplitude of the notched specimen is obtained with the available Kf, provided that

the plain fatigue limit is known.

5. Experimental result

The experimental data derived from our previous papers [40] and Benedetti and Santus [42] are reconsidered

in this paper and then analysed with the proposed procedure. In [40], two common structural alloys, viz. the

aluminium 7075-T6 and the steel 42CrMo4+QT, were tested under the load ratios R =−1 and R = 0.1. In [42],

notched samples were additively manufactured by selective laser melting (SLM) of titanium alloy Ti-6Al-4V and

fatigue tested at the load ratio R =−1. To explore the effect of defectiveness on the notch fatigue strength, two

sample batches were fabricated. The first one, termed T-N, is obtained by turning the notch from plain cylindrical

bars, while in the second batch, termed SLM-N, the notch geometry is already introduced by the SLM process

and a slight turning finish was applied to restore the correct notch radius.

Figure 9 summarizes the fatigue data used here to calculate the fatigue notch factor Kf, namely the S-N curves of

the plain and sharp-notched (notch radius R = 0.2 mm) specimens. More precisely, the actual value of the plain

fatigue strength of Ti-6Al-4V was calculated using the
√

area Murakami model calibrated in [46] to account for

the actual size of the critical defect leading to fatigue failure.

Using the procedure proposed in this work, as summarized in Section 4.3, the material control radius is calculated

not only at the fatigue limit but also as a function of the number of cycles to failure Nf, by calculating Kf for any

sampling of Nf. The experimentation undertaken in [40, 42] also included the measurement of the SIF threshold

range ∆Kth. It was thus possible to estimate the threshold-based critical distance Lth according to the well-known

formula:

Lth =
1
π

(
∆Kth

∆σfl

)2

(22)
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Figure 9: (a) Fatigue notch factor of a sharp V-notch for the control radius inverse search. Experimental data for the metal alloys (b)
aluminium 7075-T6, (c) steel 42CrMo4+QT and (d) SLM titanium alloy Ti-6Al-4V.

whose outcomes are compared with the critical distance L obtained from the inverse search following the Line

Method (LM) formulation of TCD.

Similarly, a threshold-based estimation of the control radius is also available in the literature, such as in [24],

again by combining the crack threshold fatigue resistance and the plain specimen fatigue limit, or equivalently

by rescaling Lth with a factor slightly lower than unity:

R1,th =
(1+ν)(5−8ν)

4
Lth (23)

These lengths are reported in Table 2 for all the investigated materials and loading conditions, taking the

threshold-based values as a reference. For 7075-T6 and 42CrMo4+QT, a good correlation is found between the

sharp specimen inverse search lengths and the threshold values, with a slight overestimation tendency affecting

the SEDmethod. On the other hand, as discussed in a previous work [42], the fracture mechanics tests performed

for ∆Kth determination failed to capture the actual effect of defectiveness on both crack initiation and early

propagation in the notched samples. As a consequence, notch-based estimations of both critical distance and

control radius strongly deviated from the threshold-based ones. The fatigue calculation of the blunt-notched
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samples in [42] turned out to be more accurate using sharp-notch derived lengths, instead of threshold-derived

lengths.

Table 2: SED and LM inverse search and threshold-based lengths for the investigated aluminium alloy, steel and SLM titanium alloy.
Experimental Fat. life

Material condition (cycles) R1 (mm) R1,th (mm) L (mm) Lth (mm)

7075-T6 R =−1
30×106 0.0663 0.0436 0.0548 0.0555

R = 0.1 0.0390 0.0290 0.0327 0.0370

42CrMo4+QT R =−1
10×106 0.0348 0.0366 0.0273 0.0433

R = 0.1 0.0483 0.0307 0.0367 0.0363

Ti-6Al-4V SLM T-N, R =−1
50×106 0.1947 0.0258 0.1799 0.0304

SLM-N, R =−1 0.1209 0.0158 0.1066 0.0187

A further interesting validation exercise consists in using the inverse search R1 estimate to assess the fatigue

strength of an independent batch of samples displaying the same cylindrical V-notched geometry, but carrying

a blunter notch with radius R = 1.0 mm. The same fatigue calculation is also done with the threshold-derived

control radius R1,th for comparison. The same approach is followed applying the LM formulation of the TCD.

Despite a better correlation between the inverse search and the threshold-based values of the LM, the SED

provides lower estimation errors of the blunt notch specimen fatigue strengths, also for the SLM titanium alloy,

as shown in Table 3. The maximum errors obtained are well within the range of 10% and some are even lower

than 1%.

Table 3: SED and LM evaluations of the blunt specimen fatigue limits for the investigated aluminium alloy, steel and SLM titanium alloy.
Experimental Fat. life Blunt SED, R1 Err. SED, R1,th Err. LM Err.

Material condition (cycles) (MPa) (MPa) (%) (MPa) (%) (MPa) (%)

7075-T6 R =−1
30×106 62.3 64.0 2.8 62.4 0.2 61.8 -0.8

R = 0.1 45.0 45.2 0.4 44.6 -0.8 43.2 -4.0

42CrMo4+QT R =−1
10×106 163 149 -8.5 150 -8.3 144 -12

R = 0.1 119 131 10 128 7.8 127 5.4

Ti-6Al-4V SLM T-N, R =−1
50×106 117 123 5.4 102 -13 126 8.0

SLM-N, R =−1 145 146 0.8 129 -11 146 0.8

It is also interesting that the fatigue predictions carried out with R1 derived from the sharp notched geometry

exhibit a comparable accuracy to those obtained from the threshold-derived control radius in the case of con-

ventionally processed materials. On the other hand, for the SLM-manufactured Ti-6Al-4V, the accuracy of such

estimations is considerably better with sharp-notch-derived R1. This demonstrates that the method proposed in

the present paper is also particularly suitable for fatigue calculations of additive materials. Besides a better fatigue

strength estimation, the present method also avoids fracture mechanics tests which can be very challenging and

expensive for this class of materials.
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Following our previous work [40], this approach is extended to the finite life fatigue regime. Accordingly, the

dependency of Kf upon the number of cycles to failure Nf is converted into a R1(Nf) function, which is plotted

in Fig. 10 for all the material variants explored so far. It should be noted that this function tends to decrease

with increasing fatigue life. This is not surprising because it is consistent with the growing notch sensitivity

displayed by most materials at longer fatigue life. Nevertheless, this trend tends to saturate at low values of

Nf for Al 7075-T6 and Ti-6Al-4V alloys tested at fully reversed axial loading (R = −1). Once the function

R1(Nf) is known, the fatigue notch factor is estimated with the proposed direct problem procedure. The resulting

predictions of the fatigue strength of the blunt-notched specimen variants are shown in Fig. 11. Once again,

satisfactorily accurate predictions are obtained, even in the finite life fatigue regime.
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Figure 10: Control radius trends in the finite fatigue life regime for the investigated aluminium alloy, steel and SLM titanium alloy.

6. Conclusions

This paper has provided a complete procedure for the inverse search determination of the SED control radius.

The reference specimen geometry is a V-notched bar with a sharp root radius, and the experimental input of

the procedure is the fatigue stress concentration factor of this specimen. The calculation procedure was set in

a dimensionless form, after considering one of the dimensions as a reference, viz. the external radius of the

bar. A first estimate of the control radius was obtained from the hypothesis of the dominant singular stress term,

similarly to other formulas already available in the literature based on the NSIF. However, this initial length

turned out to be an accurate evaluation of the (actual) control radius only when it is quite large. On the other

hand, when the control radius is small, which is a fairly common scenario for high strength metallic materials,

the singularity-based radius is a large overestimation of the actual value. The availability of an accurate set of

FE simulations led to the proposal of an analytical procedure that easily converts this singularity-based to the
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Figure 11: (a) Finite life fatigue strength assessment with the control radius function on the number of cycles to failure. Results and
comparison with the experimental data for (b) aluminium alloy 7075-T6, (c) steel 42CrMo4+QT and (d) SLM titanium alloy Ti-6Al-4V.

(actual) control radius, without the need for any further FE calculation since formulas and the related coefficients

are provided.

This procedure was subsequently applied to determine the control radius of three metallic materials at different

load ratios. The radius values obtained were in the order of tens of microns, thus justifying both the correction

from the singularity-based to the (actual) control radii, and the need for sharp notches to efficiently reduce the

sensitivity to the experimental uncertainties. These lengths were compared with those obtained from the crack

threshold stress intensity factor range. Similar length values were obtained for the traditional manufacturing

materials, while for the additive manufacturing alloy, the threshold-based radii were significant larger than the V-

notched specimen inverse search results found in this work. In addition, the fatigue strength of a blunter specimen

was calculated, considering the inverse search determined lengths, and relative errors of a few percentage points

were found compared with the experimental results, even for the additively manufactured alloy. The procedure

was finally extended to the finite life regime, by calculating the fatigue notch factors at different numbers of

cycles to failure. After the availability of the control radius at different numbers of cycles to failure, the fatigue
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assessment was then repeated for the blunt notches and the finite life S-N curves were correctly reproduced.

References

[1] H. Neuber, Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen, Konstruktion 20 (1968) 245–251,
in German.

[2] H. Neuber, Kerbspannungslehre, 3rd Edition, Springer-Verlag, Berlin, 1985, in German.
[3] S. D. Sheppard, Field effects in fatigue crack initiation: long life fatigue strength, Journal of Mechanical Design 113 (1991)

188–194.
[4] E. Beltrami, Sulle condizioni di resistenza dei corpi elastici, Tip. Bernardoni di C. Rebeschini, 1885, in Italian.
[5] G. C. Sih, Strain-energy-density factor applied to mixed mode crack problems, International Journal of Fracture 10 (1974) 305–321.
[6] L. F. Gillemot, Criterion of crack initiation and spreading, Engineering Fracture Mechanics 8 (1976) 239–253.
[7] P. Lazzarin, R. Zambardi, A finite-volume-energy based approach to predict the static and fatigue behavior of components with

sharp V-shaped notches, International Journal of Fracture 112 (3) (2001) 275–298. doi:10.1023/A:1013595930617.
[8] P. Livieri, P. Lazzarin, Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local

strain energy values, International Journal of Fracture 133 (3) (2005) 247–276. doi:10.1007/s10704-005-4043-3.
[9] C. Fischer, W. Fricke, C. M. Rizzo, Experiences and recommendations for numerical analyses of notch stress intensity factor and

averaged strain energy density, Engineering Fracture Mechanics 165 (2016) 98–113. doi:10.1016/j.engfracmech.2016.08.012.
[10] C. Fischer, W. Fricke, C. M. Rizzo, Fatigue assessment of web-stiffened corners in plated structures by local approaches, Ship

Technology Research 65 (2) (2018) 69–78. doi:10.1080/09377255.2018.1441781.
[11] D. Radaj, State-of-the-art review on the local strain energy density concept and its relation to the J -integral and peak stress method,

Fatigue & Fracture of Engineering Materials & Structures 38 (1) (2015) 2–28. doi:10.1111/ffe.12231.
[12] G. Meneghetti, A. Campagnolo, F. Berto, Averaged strain energy density estimated rapidly from the singular peak

stresses by FEM: Cracked bars under mixed-mode (I+III) loading, Engineering Fracture Mechanics 167 (2016) 20–33.
doi:10.1016/j.engfracmech.2016.03.040.

[13] P. Lazzarin, F. Berto, Some Expressions for the Strain Energy in a Finite Volume Surrounding the Root of Blunt V-notches,
International Journal of Fracture 135 (1-4) (2005) 161–185. doi:10.1007/s10704-005-3943-6.

[14] F. Berto, P. Lazzarin, Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local
approaches, Materials Science and Engineering: R: Reports 75 (2014) 1–48. doi:10.1016/j.mser.2013.11.001.

[15] A. R. Torabi, A. Campagnolo, F. Berto, Local strain energy density to predict mode II brittle fracture in Brazilian disk specimens
weakened by V-notches with end holes, Materials & Design 69 (2015) 22–29. doi:10.1016/j.matdes.2014.12.037.

[16] A. R. Torabi, F. Berto, A. Campagnolo, J. Akbardoost, Averaged strain energy density criterion to predict ductile failure
of U-notched Al 6061-T6 plates under mixed mode loading, Theoretical and Applied Fracture Mechanics 91 (2017) 86–93.
doi:10.1016/j.tafmec.2017.04.010.

[17] M. R. Ayatollahi, A. R. Torabi, A. S. Rahimi, Brittle fracture assessment of engineering components in the presence of notches: a
review, Fatigue & Fracture of Engineering Materials & Structures 39 (3) (2016) 267–291. doi:10.1111/ffe.12379.

[18] S. Cicero, F. Berto, F. T. Ibáñez-Gutiérrez, I. Procopio, V. Madrazo, SED criterion estimations of fracture loads in structural steels
operating at lower shelf temperatures and containing u-notches, Theoretical and Applied Fracture Mechanics 90 (2017) 234–243.
doi:10.1016/j.tafmec.2017.05.021.

[19] J. Justo, J. Castro, S. Cicero, Energy-based approach for fracture assessment of several rocks containing U-shaped notches
through the application of the SED criterion, International Journal of Rock Mechanics and Mining Sciences 110 (2018) 306–315.
doi:10.1016/j.ijrmms.2018.07.013.

[20] F. Berto, P. Lazzarin, J. R. Yates, Multiaxial fatigue of V-notched steel specimens: a non-conventional application of the local energy
method, Fatigue&Fracture of EngineeringMaterials&Structures 34 (11) (2011) 921–943. doi:10.1111/j.1460-2695.2011.01585.x.

[21] F. Berto, P. Lazzarin, R. Tovo, Multiaxial fatigue strength of severely notched cast iron specimens, International Journal of Fatigue
67 (2014) 15–27. doi:10.1016/j.ijfatigue.2014.01.013.

[22] F. Berto, A. Campagnolo, P. Lazzarin, Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading,
Fatigue & Fracture of Engineering Materials & Structures 38 (5) (2015) 503–517. doi:10.1111/ffe.12272.

[23] S. Vantadori, A. Carpinteri, G. Fortese, C. Ronchei, D. Scorza, A. Zanichelli, Fatigue lifetime evaluation of notched components:
Implementation of the control volume concept in a strain-based LCF criterion, Theoretical and Applied Fracture Mechanics 97
(2018) 400–408. doi:10.1016/j.tafmec.2017.07.001.

[24] A. Campagnolo, G. Meneghetti, F. Berto, K. Tanaka, Crack initiation life in notched steel bars under torsional fatigue:
Synthesis based on the averaged strain energy density approach, International Journal of Fatigue 100 (2017) 563–574.
doi:10.1016/j.ijfatigue.2016.12.022.

[25] M. Peron, S.M. J. Razavi, F. Berto, J. Torgersen, L.Marsavina, Local strain energy density for the fracture assessment of polyurethane
specimens weakened by notches of different shape, Frattura ed Integrità Strutturale 11 (42) (2017) 214–222. doi:10.3221/IGF-
ESIS.42.23.

[26] F. Berto, S. M. J. Razavi, J. Torgersen, Frontiers of fracture and fatigue: Some recent applications of the local strain energy density,
Frattura ed Integrita Strutturale 12 (43) (2018) 1–32. doi:10.3221/IGF-ESIS.43.01.

[27] C. Santus, D. Taylor, M. Benedetti, Determination of the fatigue critical distance according to the Line and the Point Methods with
rounded V-notched specimen, International Journal of Fatigue 106 (2018) 208–218. doi:10.1016/j.ijfatigue.2017.10.002.

23



[28] ASTM, Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM E647 – 15 (2015). doi:10.1520/E0647-15.
[29] F. Berto, P. Lazzarin, A review of the volume-based strain energy density approach applied to V-notches and welded structures,

Theoretical and Applied Fracture Mechanics 52 (3) (2009) 183–194. doi:10.1016/j.tafmec.2009.10.001.
[30] D. Taylor, The Theory of Critical Distances: A New Perspective in Fracture Mechanics, Elsevier Science, 2007.
[31] L. Susmel, A unifying approach to estimate the high-cycle fatigue strength of notched components subjected to both uniaxial and

multiaxial cyclic loadings, Fatigue & Fracture of Engineering Materials & Structures 27 (5) (2004) 391–411. doi:10.1111/j.1460-
2695.2004.00759.x.

[32] X.-Y. Liu, T.-X. Su, Y. Zhang, M.-N. Yuan, A multiaxial high-cycle fatigue life evaluation model for notched structural components,
International Journal of Fatigue 80 (2015) 443–448. doi:10.1016/j.ijfatigue.2015.07.010.

[33] M. Benedetti, V. Fontanari, M. Allahkarami, J. C. Hanan, M. Bandini, On the combination of the critical distance theory with
a multiaxial fatigue criterion for predicting the fatigue strength of notched and plain shot-peened parts, International Journal of
Fatigue 93 (2016) 133–147. doi:10.1016/j.ijfatigue.2016.08.015.

[34] L. Susmel, D. Taylor, The Theory of Critical Distances as an alternative experimental strategy for the determination of KIc and
∆Kth, Engineering Fracture Mechanics 77 (9) (2010) 1492–1501. doi:10.1016/j.engfracmech.2010.04.016.

[35] D. Taylor, Applications of the theory of critical distances in failure analysis, Engineering Failure Analysis 18 (2) (2011) 543–549.
doi:10.1016/j.engfailanal.2010.07.002.

[36] S. Cicero, V.Madrazo, I. A.Carrascal, On the PointMethod load-bearing capacity predictions inAl7075-T651 structural components
containing stress risers, Engineering Failure Analysis 26 (2012) 129–138. doi:10.1016/j.engfailanal.2012.07.008.

[37] L. Susmel, D. Taylor, The Theory of Critical Distances to estimate finite lifetime of notched components subjected to constant and
variable amplitude torsional loading, Engineering Fracture Mechanics 98 (2013) 64–79. doi:10.1016/j.engfracmech.2012.12.007.

[38] T. Yin, A. Tyas, O. Plekhov, A. Terekhina, L. Susmel, A novel reformulation of the Theory of Critical Distances to design notched
metals against dynamic loading, Materials & Design 69 (2015) 197–212. doi:10.1016/j.matdes.2014.12.026.

[39] W. Li, L. Susmel, H. Askes, F. Liao, T. Zhou, Assessing the integrity of steel structural components with stress raisers using the
Theory of Critical Distances, Engineering Failure Analysis 70 (2016) 73–89. doi:10.1016/j.engfailanal.2016.07.007.

[40] C. Santus, D. Taylor, M. Benedetti, Experimental determination and sensitivity analysis of the fatigue critical distance obtained
with rounded V-notched specimens, International Journal of Fatigue 113 (2018) 113–125. doi:10.1016/j.ijfatigue.2018.03.037.

[41] M. Benedetti, C. Santus, Mean stress and plasticity effect prediction on notch fatigue and crack growth threshold, combin-
ing the theory of critical distances and multiaxial fatigue criteria, Fatigue & Fracture of Engineering Materials & Structures-
doi:10.1111/ffe.12910.

[42] M. Benedetti, C. Santus, Notch fatigue and crack growth resistance of Ti-6Al-4V ELI additively manufactured via selec-
tive laser melting: A critical distance approach to defect sensitivity, International Journal of Fatigue 121 (2019) 281–292.
doi:10.1016/j.ijfatigue.2018.12.020.

[43] A. Campagnolo, F. Berto, D. Leguillon, Fracture assessment of sharp V-notched components under Mode II loading: a comparison
among some recent criteria, Theoretical and Applied Fracture Mechanics 85 (2016) 217–226. doi:10.1016/j.tafmec.2016.02.001.

[44] M. L. Williams, Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension,
Journal of Applied Mechanics, Transactions ASME 19 (1952) 526–528.

[45] A. A. Roostaei, A. Pahlevanpour, S. B. Behravesh, H. Jahed, On the definition of elastic strain energy density in fatigue modelling,
International Journal of Fatigue 121 (2019) 237–242. doi:10.1016/j.ijfatigue.2018.12.011.

[46] M. Benedetti, V. Fontanari, M. Bandini, F. Zanini, S. Carmignato, Low- and high-cycle fatigue resistance of Ti-6Al-4V ELI
additively manufactured via selective laser melting: Mean stress and defect sensitivity, International Journal of Fatigue 107 (2018)
96–109. doi:10.1016/j.ijfatigue.2017.10.021.

24



Appendix A. Procedure coefficients

All the coefficients required for implementing the introduced analytical procedure are listed in Tables A.4

and A.5 for the angles 2α = 60◦ and 90◦, respectively.

Table A.4: Procedure coefficients bi j,ck,ei j for the V-notch opening angle 2α = 60◦.
b ij , 2α  = 60°, ν  = 0.27

‐0.989328073890058 17.813823259543 ‐90.6045294353268 167.083764905978 ‐117.34355877894

0.430337393926397 ‐7.34850552179526 31.7888499557811 ‐44.6643542732263 30.8978160181794

‐0.0468874403409467 0.671406233547507 ‐1.63282475196792 ‐0.362402021903228 ‐1.71271718687741

0.00119153032984861 ‐0.0113539021985702 ‐0.0265023762246038 0.0112690523663061 0.454074772025857

b ij , 2α  = 60°, ν  = 0.30

‐0.87283446134295 16.8978997736763 ‐86.8101955026814 159.828248496854 ‐111.574385495565

0.385355744945926 ‐6.99875540828892 30.4926412546144 ‐42.382217645198 28.7637874279468

‐0.0427385260722818 0.64819600521387 ‐1.57373365840563 ‐0.482986790938427 ‐1.37252407496186

0.00107636656039123 ‐0.0108117536409329 ‐0.0297089849080886 0.0363224095344592 0.39418629794571

b ij , 2α  = 60°, ν  = 0.33

‐0.728516039061163 15.7174063589923 ‐81.7226309689693 149.730096019465 ‐103.412203934151

0.329848724648284 ‐6.54074146333182 28.6741236919471 ‐38.9614453456706 25.6257473658322

‐0.0375555755844178 0.614111819673587 ‐1.46099831021301 ‐0.727351703200745 ‐0.898617670991334

0.000929765257390919 ‐0.00989916194211657 ‐0.0350094151730919 0.0677746123884689 0.325145721855587

c k , 2α  = 60°, ν  = 0.27 c k , 2α  = 60°, ν  = 0.30 c k , 2α  = 60°, ν  = 0.33

0.265134136101911 0.262500424215411 0.258817753859912

‐0.261794753729463 ‐0.289834929851446 ‐0.316736433251523

0.10450087830991 0.149888820760047 0.194126870328609

e ij , 2α  = 60°, ν  = 0.27

‐0.0416895043994533 0.534232276092262 ‐0.0494437574758084 ‐3.31303452309238 4.61835259726765

16.5381709506653 ‐260.951075507378 1051.027425105 ‐1532.89306041663 643.126899620553

‐132.938634414104 2219.69455130166 ‐10173.7195869152 17720.4072681687 ‐10253.6397183776

271.055900450231 ‐4679.64487586133 22956.8687207434 ‐43476.6520361241 28111.0730753127

e ij , 2α  = 60°, ν  = 0.30

‐0.0430836919523989 0.545139856322282 ‐0.146238088293208 ‐3.0796220954005 4.42436849222261

17.0615365769642 ‐269.273435994047 1096.12509417984 ‐1635.46647851813 726.709215102388

‐135.057301929272 2262.73469359385 ‐10435.1992401458 18355.0291626082 ‐10792.7507975045

271.536321713192 ‐4724.49890228105 23298.5378743538 ‐44392.525390535 28935.3329052977

e ij , 2α  = 60°, ν  = 0.33

‐0.0448085647732817 0.560503799078809 ‐0.272530340725184 ‐2.77733467812804 4.17373992175202

17.6653179747844 ‐279.038885539751 1149.78821598411 ‐1758.85473223915 828.110685259756

‐137.386492970239 2311.58113245602 ‐10737.825130363 19099.9835771169 ‐11432.3571116451

271.684841743297 ‐4771.74727357148 23678.0588140766 ‐45435.6850068412 29889.2534162476

Appendix B. Software implementation

The presented analytical procedure is available in the online page of this article, implemented in MATLAB®

software. The script RunThisFirst_SaveCoeffs.m initially needs to be run in order to have all the co-

efficients introduced in the Workspace and saved in the file Coeffs.mat. A single inverse search exam-

ple can then be performed with InverseSearchExample.m, and a direct problem solution is obtained with

DirectProblemExample.m.

25



Table A.5: Procedure coefficients bi j,ck,ei j for the V-notch opening angle 2α = 90◦.
b ij , 2α  = 90°, ν  = 0.27

‐0.376359300730234 2.80423481800958 16.5733974171492 ‐109.236493392478 117.267715685101

0.0572266582288851 1.15430978025432 ‐25.1547912501891 93.144730551597 ‐79.2257315055048

0.0169891442941251 ‐0.670502780260079 6.64603805620584 ‐18.5707062827863 11.2786220100755

‐0.00151772076610742 0.0407083507759149 ‐0.305863177012631 0.488127287539394 0.248828150035615

b ij , 2α  = 90°, ν  = 0.30

‐0.268743085230572 1.94556889988516 20.1063458905297 ‐115.140236702385 120.90408273904

0.0208700098248675 1.37133181190868 ‐25.5948971949987 92.8167813463111 ‐78.552034696077

0.0191496799637444 ‐0.657520284942311 6.46382320659689 ‐18.0087960827492 10.9383184467225

‐0.00150734918788065 0.0388636834882311 ‐0.293561156013399 0.471225507632612 0.229996613104836

b ij , 2α  = 90°, ν  = 0.33

‐0.139467684276113 0.902066505962442 24.4589965489101 ‐122.596718788648 125.631061764697

‐0.0227270138065701 1.64440117839016 ‐26.2366575338536 92.7770586562887 ‐78.0581679292328

0.0218407438571512 ‐0.646569160549642 6.28008454395666 ‐17.427586460807 10.5948996323297

‐0.00150598862030264 0.0369788612852952 ‐0.280846967981236 0.454374278628544 0.208188545373248

c k , 2α  = 90°, ν  = 0.27 c k , 2α  = 90°, ν  = 0.30 c k , 2α  = 90°, ν  = 0.33

0.219126412959821 0.225983042762168 0.228572428718877

‐0.0387177854891394 ‐0.114032072009441 ‐0.169118695153874

‐0.142757126221946 ‐0.0367840192024039 0.0417809496552524

e ij , 2α  = 90°, ν  = 0.27

‐0.00639331868354599 ‐0.0332676581570811 2.80770557146795 ‐9.10074764311521 8.78323692224837

5.22393927709138 ‐60.7821379432436 ‐60.8521714060971 944.58816037681 ‐1290.10126975743

‐47.7987965258794 651.380764869994 ‐1126.48888522558 ‐3070.89060158372 6398.95456460855

106.304076126221 ‐1554.96552094411 4427.25628864608 116.521872953601 ‐7509.33743595847

e ij , 2α  = 90°, ν  = 0.30

‐0.0070045948493102 ‐0.0327183466121512 2.76975491455637 ‐9.00162012082668 8.69610248579601

5.53293824234513 ‐65.1962182820118 ‐38.0190749949739 893.02211858674 ‐1247.67587644689

‐48.7589765769744 671.082191282825 ‐1246.25164708423 ‐2774.72970760353 6140.75341147178

105.364998519936 ‐1565.97896514951 4547.8758459169 ‐249.206834607119 ‐7153.92026916731

e ij , 2α  = 90°, ν  = 0.33

‐0.00785029859546399 ‐0.0292692515212235 2.71265242796854 ‐8.85930671824068 8.57426172642451

5.92018003202763 ‐70.8607597319997 ‐8.21139706652348 825.149878463996 ‐1191.66643867236

‐50.0349643905806 697.065555222776 ‐1405.32789362084 ‐2380.00325538247 5796.58043356604

104.500835982616 ‐1583.38989772708 4719.54905724912 ‐757.51818711554 ‐6666.12596688636

The data of the inverse search case of the (editable) script file is reported below:

2α = 90◦, ν = 0.3, D = 20 mm, R = 0.2 mm, Kf = 3.5 (B.1)

which produces the result:

R1 = 0.090721 mm (B.2)

As a validation example, the same lengths are introduced as input as for the direct problem:

2α = 90◦, ν = 0.3, D = 20 mm, R = 0.2 mm, R1 = 0.090721 mm (B.3)

and the Kf result obtained is:

Kf = 3.4679 (B.4)

with an error slightly lower than 1% with respect to the initial input Kf = 3.5.
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