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Abstract

Background. Chronic pain is a common, often disabling condition thought
to involve a combination of peripheral and central neurobiological factors.
However, the extent and nature of changes in the brain is poorly
understood.

Methods. We investigated brain network architecture using resting-state
fMRI data in chronic back pain patients in the UK and Japan (41 patients,
56 controls), as well as open data from USA. We applied machine learning
and deep learning (conditional variational autoencoder architecture)
methods to explore classification of patients/controls based on network
connectivity. We then studied the network topology of the data, and
developed a multislice modularity method to look for consensus evidence
of modular reorganisation in chronic back pain.

Results. Machine learning and deep learning allowed reliable classification
of patients in a third, independent open data set with an accuracy of 63%,
with 68% in cross validation of all data. We identified robust evidence of
network hub disruption in chronic pain, most consistently with respect to
clustering coefficient and betweenness centrality. We found a consensus
pattern of modular reorganisation involving extensive, bilateral regions of
sensorimotor cortex, and characterised primarily by negative reorganisation
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- atendency for sensorimotor cortex nodes to be less inclined to form
pairwise modular links with other brain nodes. Furthermore, these regions
were found to display increased connectivity with the pregenual anterior University Hospital of Medicine, Tokyo, Japan
cingulate cortex, a region known to be involved in endogenous pain control.
In contrast, intraparietal sulcus displayed a propensity towards positive
modular reorganisation, suggesting that it might have a role in forming
modules associated with the chronic pain state.

Conclusion. The results provide evidence of consistent and characteristic
brain network changes in chronic pain, characterised primarily by extensive
reorganisation of the network architecture of the sensorimotor cortex.

3 Jiro Kurata , Tokyo Medical and Dental
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L5757 Amendments from Version 1

The new version includes some additional analyses
(Supplementary File 1), most significant of which is a new result
showing enhanced connectivity of the pregenual (rostral) anterior
cingulate cortex with sensorimotor regions in chronic pain versus
controls. A new author, Christian Sprenger, has been added to the
author list as they contributed to some of the new analyses and
interpretation/discussion of the previous analyses, and to writing
the revision.

See referee reports

Introduction

Maladaptive brain processing of pain is thought to have a primary
or facilitative role in many types of chronic pain. In chronic back
pain, for example, degenerative musculoskeletal change is
considered unlikely in itself to fully explain persistent pain in
most patients, and central processes are thought to be critical for
the chronification and maintenance of pain. Existing data have
identified a broad array of structural and functional brain
differences in patients (Baliki er al., 2008; Baliki er al., 2011;
Hashmi et al., 2013; Hemington et al., 2016; Kutch et al., 2017;
Napadow et al., 2010; Tagliazucchi er al., 2010), and this has led
to the concept of chronic pain as a brain network disorder
(Apkarian et al., 2009; Kuner & Flor, 2017; Mano & Seymour,
2015). However, given the complexity of brain networks, we still
do not have a reliable and consistent characterisation of these
changes.

One of the difficulties in identifying robust changes in brain
networks underlying chronic pain is that networks are inher-
ently data-rich, and the patterns of disruption may be complex.
One way to tackle this is to use machine learning and deep
learning methods, and a number of studies have shown how this
can be used to successfully build biomarkers (i.e. classifiers) in
a range of psychiatric disease (Takagi er al., 2017; Watanabe
et al., 2017; Yahata et al., 2016; Yamada et al., 2017). However,
these methods need to be validated on genuinely independent
data sets to be convincing, and current evidence of generalisable
classifiers for chronic pain is lacking.

Even so, interpreting brain network changes based purely
on classifiers alone can be difficult. This is because the
classifier pattern itself is often comprised of a large matrix
of individual functional connections, and strongly predictive

Wellcome Open Research 2018, 3:19 Last updated: 12 FEB 2020

(i.e. information-rich) functional connections do not nec-
essarily imply an active role in a disease. A better way of
describing and understanding networks is to instead evaluate
the underlying topology (Bressler & Menon, 2010; Bullmore
& Sporns, 2009). Since the brain is inherently modular, indi-
vidual differences in function can be reflected by differences
in a number of network characteristics (Meunier ef al., 2010).
This approach offers a way to define specific aspects of network
architecture that change in a disease.

With these issues in mind the aim of the current study was
to i) classify, and ii) characterise brain networks in chronic
back pain in a multi-site study using resting state fMRI. For
classification, we applied machine learning and deep learning
classifiers based on data from two sites (Cambridge, UK and
Osaka, Japan) as a discovery cohort, and used an open data set
(Chicago, USA) as a validation cohort. For characterisation,
we investigated hub disruption across all datasets, and devel-
oped a method to identify brain regions that undergo modular
reorganisation in the chronic pain state.

Methods

Participants

We recruited adults with chronic musculoskeletal low back
pain (CLBP) and approximately age, sex, and IQ-matched adults
without CLBP at two sites: Cambridge, UK (June 2013 — April
2014, 17 patients, 17 controls) and Osaka, Japan (April 2014
— March 2015, 24 patients, 39 controls). Patients were recruited
under the following inclusion criteria: chronic back pain for
over 6 months, no other chronic pain condition, no other major
neurological or psychiatric disease, and no contraindications to
MRI scanning. The study was approved by the East of England
NRES Committee, Norfolk, UK (reference 13/EE/0098); and
the Ethics Committee for Human and Animal Research of the
National Institute of Information and Communications Technol-
ogy, Japan (reference 20140611). Prior to the participation, all
participants gave written informed consent.

For all participants, the pain scores were taken in the form
of visual analog scale (VAS) and Short-Form McGill Pain
Questionnaire. Mood information was collected with Beck
Depression Inventory (BDI) and Hamilton Depression Rat-
ing Scores. 1Q information was collected using the National
Adult Reading Test (NART) for the participants in the UK, and
the Japanese Adult Reading Test (JART) for the participants in
Japan. Demographic information is summarised in Table 1.

Table 1. Demographic details of participants.

N Age BDI

JP 24 21-66 152105

CLBP UK 17 20-61 159+ 115
US 34 21-62 63=+58
JP 39 21-68 4.7+34
TD UK 17 20-62 3.7+53
US 34 21-64 15=26

Duration VAS JART/NART

11.6+92 26+24 3123+925

104 +7.5 48+28 29.31 +6.76

167 +11.3 6.7+x17 — —
03«11 34.66+7.38

2475 03+0.7 37.29+6.84
0 -
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We used an openly available US data set (OpenPain Project,
Department of Physiology, Northwestern University) to provide
an additional validation sample for classification, and to add to
the data used for network characterisation. For details, see the
Data availability section below.

MRI data acquisition

All the scans were performed on a 3.0-T MRI Scanner (3T
Magnetom Trio with TIM system; Siemens, Erlangen, Germany)
equipped with echo planar imaging (EPI) capability and a stand-
ard 12-channel phased array head coil either at Addenbrooke’s
hospital (Cambridge, UK) or CiNet (Osaka, Japan). Participants
remained supine and wore MR-compatible headphones with
their heads immobililised with cushioned supports during scan-
ning. Resting-state functional MRI (rsfMRI) was acquired using
a single-shot EPI gradient echo T2*-weighted pulse sequence
with the following parameters: for the participants in the UK
- TR 2000 ms, TE = 30 ms, FA = 78 degrees, BW = 2442 Hz,
FOV = 192 x 192 mm (covering the whole brain), acquisition
matrix = 64 x 64, 32 axial slices with a interleaved slice order of
3.0mm slice thickness with 0.75mm inter-slice gap, 300 volumes;
for the participants in Japan - TR 2500 ms, TE = 30 ms, FA = 80
degrees, BW = 2367 Hz, FOV = 212 x 212 mm (covering the
whole brain), acquisition matrix = 64 x 64, 41 axial slices with an
ascending slice order of 3.2mm slice thickness with 0.8mm
inter-slice gap, 234 volumes. A high-resolution three-dimensional
volumetric acquisition of a T1-weighted structural MRI scan was
collected using a MPRAGE pulse sequence: for the participants in
the UK - TR = 2300 ms, TE = 2.98 ms, time of inversion = 900 ms,
FA = 9 degrees, BW = 240 Hz, FOV = 256 x 256 mm, 176 sagittal
slices of 1mm slice thickness with no inter-slice gap, acquisition
matrix = 256 x 256; for the participants in Japan - TR = 2250 ms,
TE = 3.06 ms, time of inversion = 900 ms, FA = 9 degrees,
BW = 230 Hz, FOV = 256 x 256 mm, 208 sagittal slices of
Imm slice thickness with no inter-slice gap, acquisition
matrix = 256 x 256.

Resting-state fMRI data preprocessing

High-resolution T1-weighted anatomical imaging and a resting-
state functional imaging were performed for each participant,
and all those images were preprocessed with SPM8 (Wellcome
Trust Centre for Neuroimaging, University College London, UK)
on Matlab (R2014a, Mathworks, USA). The first five volumes
were discarded to allow for T1 equilibration. Slice timing was
adjusted to the intermediate slice and all images were realigned
to the first volume of each scan with an estimation based on all
the voxels, a fine sampling distance of 2 mm, and a 7th order
B-spline interpolation to ensure an accurate head motion cor-
rection with the estimated 6 rigid-body head motion parameters.
After T1 weighted structural image was co-registered to the mean
EPI volume, tissue segmentation of the structural image into
three tissue classes; gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF), based on the T1-weighted image
contrast was performed in the common Montreal Neurological
Institute (MNI) space. The relevant parameters estimated in the
tissue segmentation were applied to warp functional images into
MNI152 template space with a 2 x 2 x 2 mm spatial resolu-
tion. Subsequently, smoothing was applied with a 6 x 6 x 6 mm
FWHM Gaussian kernel.
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Inter-regional correlation analysis

To investigate the inter-regional functional relationship among
regions over the whole brain, we used the digital BSA-AAL
composite atlas composed of 140 ROIs consisting of the Brain-
VISA Sulci Atlas (BSA) and the Anatomical Automatic Labeling
(AAL) package (with a spatial resampling of 2 x 2 x 2 mm?® grid
in MNI space); a band-pass filter with a transmission range from
0.008 to 0.1 Hz; regression out of the nuisance regressors from
a mask of white matter, cerebrospinal fluid, and the whole brain
based on the segmentation of individual T1 weighted image, and
three translational and three rotational head motion parameters.
To protect against motion artifact in inter-regional correlation,
we performed scrubbing (Power er al., 2012) in which any
frames exhibiting abrupt and excessive head motions were iden-
tified with a threshold of frame displacement (FD) of 0.5 mm,
and all the frames identified were removed from individual time-
series, along with the previous one and the two successive
frames. This preserved mean proportion of 91.7% and 85.0% of
slices frames in controls and CLBP patients in the Japan data
respectively, 81.3% and 75.4% in the UK data, and 93.5% and
88.8% in the US data, with no significant difference (difference
in mean proportion of the remained frames; CI; p-value is as
follows: 6.70, 95%; -1.8218 to 15.1891; P = 0.1213 in the
Japan data, 5.90, 95%; -10.4544 to 22.1636; P = 0.4696 in the
UK data, 4.70, 95%; -1.4705 to 10.8421; P = 0.1331 in the US
data), and no difference between controls and CLBP patients was
observed in mean FD in the remained frames at any site with a
bootstrap estimation of 95% confidence interval (mean FD
difference: -0.016; Bootstrap 95% CI: -0.054 to 0.023 in the
Japan data, Mean FD difference: -0.029; Bootstrap 95% CI: -0.061
to 0.003 in the UK data, Mean FD difference: -0.022; Bootstrap
95% CI: -0.059 to 0.015 in the US data; if a confidence interval
that does not span zero can be taken to imply a significant
difference (p<0.05).

A patient in the UK data was excluded from further analysis by
an exclusion criteria that the root mean squared change in BOLD
signal from volume to volume (DVARS) after the scrubbing
showed more than 3 interquartile ranges above the upper
quartile or below the lower quartile. Subsequently a 140 x 140
Pearson’s full correlation matrix was computed on all pairs of
each of intra-regional average time-series of the ROIs.

Classification

A classification model built from UK and Japan data sets was
tested on an open data set available from the “OpenPain Project”
(Department of Physiology, Northwestern University). Anatomical
MRI data in the test data set were provided with skull stripping
during preprocessing. We chose to exclude six participants
(three CLBP patients and three controls) from the US valida-
tion test set that had lost a small part of brain coverage in their
anatomical image during the skull stripping procedure. Note that
the US dataset differed in the exclusion of patients with a BDI
score of over 19.

Classification using Support Vector Machines

We used a Support Vector Machine (SVM) classifier (Cortes &
Vapnik, 1995) based on the connectivity (correlation) matrices to
classify subjects as patient or control. SVMs learn a hyperplane,
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or decision boundary, that separates the two classes as well as
possible (i.e. maximises the margin between the samples in
the two classes). Once this boundary is learnt new samples are
classified according to the side of the hyperplane they fall. The
optimal margin is parameterised by a weight vector, W. Each
entry of W corresponds to a particular feature, in this case a
connectivity measure between two brain regions, and is inter-
preted as the contribution of the feature to separating the classes.
However, it is important to note that the predictions are based on
all features. Linear kernel SVMs have only one hyperparameter,
C, controlling the trade-off between the width of the margin
separating the two classes and the number of misclassified
samples. To assess the predictive performance of the SVM
classifier we ran two validation models: i) pooling together the
UK and Japan data as the training dataset, and using the US
data as an independent validation dataset (validation model 1);
ii) pooling the three datasets together (UK, Japan and US) to
increase power and testing the performance of the classifier using
a stratified Leave-Two-Subjects-Out (LTSO) cross-validation
(CV) (validation model 2). LTSO CV allowed for one subject of
each class to be left out for testing, and the remaining subjects
from both classes to be used for training in each CV fold. To
account for multi-site effects, the pairs that were left out were
always from the same acquisition site (stratification).

Due to the slightly higher number of controls compared to
patients, we also bootstrapped 100 models in both validation
approaches. In other words, each time we ran the whole valida-
tion model we randomly selected a balanced sample (as large
as possible) with an equal number of patients and controls. The
predictive accuracies were averaged across bootstraps.

Feature selection was carried out on the training data using
a univariate two-sample t-test (Guyon & Elisseeff, 2003):
we Fisher-transformed the correlation data and kept only the
features (connections) statistically significant between patients
and controls (p < 0.05, uncorrected).

For both validation approaches the SVM C parameter was
optimised using grid search (between 1073 to 10%) and a Leave-
3-Out CV on the training data. This CV was nested within the
LTSO CV in the second validation model.

We used as performance measures the accuracy (percentage
of correctly classified samples) and both sensitivity and specificity
(percentage of correctly classified patients and controls, respec-
tively). The obtained results were tested for statistical signifi-
cance (i.e. how unlikely the results would be if the classifier was
randomly attributing the class labels) using a permutation
approach, where we repeat the entire classification procedure
(including the two validation models, parameter optimisation,
bootstrapping and feature selection) 1, 000 times, each time
permuting the labels (patient or control) (Nichols & Holmes,
2002).

We used python 2.7.12 and the scikit-learn 0.17.1 machine
learning library (Pedregosa et al., 2011) for this analysis.
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Classification using Deep Learning

We used a conditional variational autoencoder (CVAE) based
on the 140 ROIs to classify subjects (Kingma er al., 2014;
Tashiro et al., 2017). A CVAEs is a generative probabilistic
model based on multilayer neural networks. Given an input data
x and a condition y, a CVAE builds a model of the conditional
probability log p(x|y). We used a CVAE as a classifier based
on log-likelihood. We emphasize that the CVAE is not based on
the 140 x 140 Pearson’s full correlation matrices but is based
on 140-dimensional vectors, each corresponding to the intra-
regional average signal intensities of the 140 ROIs at one time
point. Let x}” denote the signal intensity of the i-th ROI obtained
from a subject at time point j. Each sample is a 140-dimensional
vector: x; = (x",...x")7 and all the samples obtained from a
subject is represented by the set X = {x;}. The CVAE consists
of two neural networks called encoder and decoder. The
encoder accepts a sample x; and the condition y of a subject, and
infers a posterior probability of the latent variable z;, which is
considered to correspond to a nuisance component unrelated to
the disease such as something comes into the subject’s mind at
the time point j. The decoder accepts the latent variable z; and the
condition y, and generates an artificial sample x;. After training
the encoder and decoder jointly, the CVAE reconstructs given
signal x; under the condition y accurately, and the reconstruc-
tion error indicates (an upper bound of) the negative log-
likelihood — log p(x;|y) of the given signal x; (see the original study
(Kingma et al., 2014) for details). Since we considered that
each sample x; was sampled independently from each other, the
log-likelihood log p(X|y) of all the samples X of a subject
was equal to the summation of the log-likelihood of each sample,

i.e., log p(X|y) = ¥, log p(x;|y).

Given the samples X, the posterior probability p(y|X) that the
subject belongs to the class y is assumed as p(y|X) = p(X|y)p(y)/
p(X) =< p(X|y)p(y) according to Bayes’ theorem. Therefore,
pXly = Dp(y = 1) > p(X|y = O)p(y = 0) indicates that the sub-
ject is classified into the class y = 1. Finally, we assumed that
p(y =1)=p(y=0)=0.5 for adjusting the imbalance.

We used the encoder and the decoder consisting of 4 lay-
ers: The number of units were denoted by n,, n,, n,, and n,. The
hidden layers employed ReLU and layer normalization as their
activation functions, and the output layers employed identity
function. The condition y was represented by the bias terms
of the second hidden layer of the encoder and the first hidden
layer of the decoder. The CVAE was trained by Adam opti-
mization algorithm with the parameter oo = 107, B, = 0.9, and
B, = 0.999. For each learning iteration, 10 patients and 10
controls were randomly chosen from each site, and 50 samples
were randomly chosen from each of the chosen subjects,
indicating that a mini-batch comprised 2000 samples. The
number of units were searched for within the ranges of n, = 140,
n, € {50, 100, 200}, n, € {50, 100, 200}, and n; € {5, 10} using
a Leave-Four-Subjects-Per-Group-Out CV for validation model 1
and a 10-fold CV for validation model 2, where the 10-fold
CV was nested within the LTSO CV. We also used python
2.7.12 for this analysis.
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We can obtain a marginal log-likelihood log p(xj.”|y) of the
i-th ROI at the time point j using the trained CVAE. A large
difference between the marginal log-likelihood log p(x;i)|y)
given the different class labels y = 0 and y = 1 indicates that the
i-th ROI largely contributes to the classification. Hence, we
defined £, =Y log p(x{"}|y = ¢) - log p(x{"}|y = 1 - ¢)) given the
correct label ¢ as the contribution weight of the i-th ROL.

Characterisation of network changes: Hub Disruption

To study the topology of brain networks, we thresholded the
Pearson’s full correlation matrices to a produce binary adjacency
matrix (consisting of 1’s and 0’s) for each subject. Each of the
correlation matrices was thresholded in an adaptive manner to
produce an adjacency matrix with a 10 % link density. This value
was chosen based on previous studies that have found such a
link density to provide optimal discriminative ability (Achard
et al., 2012; Itahashi et al., 2014; Mansour et al., 2016;
Termenon et al., 2016). Using the adjacency matrices, we cal-
culated the Hub Disruption Index (HDI) - a well-recognized
method that characterises functional reorganisation in resting-
state brain networks in disease (Achard er al., 2012; Itahashi
et al., 2014; Mansour et al., 2016; Termenon et al., 2016). HDI
is calculated based on the difference in a nodal graph-theoretic
property of the network, and references the distribution of this
metric across all nodes in a single subject, in comparison to the
equivalent referential distribution in a cohort of healthy controls.
Nodal degree is the most-used index, but any nodal graph
measure can be used. Using the Brain Connectivity Toolbox
(Rubinov & Sporns, 2010), we examined HDIs for degree,
clustering coefficient, betweenness centrality, eigenvector
centrality, K-coreness, flow Coefficient, local efficiency, and
participation coefficient, and present results for those measures
that were consistently significant across all data-sets. This
choice is based on the measures that have been applied in
previous studies (Achard er al, 2012; Hashmi er al., 2014;
Mansour et al., 2016).

Each of the HDIs, defined as a summary of profile of nodal
topological metrics in either a patient compared with the cohort
of healthy controls or a control out of the cohort of healthy
controls compared with the rest of the cohort of healthy controls
(in the same manner as leave-one-out cross-validation), were
compared between groups by two-sample two-tailed t-tests
and the differences were assigned statistical significance at
p values less than 0.05. It should be noted that the way HDI is
calculated makes it intrinsically susceptible to data noise, which
will tend to produce significant values. In addition, because the
control group are used to define the normal values against
which the patients are compared, we cannot use the individual
values for classification, since the values are not indendent
(i.e. there is ‘information leak’ between the classification sets).

In response to reviewers’ comments, we also considered if
the HDI was robust to either removal of the top 5% of nodes,
or random removal of 90% of nodes, which it was (see
Supplementary File 1 for further details).
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Characterisation of network changes: Modular
Reorganisation

In order to study the architecture of brain networks in more
depth, to identify (and localise, where possible) key differences
between patients and control groups, we next probed the
network’s modular structure. Our approach was designed to
focus on the differences in brain network modularity between
patients and control groups by identifying a measure of the
consensus modularity pattern across all of the data. We did this
by using a new method based on calculation of the multislice
modularity (Mucha er al., 2010) - which allows estimation of the
basic community or modular architecture across large and com-
plex network data sets. In the categorical multislice modularity
algorithm (Jeub er al., 2011), the same node is coupled among
all subjects of the same group using a coupling parameter ® to
create a single symmetric agreement matrix representing each
group, see Figure 1.

This agreement matrix is generated with two free parameters,
which we defined a priori. First, we chose a modularity
resolution of y* = 1.5, given that this leads to roughly 10-20
modules overall, which is consistent with known architecture of
brain networks. Second, we chose a ‘moderate’ coupling strength
of * = 0.1 based on (Mucha er al., 2010).

The agreement matrix was estimated across all three data sets,
separately for the pain patients and the control groups. Since
there are slightly more control (n=87) than pain patients
(n = 71), we selected a subset of 70 subjects randomly from each
group to match the estimation between each group. Since the
modularity estimation is a probabilistic procedure, we repeated
this 1000 times, selecting the 70 subjects randomly each time, and
computed the average agreement matrix across all repetitions.

We next defined an agreement difference matrix AD as the
difference of agreement matrices of pain minus that of the con-
trol group. Since each agreement matrix has entries within
[0, 1], large positive entries in AD represent those node pairs
that have high agreement in pain, i.e., nodes that are frequently
in the same modules for the pain group, but not in the same
modules in the control group. Similarly, large negative entries
indicate the opposite case, i.e., nodes that frequently join the same
modules in the control group, but are not in the same module
for the pain group. Nodes with agreement differences near 0
indicate that two nodes are either in the same module for both
groups or they are in different modules.

Since the agreement difference matrix has both positive and
negative entries in each column, we independently summed the
positive-valued and negative-valued elements. This permitted
computing a profile of the strongest contributing ROIs in both
cases. The sum of the positive and negative contributions provides
an overall metric of modular reorganisation for each ROI.

To statistically evaluate the modularity of each ROI, we per-
formed an approximate permutation test, in which we mixed and
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Figure 1. Overview of the computation pipeline for multislice modularity and agreement matrices. First, we calculated the multislice
modularity and agreement matrices separately for the pain and control groups, and then calculated their difference. This difference matrix
consists of positive values (red) which reflect the likelihood of the two corresponding ROls (defined by the row and column index) appearing
in the same module in the pain group, but not in the control group. Negative values (blue) reflect the opposite - that the two ROls are less
likely to be in the same module in the pain group. Furthermore, values that are near zero (white) reflect pairs of ROls the do not significantly
change or had near-zero agreement in pain and control. The absolute sum of positive and negative values yields an overall metric of modular
reorganisation for each ROI (purple plot in lower panel), which can be compared to a chance level calculated from random permutations of

the pain and control groups.

randomly resampled the pain and control subjects into two
groups, and repeated the full analysis. We did this also 1000
times, and calculated the one-sided p-value based on the
proportion of times the resampled modularity reorganisation
metric exceeded the value based on the correctly specified
groups. These results are presented uncorrected for multiple
comparisons (across ROIs) below an arbitrary threshold of
p < 0.01. However we had prior hypotheses related to the 3 sets
of regions commonly implicated in chronic pain: sensorimotor
cortices, insular-cingulate cortices, and striatal-medial prefrontal
cortex.

Pregenual ACC connectivity analysis
This was based on the same preprocessing pipeline as above.
Voxel-wise maps of connectivity, based on Fisher-transformed

correlations of voxel-based BOLD time series, were computed
to evaluate regions that were more or less correlated in patients
than controls. This was based on a bilateral pgACC seed was
a 6mm diameter sphere centered on [+/-3,40,5], based on our
recent study identifying this region in endogenous control
of persistent pain in healthy subjects (Zhang er al., 2018).
Statistical analysis was based on simple t-contrasts.

VBM analysis

We also considered whether there were grey matter changes
between groups. Data were analyzed with SPM12 and Matlab
9.3 (R2017b). The T1 image of one subject from the UK study
site was not available; the analysis is therefore based on the
remaining 164 subjects. Anatomical T1 images were segmented
into tissue classes using SPM’s new segment function. The
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resulting grey matter probability maps were normalized to the
MNI space using the DARTEL toolbox (Ashburner, 2007)
persevering amount and smoothing maps with an 6mm isotropic
full-width-half maximum (FWHM) Gaussian kernel. For the
statistical comparison chronic back pain groups and healthy
controls were compared employing an analysis of variance using
study site as grouping factor and the total intracranial volume
(calculated as the sum of the grey-matter, white-matter and
CSF tissue classes) as a covariate for all subjects. Results were
considered significant at p<0.05, whole-brain corrected for
multiple comparisons using the FWE rate. However, we found no
differences surviving correction for multiple comparisons across
the full cohort (JP+UK+US), although some medial prefron-
tal cortex (adjacent to the pgACC) differences were found when
limiting this analysis to UK patients only when exploring the
data (see Supplementary File 1 for details).

An earlier version of this article can be found on bioRxiv
(https://doi.org/10.1101/223446).

Results

Classification using Machine Learning (Support Vector
Machine)

Using validation model 1 (i.e. training on the UK and Japan
data and validating on the US data) and correlation as features
for classification, the SVM framework correctly predicted 70%,
p-value < 107, of patients (sensitivity) and 56%, p-value < 1073,
of controls (specificity), corresponding to a total accuracy of
63%, p-value < 1072, Using validation model 2 (i.e. training
and testing using all available data, UK, Japan and US, with
LTSO-CV) and the same features, the SVM framework cor-
rectly predicted 68%, p-value < 107, of patients (sensitivity) and
67%, p-value < 107 of controls (specificity), corresponding to a
total accuracy of 68%, p-value < 1073. The classification results
are summarised in Table 2. Details of the top ten positive and
negative weights are listed in Table 3 and Table 4.
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To test whether these results were driven by confounds such
as gender (the sample was not perfectly gender balanced) or
depression (many patients also had a depression diagnosis)
we tested two new models where instead of the original labels
(patient or control) we used ‘male’ and ‘female’ and ‘depressed’
and ‘not-depressed’, respectively. We used exactly the same SVM
framework described above and validation model 1 (trained
on UK and Japan data and validated on US data). To obtain
the depression-related labels we divided the subjects accord-
ing to their Beck Depression Inventory (BDI) scores: BDI > 3
(depressed), BDI < 3 (not-depressed). This was done to gen-
erate a roughly equal division of the data set into two groups,
with ‘low’ and ‘high” BDI scores, accepting the fact that this
value has no particular clinical significance. Using a higher
value (BDI=10) produced unequal groups and although the clas-
sifier did not produce above-chance classification on this basis,
this is difficult to interpret given the limited power. Note that
there was no correlation between pain VAS and BDI
scores.

The accuracy of the gender model was only 48% (p-value = 1.00)
with sensitivity = 55% (p-value = 0.01) and specificity = 41%
(p-value = 1.00). The accuracy of the depression model, although
statistically significant, was lower than with the pain-related
labels: accuracy = 59% (p-value < 107%), sensitivity = 68%
(p-value < 107), specificity = 50% (p-value = 0.40). This
result was expected given that the depression labels are highly
correlated with the pain labels.

Finally, we also tested if the output of the classifier for each
validation sample (i.e. how far is the sample from the decision
boundary for both sides) correlated with the BDI score for each
individual. The correlation was found to be low (0.22) and not
statistically significant (p-value = 0.074). This result together
with the two confound models are consistent with the hypothesis
that the classifier is primarily related to pain.

Table 2. Support Vector Machine (SVM) classification
results, showing the accuracy, sensitivity and specificity
for the two validation models for pain, and also for

gender and depression.

SVM classifier results (measure, p-value)

Labels Measure Valid. model 1 Valid. model 2
UK+JP > US LTSO-CV
Accuracy 63 % (<10%) 68 % (<109)
Pain Sensitivity 70 % (<107%) 68 % (<10%®)
Specificity 56 % (<107%) 67 % (<107%)
Accuracy 48 % (1.00) -
Gender Sensitivity 55 % (0.01) -
Specificity 41 % (1.00) -
Accuracy 59 % (<10%) -
Depression  Sensitivity 68 % (<107?) -
Specificity 50 % (0.40) -
BDI Correlation 0.22 (0.07) -
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Table 3. Classification using Support Vector Machine. Top 10 positive weights based on validation model 1

(from UK, Japan data, tested on the US data).

Weight ROI ROI Name MNI Centroid Coords
0.0207 83-128 R. olfactory sulc. — L. Hippocampus (12,22,-18) — (-25,-22,-15)
0.0185 62-72 R orb. front. sulc. — L. ant. occipito-temporal lat. sulc. (42,52,0) — (-41,-21,-28)
0.0179 42-111 R.cent. sulc. — R. post. inf. temp. sulc. (42,-17,49) — (54,-60,1)
0.0178 51-128 L. ant. inf. frontal sulc. — L. Hippocampus (-48,39,1) — (-25,-22,-15)
0.0174 81-138 R. occipito-polar sulc. — L. cerebellum (15,-94,-4) — (-25,-61,-35)
0.0164 118 -132 L. post. branch of sup. temporal sulc. — R. Caud. (-47,-66,17) — (13,10,10)
0.0163 109 - 132 R. ant. infer. temp. sul. — R. Caudate (62,-24,-19) — (13,10,10)
0.0162 13-111 L. ant. sub-cent. ramus lat. fiss. — R. post. inf. temp. sulc. (-48,0,7) — (54,-60,1)
0.0155 43-111 L. cent. sylvian sulc. — R. post. inf. temp. sulc. (-60,-2,16) — (54,-60,1)
0.0139 61-66 L. orb. front. sulc. — R. sup. frontal sulc. (-41,50,1) — (26,24,49)

Table 4. Classification using support vector machine. Top 10 negative weights based on validation model 1

(from UK, Japan data, tested on the US data).

Weight ROI ROI Name MNI Centroid Coords
-0.0192 69 - 135 R. ant. intralingual sulc. — R. Hippocampus (15,-60,-4) — (27,-20,-15)
-0.0168 16 - 62 R. post. sub-cent. ramus lat. fissure — R. orb. frontal sulc. (49,-12,16) — (42,52,0)
-0.0164 8-87 R. asc. ramus of lat. fissure — R. int. parietal sulc. (50,19,5) — (6,-56,44)
-0.0162 26 - 61 R. sup. postcent. intraparietal sulc. — L. orb. frontal sulc.  (48,-28,48) — (-41,50,1)
-0.0157 106 — 117 L. rhinal sulc. — R. ant. branch of sup. temporal sulc. (-26,-7,-36) — (56,-47,27)
-0.0154 62 - 124 R. orbital frontal sulc. — L. Thalamus (42,52,0) — (-10,-19,7)
-0.0152 1-100 L. ant. lateral fissure — L. sup. precentral sulc. (-33,13,-21) — (-39,-6,51)
-0.014 20— 21 R. calloso-marginal post. fissure — Left calcarine fissure  (8,-27,45) — (-10,-65,4)
-0.0143 6-62 R. ant. ramus of lat. fissure — R. orbital frontal sulc. (45,27 ,-2) - (42,52,0)
-0.0140 26 —42 R. sup. postcentral intraparietal sulc. — R. central sulc. (48,-28,48) — (42,-17,49)

Classification using Deep Neural Networks

Deep Learning algorithms represent a novel approach to clas-
sification for complex data sets, and have recently been applied
to neuroimaging data (Kim er al., 2016; Plis er al, 2014;
Suk & Shen, 2013). Here, we used a CVAE with the units of
n, = 100, n, = 50, and n; = 10, which achieved the best valida-
tion accuracy for validation model 1 (i.e. training on the UK
and Japan data and validating on the US data). The CVAE
correctly predicted 55% of patients (sensitivity) and 72% of
controls (specificity) on average of 100 trials, correspond-
ing to a total accuracy of 63%. Recall that we built a model
p(X|y) for k-th trial. We used the likelihoods IT, p,(X|y) of all
the 100 models for an ensemble. Then, [, p(X|y = Dp(y = 1) >
I, p(X|y = 0)p(y = 0) indicates that the subject is classified into
the class y = 1. The ensemble achieved a total accuracy of 68%.
Contribution weights varied over trials, and were relatively evenly
matched across contributing nodes: Table 5 summarizes the
regions which were frequently highly weighted.

Using validation model 2 (i.e. pooling the three datasets
together (UK, Japan and US) and using an LTSO CV), the CVAE
correctly predicted 56% of patients (sensitivity) and 71% of
controls (specificity) on average of 10 trials, corresponding to a
total accuracy of 64%. The ensemble of the 10 trials achieved a
total accuracy of 68%.

Characterisation of network changes: Hub Disruption

Evidence of reliable network-based classification indicates a pos-
sible disturbance of network topology in chronic pain. One way
to investigate this further is to apply graph theoretic measures,
which allow characteristation of the basic network topology of
brain networks (Rubinov & Sporns, 2010). This approach has
been widely applied to brain data across a range of psychiatric
and neurological conditions (Bressler & Menon, 2010; Bullmore
& Sporns, 2009). Of particular relevance is "hub disruption’,
which refers to a change in the nodal graph topology for any
individual metric across the whole brain (Achard er al., 2012).
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Table 5. Classification with deep learning. ROIs which are frequently significant in the
CVAE for validation 1 with networks D=default; CO=cingulo-opercular; S=sensorimotor.

Frequency ROI ROI name Network  MNI coord.
0.116 41 Left central sulcus (-41,-20,48)
0.116 36 Right insula S (42,4,2)
0.116 83 Right olfactory sulcus D (12,22,-18)
0.114 59 Left median frontal sulcus D (-15,20,58)
0.112 44 Right central sylvian sulcus S (61,0,17)
0.111 23 Left collateral fissure D (-25,-45,-13)
0.111 46 Right subcallosal sulcus D (4,-14,25)
0.111 40 Right paracentral lobule central sulcus CO (4,-30,55)
0.110 33 Left parieto-occipital fissure D (-9,-69,22)
0.110 42 Right central sulcus S (42,-17,49)

It has previously been shown that brain networks undergo
hub disruption for degree (the number of connections for each
node) in chronic pain, with evidence from both in human
chronic back pain patients and rodent pain models (Mansour
et al., 2016). Here, we estimated Hub Disruption indices across
all 3 data sets using a range of nodal graph metrics (see methods).
As shown in Figure 2, we found changes in HDI for clustering
coefficient and betweenness centrality consistently across all 3
data sets, and evidence for changes in degree HDI in the US cohort,
but not other cohorts.

Characterisation of network changes: Modular
Reorganisation

The modular structure of the brain - the fact that certain groups
of brain regions are especially well-connected with each
other, is one of the fundamental properties of brain networks
(Meunier et al., 2010; Nicolini & Bifone, 2016; Sporns & Betzel,
2016). Different modules reflect information processing
subnetworks that have some degree of independence from each
other. The pattern of changes in hub disruption index might sug-
gest a change in the underlying modularity of the network.
More specifically, a reduction in the extent to which nodes tend
to cluster together, and a reduction in betweenness centrality
(the number of shortest paths between nodes that pass through a
node), in the absence of other aspects of hub disruption, could
relate to a reorganisation of the modular architecture of the
network.

To investigate the pattern of modular reorganisation across our
chronic pain and control datasets, we developed a method to
estimate the common modular architecture across all subjects
in each group. Specifically, we computed the multislice modu-
larity within each group, which effectively couples together all
subjects within each group into a single large network, and esti-
mates the modular structure of this graph to compute a consen-
sus (or ‘agreement’) matrix (Lancichinetti & Fortunato, 2012;
Mucha et al., 2010). Then, we computed the difference between
the agreement matrix for the chronic pain and control groups, to
determine the agreement difference matrix (Figure 1). This matrix

consists of positive (red) and negative (blue) values. The positive
values reflect pairs of nodes that are estimated to appear more
commonly in the same module in pain patients, and the nega-
tive values represent pairs of nodes that are estimated to appear
less commonly in pain patients. We defined the overall modu-
lar reorganisation for each node as the sum of both positive and
negative values for each node (i.e. the sum of each column in the
agreement difference matrix). That is, the larger the value, the
greater the reorganisation (purple plot in Figure 1).

To statistically evaluate the values, we performed a permutation
test of sum reorganisation estimation, to yield one-sided p-values
across all ROIs. As illustrated in Figure 3 and Table 6 (at a
threshold of p < 0.01), changes were seen across widespread
bilateral sensorimotor cortical regions. We also saw significant
changes in right inferolateral prefrontal cortex, bilateral temporal
cortical regions, and left intraparietal sulcus.

The modular reorganisation analysis allows us to consider
separately positive and negative reorganisation values (see also
Table 7). In sensorimotor cortex, we observed that reorganisa-
tion tended to be dominated by negative values i.e. reflecting
a reduction in the tendency of these regions to form modular
"partners’ in chronic pain. This was in fact the most common pat-
tern across most brain regions (i.e. in Table 6), suggesting that
negative modular reorganisation reflects the broad characteristic
feature of chronic pain. The region with the highest positive
reorganisation was the left intraparietal sulcus. Indeed this was the
only region identified in our overall sum modular reorganisation
at a discovery threshold of p<0.01 (Table 6) that had a reason-
able significance level (p<0.014) when restricting the analysis to
purely positive reorganisation (Table 7).

Finally, since recent research has highlighted a potentially
important role for the pregenual anterior cingulate cortex
(pgACC) in endogenous control of persistent pain, which would
provide a mechanistic link to psychological theories of pain
which highlight resilience and fear-avoidance. We therefore tested
whether pgACC connectivity was different in the patient group
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Figure 2. Hub disruption results for a) Clustering coefficient, b) Betweenness centrality, and ¢) Degree. The figure shows the HDI index
individually for each site, and for the entire dataset. For each metric, we show the distribution of subject-wise HDI on the left panels, and the
scatter plot of the ROI-specific changes in nodal graph metric on the right panels.
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Figure 3. Brain regions showing modular reorganisation. Anterior view from top left (a) and top right (b), superior view (c), and posterior
view (d) show 19 brain ROIs with the best evidence for modular reorganisation in the pain group, compared to the control group, based on
the arbitrary threshold of p < 0.01, as listed in Table 6. The ROls are colour coded according to their basic anatomical region (cortical lobe):
ROls in frontal lobe in light orange, frontoparietal lobe in light magenta, parietal lobe in light blue, and temperoparietal lobe in light green.

(across all data sets). We found pgACC showed enhanced
connectivity with regions of sensorimotor cortex, including
several areas overlapping those identified in our network
modularity reorganization analysis (Figure 4, Table 8).

Discussion

The results show that there are sufficient brain network changes
in chronic back pain to allow reliable classification. Furthermore,
the way in which networks are changed follows a characteristic
pattern, with global disruption of hub connectivity and modular
reorganisation. In particular, we show that bilateral sensorimotor
cortical regions undergo the substantial reorganisation, including in
regions that also carry predictive weight in classification.

Since chronic pain dominates many aspects of cognition and
action, the existence of widespread connectivity changes is not
unexpected (Baliki er al., 2011; Baliki er al., 2008; Hashmi
et al., 2013; Hemington et al., 2016; Kutch et al., 2017; Napadow
et al., 2010; Tagliazucchi et al., 2010). A challenge, therefore,
is to try and identify regions that may have an important or driv-
ing role in pain. The approach we take here looks across several

methods: connectivity-based machine learning to identify changes
important for classification, and a modularity analysis to identify
brain regions that show fundamental changes in their functional
network identity. Although it is not possible to differentiate
causal from consequential connectivity changes, these methods
can identify regions that appear to be important in chronic pain
at an informational level.

In particular, we present a network modularity analysis approach
that aims to identify brain regions that are reorganised in
chronic pain. Modular reorganisation is defined on the basis of
connections from a particular ROI that appear to join or leave
modules with other ROIs - effectively reflecting a change in the
ROIs modular identity. This analysis identifies a number of brain
regions, but was clearly dominated by sensorimotor cortical
regions (i.e. sensory, motor, and premotor cortex). Sensorimo-
tor cortex has been consistently implicated in chronic pain (Eto
et al., 2011; Flor et al., 1997, Kim & Nabekura, 2011;
Kuner & Flor, 2017; Kutch et al., 2017; Yanagisawa et al., 2016),
and consequently is a well-recognised target for direct interven-
tion (for instance by stimulation or neurofeedback). The efficacy

Page 12 of 24



Wellcome Open Research 2018, 3:19 Last updated: 12 FEB 2020

Table 6. Brain ROIs that show modular reorganisation at a cut-off threshold of p < 0.01. The table lists
the ROI by number (in the BSA-AAL composite atlas), with its corresponding anatomical label, region and
MNI coordinates. The overall modularity reorganisation metric AD is listed, included it's decomposition into
positive and negative contributory factors. For anatomy, F=frontal; TP=temporoparietal; FP=frontoparietal;

P=parietal.

AD (+/-) p-value ROI Anatomical label Anat. MNI coord.
10.63 (4.23, -6.39) 0.001 8 R. ascending ramus of the lat. fissure F (50,19,5)
9.20 (3.54, -5.66) 0.001 10 R. diagonal ramus of the lat. fissure F (54,17,12)
14.30 (5.29, -9.01) 0.002 3 L. post. lat. fissure TP (-54,-20,10)
12.84 (4.62, -8.22) 0.002 16 R. post. sub-cent. ramus of the lat. fissure 2 (49,-12,16)
12.02 (5.59, -6.43) 0.002 27 L. intraparietal sulcus P (-30,-66,40)
8.20 (1.52, -6.68) 0.003 98 L. median precentral sulcus F (-20,-15,66)
11.10 (3.67, -7.42) 0.004 11 L. retrocent. trans. ramus of lat. fissure P (-62,-20,23)
12.82 (4.59, -8.24) 0.004 15 L. post. sub-central ramus of the lat. fissure TP (-50,-15,13)
8.50 (1.68, -6.83) 0.004 39 L. paracentral lobule central sulcus FP (-5,-29,57)
11.61 (3.90, -7.71) 0.004 43 L. central sylvian sulcus F (-60,-2,16)
13.88 (5.12, -8.76) 0.005 4 R. post. lat. fissure TP (55,-15,13)
7.67 (1.27, -6.40) 0.006 42 R. central sulcus FP (42,-17,49)
7.84 (1.35, -6.49) 0.006 99 R. median precentral sulcus F (17,-15,68)
8.15 (1.45, -6.70) 0.006 103 R. sup. postcentral sulcus P (26,-39,63)
7.78 (1.34, -6.39) 0.006 120 L. paracentral sulcus (-6,-16,58)
10.48 (3.20, -7.28) 0.007 44 R. central sylvian sulcus FP (61,0,17)
8.17 (1.46, -6.72) 0.007 96 L. marginal precentral sulcus F (-28,-11,60)
8.52 (1.68, -6.84) 0.007 97 R. marginal precentral sulcus F (27,-8,61)
8.04 (1.43, -6.62) 0.007 121 R. paracentral sulcus F (5,-22,58)

Table 7. Modular brain reorganisation at cut-off threshold of p < 0.05 considering only positive
or negative agreement difference values AD. The table lists the ROl by number (in the BSA-AAL
composite atlas), with its corresponding anatomical label, region and MNI coordinates. Networks are

D=default; O=occipital.

AD (pos.) p-value ROI Anatomical label Network MNI coord.
5.59 0.014 27 Left intraparietal sulcus D (-30,-66,40)
8.7 0.041 75  Right internal occipito-temporal lateral O (36,-56,-17)
573 0.043 76 sulcus Left rlr;?srizlnsilcccdzito—temporal 0 (-48,-48,-20)

AD (neg.) p-value ROI Anatomical label Network MNI coord.
-0.84 0.027 70 Left posterior intra-lingual sulcus O (-6,-76,-9)
-0.90 0.030 69 Right anterior intralingual sulcus O (15,-60,-4)
-0.90 0.033 71 Right posterior intra-lingual sulcus (0] (10,-73,-6)
-0.96 0.048 47 Left cuneal sulcus O (-4,-86,17)

of these interventions implies an important role of sensorimotor
cortex in chronic pain experience (Antal er al., 2010; Garcia-
Larrea et al., 1999; Hosomi et al., 2008; Tsubokawa et al., 1991;
Yanagisawa ef al., 2016). In machine learning studies, voxels
in SI have been shown to carry the greatest weight in classifiers
trained on BOLD responses during experimental electrical lower

back stimulation (Callan er al., 2014), and structural image decod-
ing analyses identifies high classification weights in sensory and
motor cortices (amongst other regions) (Koush er al., 2013; Ung
et al., 2012). Overall, this is consistent with an important role
for multiple subregions of sensorimotor cortex in the chronic
back pain state. But notably, however, we find less evidence of
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Figure 4. Brain regions showing increased connectivity with bilateral pgACC seeds in pain > controls. This identifies bilateral regions
of sensorimotor cortex, including premotor and lateral prefrontal regions (See Table 8 for coordinates and statistics).

Table 8. Brain regions associated with increased pgACC
seed connectivity in chronic pain versus controls. The
table lists regions showing cluster-level FWE corrected
significant regions in bilateral sensorimotor/premotor and
lateral prefrontal regions (see Figure 4).

Coords (x,y,z) Peak-level Cluster-level t equivZ
FWE-corr FWE-corr
58,12,32 0.214 0.003 498 4.79.
-36,38,14 0.359 0.001 4.82. 4.65
58,-4,46 0.604 0.005 462 4.46
-58,8,-4 0.800 0.006 446 4.32
52,-4,32 0.966 0.014 424 412
48,40,10 0.966 0.002 424 412

striatal-prefrontal regions, and cingulo-opercular regions in our
analyses. Although these regions have a demonstrated role in
chronic pain, the evidence here does not support a fundamental
reorganisation of them at a network level.

A particularly interesting finding in our data is that (left) intra-
parietal cortex displays a pattern of significant network change
that is characterised by a relatively large amount of positive
modular reorganisation. That is, it appears to enhance its modu-
lar links with other brain regions, hinting at a potentially impor-
tant role in generating the chronic pain state. As an unexpected
finding it should be interpreted cautiously, but it could relate
to the regions involvement in perceptual-motor coordina-
tion and (Grefkes & Fink, 2005) or multisensory peripersonal
attention (Makin er al., 2007) - a hypothesis that would benefit from
further study.

The observation that pgACC - sensorimotor cortex is enhanced
in chronic pain offers a potential link between networks
involved in sensorimotor reorganisation and those involved
in motivational and affective processing. Notably, the pgACC
is a key node in the pain modulatory network - widely con-
nected to cortical regions associated with pain and reward
value and decision-making, and critically connected to the
descending control system. It has been proposed to modulate
pain based on the amount of prospective learnable information
that pain onset or offset carries, based on computational
estimates uncertainty (Zhang e al., 2018). Furthermore, pgACC
has been directly linked to chronic pain: for instance it lies
close to medial PFC regions link to risk of developing chronic
back pain (Baliki er al., 2012), and enhanced connectivity with
PAG is seen in chronic neuropathic pain in a symptom-specific
manner (Segerdahl er al., 2018)

Network changes may arise in chronic pain for a variety of distinct
reasons, and it is difficult to distinguish these on the basis of an
rsfMRI scan at a single point in time. For instance, some regions
may have a primary causative or risk factor role in the clinical
manifestation of chronic pain, and therefore might be expected
to be apparent before chronic pain is itself established (striatal -
medial prefrontal cortical regions are candidate regions for this
(Baliki er al., 2012)). Alternatively, other regions might have no
role in the cause or expression of chronic pain, but instead reflect
consequential (i.e. downstream) changes, for example perceptual
learning of a new sensory environment in which pain is more
common (Mancini et al., 2016; Mano et al., 2017). Such regions
might be expected to manifest later, and resolve with successful
pain treatment (Rodriguez-Raecke er al., 2009).

Further complexities of studying network changes in pain
relate to confounding factors such as medication use, secondary
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effects of pain such as disability, and co-morbid disease such as
depression. We also cannot determine the specificity of our
results to chronic back pain, as opposed to other chronic pain
conditions, and recent evidence suggests that many aspects of
network changes may be common (Baliki er al., 2014;
Mansour et al., 2016). Hence future network studies would be
greatly enhanced by longitudinal data (and pre-morbid data when
available), better identifying correlations with pain severity,
evaluation of response to drugs, and use of open data sources to
provide larger data sets to test generalisation across diagnoses.
This should allow distinction of components of the network
that reflect the cumulative impact of chronic pain, from those
reflect a state-dependent biomarker for ongoing symptomatic
experience.

Methodological caveats that should be noted are that identification
of network changes may depend on the brain atlas used. Higher
resolution atlas (i.e. greater number of smaller ROIs) may have
a better ability to detection small regions that are important, but
greatly increase the numbers of features for classification, which
can lead to spurious over-fitting and worse generalisation of the
results.

In terms of classification methods, the accuracy of the SVM
is comparable with that seen in other machine learning-based
disease biomarkers that have used independent validation cohorts
(Takagi et al., 2017; Yahata er al., 2016) (albeit less than that
seen with classifiers for phasic BOLD responses to acute painful
stimulation in healthy individuals (Wager ez al., 2013)). Here, we
also applied a deep learning approach using deep convolutional
neural networks, the utility of which has not previously been tested
in chronic pain. Deep networks are best known for solving natural
image recognition problems with high accuracy, often using very
large training data sets. This is typically necessary since they have
to extract features from images automatically. With smaller data
sets, accuracy is reduced, but performance may still be strong,
and this has led to their application to human neuroimaging data.
Here, we used a CVAE with a small number of network layers,
which suppresses over-fitting in return for a lower classifica-
tion accuracy than ordinary deep neural networks. An important
difference between the connectivity-based decoding and the deep
neural network is that the input to the latter is the ROI time-
series, not a correlation matrix. In principle, this allows it to
use nonlinear and non-pairwise correlations between ROIs
implicitly, and hence confers the capacity for much more
complex feature extraction. This means that performance may
improve when new data becomes available, and help to make deep
neural networks a promising method for future classifiers and
biomarkers.

In terms of theories of chronic pain, the data here support the
general notion of chronic pain as a network disorder, albeit with
different aspects of specific regions of the network disturbed
in different ways. This approach adds to and complement a
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substantial body of studies identifying and characterising
network changes in chronic pain (Apkarian er al, 2009). The
limitations of rsfMRI network analysis also emphasises the
importance of understanding the underlying behaviour and
computational function of network nodes in chronic pain (for
instance, the intraparietal sulcus), and data-driven methods
should ideally complement hypothesis-driven task-based studies
in clinical groups. Notwithstanding this, a particularly attrac-
tive property of the network-theory based approach is their
translational applicability to animal models, since topological
metrics are relatively independent of brain morphology. In
principle, this allows targeted experimental interventions to
test whether there is a direct relationship between network
specific changes and the manifestation of chronic pain.

Data availability

Pre-processed fMRI data from both UK and Japan are available
at the ATR Open Access Database (as raw connectivity matrices).
Application form and license information can be found here. Data
is available by emailing decnef-db-admin @atr.jp.

Raw data are available from the OpenPain Project (OPP), which is
where we sourced the validation fMRI data (Principal Investigator:
A. Vania Apkarian). Licence information is found here, and access
to data is provided by registering here.

SVM data analysis code for fMRI data (PRoNTO) was co-
written by MR and is available at http://www.mlnl.cs.ucl.ac.uk/
pronto/. The code for modularity reorganisation is available at:
http://doi.org/10.5281/zenodo.1183399 (leiken, 2018). Toolboxes
for deep learning analyses are available at https://www.tensorflow.
org/about/bib.
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Jiro Kurata
Department of Anesthesiology and Pain Clinic, Tokyo Medical and Dental University Hospital of Medicine,
Tokyo, Japan

The present study by Mano et al. examined differences in brain network topology between 41 patients
with chronic low back pain and 56 matched healthy controls, recruited at two sites in UK and Japan, using
resting-state functional and structural MRI data. They performed an inter-regional correlation analysis
over 140 predefined ROIs and classified the resultant connectivity matrices using Support Vector
Machines into patient and control groups, and further validated the classifier on an independent dataset
from the US (OpenPain Project) as well as on the total datasets. They described hub disruption over
clustering coefficient, betweenness centrality, and degree; and highlighted brain modular reorganization
at 7 specific areas including the left intraparietal sulcus in patients. They concluded feasibility of graph
theory-based machine-learning classification in differentiating chronic pain patients and healthy controls.

First, | would praise the authors' tremendous, sophisticated computational efforts in utilizing graph-theory
analysis and machine-learning. Their findings on the specific network alterations and reorganized
modules in chronic low back pain would potentially be good candidates for further inquiry into their
pathophysiological significance, as they also stated in the conclusion remarks.

So far they did not examine possible correlations between those graph theory-based and psychophysical
parameters. Considering highly mathematical, theoretical nature of graph-theory analysis, it might rather
be a good idea to reexamine more physiologically straightforward indices like functional connectivity and
gray matter volume at those networks and modules that showed alteration in patients. A further correlation
analysis with behavioral parameters would also be a plus.

| was impressed by a dominant distribution of modular reorganization over the vast sensorimotor cortical
areas. Those areas, as well as the intraparietal sulcus, might well be involved in plastic, functional and
anatomical changes in chronic pain patients. As the authors mentioned, it might accord with many earlier
neuroimaging studies as well as our recent unpublished data on functional connectivity and gray matter
volume in those areas. | would be eager to see further results on possible associations between the
current findings and the other imaging/behavioral parameters.
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Although hub disruption over the whole brain in patients might imply some global network reorganization
or dysfunction, it remains unclear what kind of alterations in either pain perception, cognition, or other
brain functions might be relevant to such phenomena. Could it be associated with, as it were, "well-being"
of brain function as a whole? | would appreciate the authors' further analysis and comments on this
significant finding.

Overall, | would welcome and approve the present paper as it will add an indispensable piece of
knowledge to cerebral pathophysiology of chronic pain.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
| cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Ben Seymour, National Institute of Information and Communications Technology, Osaka, Japan

We thank the reviewers for their thoughtful and detailed evaluation. The new manuscript includes a
supplement where we summarise the key issues that have been raised together by the 3
reviewers, and detail our response to them and the associated changes to the original manuscript
that are in the revised version of the manuscript.

We also want to highlight the valuable general commentary provided by the reviewers in relation to

the broader aspects of network changes and biomarkers for chronic pain, and believe the open
reviews offer a valuable perspective which greatly enhances the publication as a whole.
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Tor D. Wager
Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA

This study investigates case-control differences between individuals with chronic back pain and matched
controls across three independent cohorts. The authors take several complementary approaches to
characterizing network-level changes in functional connectivity, including Support Vector Machine (SVM)
classification of patients vs. controls, classification based on a deep neural network conditional variation
auto encoder (CVAE), analysis of ‘hub disruption’, a global measure of functional network reorganization,
and a modular reorganization analysis that assesses group-level changes in which regions belong to the
same clusters (or ‘modules’) based on functional connectivity. Overall, the analyses are sophisticated and
informative.

One strength of the manuscript is that they assess the strength and of their results in terms of utility as a
biomarker. Many studies show differences between patients and controls - but a key question
unanswered by traditional analyses is how large those differences are, and whether they are related to
back pain with sufficient effect sizes to allow correct classification at the individual-person level. Mano et
al. take a prediction approach, demonstrating 70% sensitivity and 58% specificity for cases (6 months
plus of back pain) vs. controls, when applied to a new cohort, and similar accuracy in another type of
cross-validation. The CVAE performed similarly. This demonstrates that the results are replicable across
studies and have at least limited utility as a biomarker.

Embedded in these tests, and others, is another strength of the paper: the demonstration of
generalizability. A recent trend in the literature is the sharing and pooling of data across sites. This allows
for the aggregation of larger, more diverse samples, which is important for power, for the fidelity of the
“picture” of brain changes with chronic pain and other disorders, and for establishing findings that
generalize across laboratories and samples. This study is commendable in that it pools together data
from 158 participants across three cohorts. In addition, the authors have already shared their data with the
community. While multi-lab, multi-site analyses are becoming more common in some kinds of research -
notably dementia, autism, and Parkinson’s - they are still very rare in chronic pain research. The MAPP
pelvic pain consortium studies are a notable exception. This study demonstrates reproducibility across
studies and a practice of data-sharing that will really help move the field forward.

A third strength of the study is the attempt to replicate and extend previous findings by Mansour et al.
2016, who found that chronic pain patients show signs of ‘hub disruption’ - changes in the hub status,
broadly related to the number and strength of connections and a region’s role in brain networks - of brain
regions across the brain. Mano et al. extend earlier results by testing several different hub metrics across
the three datasets, and found the most consistent disruptions in clustering coefficient and betweenness
centrality. It would be helpful here to also test how well these metrics work as a classifier, and what their
correlation is with the severity and duration of chronic pain. As hub disruption does not provide any
information about which brain regions and connections are driving the effects - which patterns because
different groups may exhibit ‘hub disruption’ for different reasons, (e.g., it is related to loss of
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consciousness), it would also be helpful to further characterize the particular patterns underlying these
global changes. Nonetheless, the convergence with previous findings, and generalization across studies,
is promising.

So what have we learned about the genesis and nature of chronic back pain? The study offers data on
two, complementary perspectives. In the SVM analyses, some of the most important differences between
patients and controls are found in fronto-striatal and fronto-hippocampal connections. (These are not
discussed much in the paper, and it would be interesting to hear the authors’ perspective). This matches
other recent studies in humans and rodents suggesting that fronto-hippocampal and fronto-striatal circuits
play an important role in chronic pain. It would be helpful to visualize these findings in the paper and
examine convergence with other analyses. The modular reorganization analyses paints a somewhat
different picture: Sensorimotor reorganization, and in particular reduced tendency for sensorimotor
regions to couple with other regions. Though the jury is still out, it is tempting to speculate that these
changes are similar to those that might occur with evoked, nociceptive pain. However, comparable
analyses have not yet been done for evoked pain, so it’s difficult to tell.

What is at stake is whether chronic back pain involves reorganization of systems related to nociception -
enhanced nociceptive input, reduced descending inhibition, and/or descending facilitation - or whether
the key systems are extra-nociceptive, and the pain is generated and maintained in the brain itself. The
present study offers findings that are broadly consistent with both hypotheses. Of course, it’s difficult to
say much more, because the relationship of these systems with either evoked pain experience or chronic,
ongoing back pain intensity was not studied here - and the resolution of the regions that are the units of
analysis in current ‘modularity’ analyses is too coarse to say for sure what the relationship is between
regional activity and either nociceptive or descending modulatory systems. Nonetheless, this paper is an
important step forward.

Other future challenges remain as well, of course, though this does not take away from the value of the
present work.
1. If we’re going to be able to count on measures as biomarkers for pain-linked systems, they’re going
to have to be more accurate. They’ll also have to be linked to pain experience or other aspects of
(dys)function, as well, and their specificity to pain (or other processes) will have to be assessed.

2. We need advances in how to deal with correlated variables in a multivariate predictive analysis
framework. This is noted as a limitation here and some attempts were made to address selective
confounds. But socioeconomic status, social standing, early-life adversity, body-mass/overweight,
use of medicines and other drugs, sleep, and other variables are correlated with chronic pain
incidence. If we think of these as confounds and try to look at the unique effects of back pain above
and beyond all its various correlates and risk factors, we will never get anywhere. Mano et al. show
that brain activity was predictive of chronic pain status, but not depression status (depressed vs.
control). Other tests might be productively performed, including: Are the predicted chronic pain
scores (e.g., distance from the SVM hyperplane) correlated with gender, depression, head
movement, or other variables? And are they correlated with any of these more strongly than they
correlate with chronic pain status? Mano et al. do report the [presumptive point-biserial] correlation
of the pain classifier output with depression scores (r = 0.22), but do not compare this value with
the correlation of the pain classifier output with pain.
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3. Inthe future, it will also be important for the field to develop strategies to effectively control for or
minimize the influence of nuisance variables (here, gender and head movement displacement) in
the course of SVM (or other) model training, identifying patterns optimized or constrained to be
unrelated to them.

Overall, this is a very nice effort, and it moves the needle in terms of advancing research on chronic pain.

Is the work clearly and accurately presented and does it cite the current literature?
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Yes

Are all the source data underlying the results available to ensure full reproducibility?
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that are in the revised version of the manuscript.
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Departments of Surgery and Anesthesia, Northwestern University, Chicago, IL, USA

This is an elegant study, where the authors use 3 different resting state fMRI data in chronic back pain
patients and controls, to test for brain network disruptions, and use such metrics to classify subjects using
machine learning algorithms.

Using network properties and support vector learning algorithm, they demonstrate that patients and
controls can be robustly differentiated from each other. The authors use two alternative classifications,
sex and depression, as internal controls to test for outcome specificity. While the methods fails to
differentiate sex, it was successful on depression. Here, | have some reservations. The depression
classification was based on BDI score with a value = 3 used to define presence or absence of depression.
It was not clear to me where this cut-off comes from. Certainly in the clinical literature this cut-off is
meaningless, as it is too low. | wonder if this cut-off was increased to some value above 10, what the
results would look like. In the same vein, it would be nice to see the actual correlation between pain and
BDI, both in patients and healthy controls. Perhaps it would be more judicious, to do the classification
after correcting one scale with the other. Otherwise, the results are always a mixture of both. See for
example the study by Davis et al.(2016)". The same issue also applies to the classification using deep

learning algorithm.

The authors next test hub disruption using multiple network topographic measures. Interestingly, the one
based on degree count, fails for the Japan data, although this measure was shown to be robust in our own
hands, across humans and rodents, and for multiple chronic pain conditions. The observation is important
from the viewpoint of across lab replicability of such measure, and the authors should be congratulated for
taking such a step, especially in the field of pain research, where not enough is being done along
replication. | want to note that they have already uploaded all of their fRMI data into OpenPain, and we are
already using their data in a different research direction.

A general point that may be important to address regards the specificity of identified networks both for
classification and for modularity analyses. The authors emphasize somatosensory nodes as being the
most important in the current analysis. In our earlier hub disruption study, we showed that removing the
most significant nodes had no effect on hub disruption, and that we could randomly remove 99% of links
and still see the same magnitude of disruption. It would be nice if the authors of the current study test the
same idea. For example, in the SVM analysis, does classification fail when you remove the top links?
Similarly, in the modularity analysis. Such an analysis has the potential of importantly changing the
discussion viewpoint.

Overall, although I raise points that can further expand on understanding reported results, this is a well
done study with important conclusions, using state of the methods.
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