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Objective: We investigate the design of deep recurrent neural networks for detecting

sleep stages from single channel EEG signals recorded at home by non-expert users. We

report the effect of data set size, architecture choices, regularization, and personalization

on the classification performance.

Methods: We evaluated 58 different architectures and training configurations using

three-fold cross validation.

Results: A network consisting of convolutional (CONV) layers and long short

term memory (LSTM) layers can achieve an agreement with a human annotator of

Cohen’s Kappa of ∼0.73 using a training data set of 19 subjects. Regularization and

personalization do not lead to a performance gain.

Conclusion: The optimal neural network architecture achieves a performance that is

very close to the previously reported human inter-expert agreement of Kappa 0.75.

Significance: We give the first detailed account of CONV/LSTM network design

process for EEG sleep staging in single channel home based setting.

Keywords: deep learning, recurrent networks, EEG, sleep staging, hypnogram

INTRODUCTION

SLEEP can be formally defined as a state of reversible disconnection from the environment
characterized by quiescence and reduced responsiveness usually associated with immobility.
Although the precise function of sleep remains to be elucidated, it appears that sleep primarily
benefits the brain (Cirelli and Tononi, 2008). Sleep is of the brain, by the brain, and for the
brain (Hobson, 2005); not surprisingly the brain activity during sleep undergoes striking changes
compared to that during wakefulness.

In humans, non-rapid eye movement sleep (NREM) and rapid eye movement sleep (REM)
cyclically alternate with a periodicity of approximately 90min. REM and NREM sleep occupy∼20
and 80% of total sleep time, respectively. NREM sleep includes lighter stages N1 and N2 and deep
sleep N3 (also known as slow wave sleep). The sleep process can be characterized using the time
dependent sleep stage dynamics which is represented using the hypnogram (see Figure 3).

Recent research evidence indicates that modulating sleep activity patterns, via peripheral
stimulation at specific sleep stages can be beneficial in a wide range of contexts including memory
acquisition, memory consolidation (Marshall et al., 2004, 2006) and relief from depression (Vogel
et al., 1980; Landsness et al., 2011). To verify the validity of such interventions in practice requires
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conducting research in a larger population using automated
means for online sleep staging with low latency to allow timely
intervention.

In conventional clinical practice, a sleep stage for each 30-
s long epoch is assigned by an expert sleep technician. This
process referred to as manual sleep staging follows standardized
rules (Iber et al., 2007) based on polysomnographic signals
that include the electroencephalogram (EEG), electro-oculogram
(EOG), electro-myogram (EMG), and the electrocardiogram
(EKG).

The emergence of consumer sleep technologies that monitor
sleep EEG (often just a single signal; Ko et al., 2015), has
motivated the need for single channel EEG based automatic
sleep staging. Real-time sleep staging is proposed in Kuwahara
et al. (1988) using EEG, electro-oculogram (EOG), and electro-
myogram signals (EMG). We consider here the option of
achieving online automatic sleep staging on the basis of a single
channel (or signal). Using a single signal permits to simplify the
research setup and increases subject comfort.

In the research reported in this paper, we have leveraged
state-of-the-art deep neural networks to automatically detect
sleep stages (REM as well as NREM sleep stages N1-N3
denoting increasing sleep depth) and Wake based on a single
EEG signal recorded with a sleep monitoring prototype.
Designing the deep neural network architecture is critical
to ensure sufficient accuracy and requires expert domain
knowledge.

A multitude of automatic sleep staging methods have been
devised to date, which are based on a variety of different feature
extraction and classification schemes for both on-line and off-
line use. We refer the reader to the recent article of Boostani
et al. (2017) for comprehensive review. However, we have focused
our investigation solely on single-channel, pure end-to-end deep
learning solutions as suggested in Ko et al. (2015) and Tsinalis
et al. (2016) and Biswal et al. (2017) and Supratak et al. (2017),
while using causal recurrent neural networks to enable on-line
sleep staging. Thus, we have modeled automatic sleep staging as
a sequence-to-sequence mapping problem which maps an EEG
time series to a sequence of sleep stages.

Specific questions addressed in this paper include:

1. Defining the optimal training sequence length and number
of sleep sessions from different subjects to train the deep
network,

2. The selection of regularization type,
3. The optimal network architecture, and
4. The role of demographically (age/gender) based

personalization on performance.

METHODS

Datasets
Our main in-house dataset consists of 147 overnight sleep
recordings which were acquired from 29 healthy subjects (18 F,
age: 37 ± 6.8 yrs. old) at home using a wearable sleep EEG/EOG
prototype. Approximately five sleep recordings per subject with
an average duration of 7.3 ± 3.9 h have been used. This study

has been approved by the Western Institutional Review Board
(WIRB).

The prototype recorded three signals: EEG (FPz), left EOG,
and right EOG referenced to the right mastoid (M2). The signals
were acquired at 1,000Hz, high pass filtered using a single pole
filter (0.3Hz cutoff frequency), notch filtered at 60Hz to remove
power line noise, down-sampled to 100Hz after applying an 8th-
order 40HzChebyshev Type 1 low pass anti-alias filter (Parks and
McClellan, 1972), and saved for offline processing.

The saved EEG/EOG signals were used for manual sleep
staging while only the EEG was used for automatic sleep staging.

Manual staging was performed by a certified sleep technician
who assigned a sleep stage wake, REM, N1, N2, N3 or “unknown”
(in case of poor signal quality or presence of artifacts) to each 30
s-long window. The percentages of annotated sleep stages across
the whole dataset averaged over subjects are: 16.0% wake, 13.5%
REM, 2.5% N1, 38.9% N2, 18.0% N3, and 11.1% unknown. These
proportions are consistent with normal human sleep architecture
(Carskadon and Dement, 2011).

As a secondary dataset for the experiments described in
Section Performance on the SIESTA Database we use the
public SIESTA database (Klosch et al., 2001), which includes 2
polygraphic sleep recordings of 294 subjects each, totaling 588
nights. The percentages of sleep stages across the whole dataset,
when averaged across subjects, are: 15.0% wake, 19.1% REM,
10.2% N1, 43.6% N2, and 11.2% N3.

Since the SIESTA database does not include the FPz-M2 signal
we approximated it by averaging the FP1 and FP2 signals after re-
referencing toM2.We then filtered and down-sampled the signal
to 100Hz to match the first dataset. As sleep stage annotation we
used the included Rechtschaffen-and-Kales (R&K) “consensus”
score of the two primary annotators, and we combined the classes
S3 and S4 into the single class N3. Sleep staging in SIESTA
was done using the standard PSG which makes this database an
appropriate benchmark for the method presented in this paper.

Figure 1 shows the distribution of the annotated sleep stages
for our primary in-house database and the secondary SIESTA
database. The distributions are very similar though we find a
notably larger portion of data with “unknown” label in our
in-house dataset. This is consistent with the fact that our
database was recorded by subjects themselves in a substantially
less controlled environment compared to a sleep lab, while the
SIESTA dataset was collected in professional sleep laboratories.
Further, notable differences exist in the percentage of N1, N3,
and REM. N1 is shorter and N3 is longer for the home based
recordings compared to in-lab which may be due to the fact
that subjects sleep better at home. The vertical bars in Figure 1

show the subject based variability, while the symbols “∗” and “∗∗”
indicate a p-value of a Wilcoxon rank-sum test of < 0.05 and <

0.01, respectively.

Baseline Sleep Stager Network Design
We consider the neural network architecture shown in Figure 2

which follows a common deep learning recipe to handle
sequence models. The input signal propagates through cascaded
convolutional layers (CONV; Krizhevsky et al., 2012) that act
as local feature extractors, while max-pooling operations are
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FIGURE 1 | Distribution of the annotated sleep stages for the in-house

database and the SIESTA database. The variance bars indicate the

per-subject variance. The symbols “*” and “**” indicate a p-value of a Wilcoxon

rank-sum test of <0.05 and <0.01, respectively.

included to allow some shift invariance. The CONV result is
then processed through a series of long short term memory
layers (LSTM; Hochreiter and Schmidhuber, 1997) which model
longer-range temporal structure in time series data.

The network takes as input consecutive non-overlapping
windows of 3,000 EEG samples (corresponding to 30 s long
windows). The input is processed with a stack of 3 (NCONVlayers)
convolutional layers, which have 8, 16, and 32 filters, respectively,
kernel width 8, stride 1, no padding, rectified linear activations
(ReLU; Nair and Hinton, 2010), and max-pooling by 8. The
3 convolutional layers have 72, 1,040, and 4,128 trainable
parameters, and their output data dimensions are 374 × 8, 45 ×
16, and 4× 32.

The output of the convolutional layers is flattened and
appended with a two-element demographic information vector:
age and gender (+1 for men and −1 for women). Age and
gender information are relevant as sleep architecture and EEG
sleep properties vary across lifespan and that variability appears
to be gender dependent (Ohayon et al., 2004; Carrier et al., 2011).
In the baseline configuration both, age and gender inputs were
disabled, i.e., clamped to zero.

For each EEG window “time step,” the concatenated
130-element vector is then fed to a stack of 2 (NLSTMlayers) large
recurrent LSTM layers with 64 (Nunits) units each. The 2 layers
have 50,432 and 33,024 trainable parameters, and output size 64
each.

The output layer is a small 5-unit LSTM with softmax
output activation, and it has 1,400 trainable parameters. The 5-
component output vector represents for each time step the class
probabilities (or soft decisions) that the given 30 s input window
belongs to sleep stages wake, REM, N1, N2, and N3, respectively.
The sleep stage hard decision is the one associated with the
maximum class probability.

It should be noted that an LSTM layer can also approximate
the function of a dense feed forward layer when the memory cell

functionality is disabled though the appropriate internal kernel
and bias configurations. We therefore did not add a dedicated
“Dense” (fully connected) layer to the output of the model.

Figure 3 shows an example of class probabilities (top panel),
the corresponding hard decision (middle panel), and the manual
sleep stage annotation or ground truth (bottom panel). The hard
decision sleep stage output and the manual annotation agree with
a Kappa score of 0.73. The Cohen Kappa statistic is a popular
metric used for sleep staging (Cohen, 1960).

Training and Performance Evaluation
Methods
The network was implemented in Python with Keras and
(Chollet, 2017) and TensorFlow (Abadi et al., 2016), and it
was trained with a categorical cross-entropy loss using the
ADAM optimizer (Kingma and Ba, 2014; learning rate = 0.001,
β1 = 0.9, β2 = 0.999, ε = 10−8, decay = 0). The training
batch size was set to 128 sequences. The sequences are
randomly picked from all training subjects. Each sequence is 128
consecutive windows long, i.e., it spans a duration of 64min.
The starting sample of a training sequence was randomly chosen
from within the recording of a subject, i.e., not necessarily
coinciding with the start of a 30 s annotated window, and
the training target stage score was taken from the annotated
stage closest to the central sample of the EEG window. This
procedure is a form of data augmentation, and is described
in more detail in Section Regularization. A training epoch
consisted of 16 batches, and the training was run for 512
epochs.

We have evaluated the performance of the sleep stager using
the Kappa statistic applied to the whole sleep recording and
starting from the first EEG sample. Therefore, the boundaries of
the windows chosen for evaluation coincide with that used in the
manual scoring process.

Three-fold cross-validation (CV) is applied for all experiments
reported in this paper. Folds were split across subjects, i.e., the
data from a subject can either be part of the training or validation
set not both. To create the folds, we partitioned our subjects into
3 groups of approximately equal size, and each group constituted
the validation data for one of the 3 CV folds, while the remaining
2 groups constituted the corresponding training set.

The three-fold CV allowed us to gauge the variability of
the training learning curves and the robustness against the
variation of initialization conditions without creating too much
of a computational burden. With a computational cost per
experiment of about 6 h on a NVIDIA TESLA K80 GPU, this
choice led to a total computation time of 44 days for all CV folds
of all experiments. With the trained network, the computation
of a single sleep stage prediction on a 30 s EEG signal epoch takes
∼2ms on amodern laptop computer with basic Python/NUMPY
code.

Using the baseline network as starting point, we have
investigated the effect of training data size, regularization
approach, architecture choices, and subject-specific demographic
information on the performance of the automatic staging
network. Due to the large number of possible combinations, it is
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FIGURE 2 | Temporally unrolled CNN/LSTM sleep stager network with baseline parameters shown for one LSTM time step, i.e., corresponding to one 30 s EEG

signal window.

FIGURE 3 | Top: Class probability output. Middle: Hard class decision. Bottom: Ground truth manual staging hypnogram. The hard decision and ground truth agree

with Kappa (Cohen, 1960) 0.73.

not possible to test them all. Instead we proceeded to characterize
the effect of one parameter at a time while keeping the other
parameters constant.

We further used the public SIESTA database for training
and testing in order to study the robustness and generalization

properties of our baseline sleep stager network. For comparison,
we also implemented two other algorithms for sleep staging
namely a logistic regression classifier using frequency domain
features, and well as the convolutional neural network of Tsinalis
et al. (2016).
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The achieved average Kappa scores as well as their
standard deviation over the three CV-folds are summarized
in Table A1 in the Appendix for all experiments. The star
“∗” indicates the parameter setting used to build the baseline
model, and the bold font indicates the best achieved average
Kappa score over the variation of a particular experimental
parameter.

EXPERIMENTS AND RESULTS

Baseline Network Performance
The learning curves of the three-folds for the baseline sleep stager
network are shown in Figure 4. All folds show stable convergence
after 512 epochs. The average (across the three-folds) final Kappa
scores are 0.885 ± 0.003 and 0.727 ± 0.005 for training and
validation sets, respectively. The large gap between training and
validation performance suggests overfitting effects which are
tackled in the next sections.

Table 1 shows the validation confusion matrix of the baseline
sleep stager, normalized and averaged across the three-CV folds.
The diagonal entries are the largest except for N1 sleep which
is not detected at all. This can be attributed to the fact that N1
is heavily under-represented in the dataset as it constitutes only
2.5% of the data. This however reflects the transitional nature
of N1 sleep which constitutes a small portion of normal human
sleep (Ohayon et al., 2004). The accuracy of N1 detection can
be improved by increasing the amount of N1 data presented to
the network during training as shown in Section Performance on
the SIESTA Database, or by introducing class weighting in the
training loss.

Additionally, average precision, recall and F1-scores are
reported in Table 2 for each stage. N3 and N2 sleep detection
have high accuracy reflected by F1-scores of 0.86 and 0.84,
respectively. REM and wake stages have lower F1-scores of 0.79
and 0.76.

FIGURE 4 | Learning curves for the three cross-validation runs.

Insight Into the Type of Features Extracted
by the Convolutional Layers
To qualitatively understand the nature of features extracted by
the convolutional layers, synthetic single-frequency sinusoidal
signals with 50 microvolt peak-to-peak amplitude (which is the
average amplitude of sleep EEG) were used as input of the
baseline configuration. The (4 × 32) 128 outputs (see output of
CONV layer #3 in Figure 2) of the convolution layers were then
evaluated for sinusoidal inputs with frequency ranging from 0.5
to 50Hz (steps of 0.5Hz).

Figure 5 shows feature values for each input frequency and it
can be seen that a given feature appears to respond specifically
to input signals in certain frequency bands. The highlighted
frequency bands (θ: 4–8Hz; α: 8–12Hz; β: 15–30Hz, and γ:
30–50Hz) shown in Figure 5 are known to be relevant for sleep.

Influence of Training Data Set Size and
Sequence Length
To investigate the effect of training data size, we have trained
the baseline sleep stager network using a variable number
(Ntraining subjects) of different subject datasets. Ntraining subjects

varied in the range from 3 to 19 subjects while maintaining all
other parameters as well as the validation set the same.

The results in Figure 6 (left) show, for each Ntraining subjects, the
training Kappa scores (in blue “x” symbols) and the validation
Kappa scores (in orange “o” symbols) for each of the 3 CV splits.
The dashed blue and solid orange curves show the median Kappa
(across all validation folds) for the training and validation sets,
respectively. Themean and standard deviation scores for training
and validation are listed in Table A1 (Exp. 1).

A reduction of Ntraining subjects from 19 to 3, leads to a
substantial accuracy drop from Kappa ∼0.73 to 0.64. We have

TABLE 1 | Average confusion matrix of the baseline model on our in-house

database.

True label output decision

N3 N2 N1 REM wake

N3 0.84 0.15 0 0 0.01

N2 0.05 0.86 0 0.05 0.04

N1 0 0.51 0 0.21 0.27

REM 0 0.11 0 0.81 0.07

wake 0.01 0.12 0 0.1 0.77

TABLE 2 | Average per-stage performance of the baseline model on our in-house

dataset.

Stage precision Recall F1-Score

N3 0.87 0.84 0.86

N2 0.82 0.86 0.84

N1 0.00 0.00 0.00

REM 0.76 0.81 0.79

wake 0.76 0.77 0.76
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additionally observed that for Ntraining subjects = 15, the Kappa

value of one of the three CV folds converged to only ∼0.5. The

large difference between training and validation Kappa values
suggests that our dataset (even if used in its entirety) is small for
the task at hand.

As pointed out in the Introduction Section, ∼90 min-long
sleep cycles compose normal adult human sleep. It seems
therefore reasonable to train the sleep stager network with
sequences that approximately match a sleep cycle duration
so that the LSTM layers can learn the long-range structure
in the sleep stage data. To test the validity of this line of
thought, we trained the sleep stager network with sequences of
different lengths ranging from 8 windows to 512 windows, or,
equivalently, 4min to about 4 h. Hereby we left the total amount
of data seen during training constant, i.e., when reducing the
sequence length by a factor 2 we increased the batch size by a
factor 2.

Figure 6 (right) shows the training and validation Kappa
scores for training sequence lengths (Ntrainingwindows) equal to
8, 16, 32, 64, 128, 256, and 512 windows. The training Kappa
score noticeably increases with longer training sequences but
the validation Kappa score increases only slightly. The large gap
between training and validation performance exists for all tested
sequence lengths.

The average and standard deviation of the Kappa scores
for this experiment are listed in Table A1 (Exp. 2). A training
sequence length of 128 windows leads to the best validation
Kappa score.

Regularization
Various regularization approaches have been devised to reduce
overfitting of deep neural networks, such as data augmentation,
adding L1 and L2 penalty terms for the loss, and dropout
(Srivastava et al., 2014). In order to address the sizable
gap between training and validation performance of our

baseline sleep stager model, we have studied the effect of data
augmentation as well as of regularization of the convolutional
layers and the LSTM layers. The results of the experiments are
in Table A1 (Exp. 3 – Exp. 9).

The augmentation of multi-channel EEG data by means of
spatial rotation has been proposed in Krell and Kim (2017),
but this cannot be applied to single channel data. We are
currently also lacking physically informed and quantitatively well
understood models for other possible effects, e.g., noise sources.
Therefore we resort to temporal augmentation by randomly
selecting the EEG start sample of a recording during training
and picking the sleep score annotations that are closest to EEG
window centers. This process virtually increases the database
size 3,000-fold as there are 3,000 EEG samples in an annotation
window.

Clearly, the training labels obtained by this random time shift
augmentation are not in correct agreement with R&K annotation
rules, and they should be considered noisy. However, it has been
shown in the image processing context that deep learning is very
robust against label noise (Rolnick et al., 2017), and we see this
confirmed also for EEG time series data as our average validation

FIGURE 6 | Influence of training data size (left) and training sequence length

(right) on performance.

FIGURE 5 | Analysis of the features extracted by the convolutional layers vs. the input frequency. For ease of visualization, feature values are shown in a log scale.
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performance increases significantly fromKappa= 0.609 to 0.727.
Furthermore, this method greatly reduces the variability of Kappa
from ± 0.096 to ± 0.005, and hence we chose to use this
augmentation as default for all experiments as was outlined in
Section Training and Performance Evaluation Methods.

For the convolutional layers we applied separately L1 penalty
and L2 penalty terms to the kernel weights. This resulted in
the performance shown in Figure 7 (top left and top right,
respectively). Neither mechanism closes the performance gap,
and large penalties merely lead to a general loss in performance.

L1 and L2 penalties were also applied separately to the kernel
weights in the LSTM layers, which constitute the majority of
the network parameters, and the results are shown in Figure 7

(center left and center right, respectively). The L1 regularization
closes the performance gap, but does so by largely dropping
the training performance rather than increasing the validation
performance.

The performance of the network is very sensitive especially
to the L1 term, as a value of 0.1 totally degrades the network’s
training performance bringing it to a Kappa score of 0. Only
a minor performance gain smaller than 1% over the non-
regularized baseline model can be achieved by setting the L1 or
L2 penalty weight to 0.001, which boosts the validation Kappa to
about 0.73.

Dropout strategies can be applied to LSTM layers to the feed-
forward paths, or to the recurrent paths (Gal and Ghahramani,
2016). The performance of the network for various forward and
recurrent dropout probabilities are shown in Figure 7 (bottom
left and bottom right, respectively). In both cases dropout
probabilities of up to 0.5 boost the validation performance
slightly, to a validation Kappa of 0.74, but still leave a large gap
between training and validation performance. Very large dropout
probabilities of >0.7 lead to instable training results over the 3
CV runs.

Architecture
Many architecture choices are possible for the sleep stager
network. We report our experimental results in Table A1 (Exp.
10 - Exp. 14). The experiments were conducted with shift
augmentation and with three-fold CV on the entire data set.

We compared two commonly used activation functions for
the convolutional layers, namely the ReLU and the leaky-ReLU
(Maas et al., 2013), and two common recurrent architectures,
namely the LSTM and the gated recurrent unit GRU (Cho et al.,
2014). We achieve the best result with the ReLU and the LSTM.

The beneficial effect on performance of the convolutional
layers can be observed in Figure 8 (left), which shows the
performance of the network for a varying number of layers in
the convolutional stack. The performance is severely reduced if
no convolutional layers are present and the EEG signal is applied
to the LSTM directly. We also observe a saturation of validation
performance for 3 convolutional layers, which is the number of
CONV layers in the baseline network.

In the series of experiments shown in Figure 8 (center) we
investigate the effect of network depth vs. width for different
configurations of the LSTM stack. Here, 128 recurrent units were
used for all experiments but they were configured either in a

single LSTM layer, or in a 2 LSTM layer stack with 64 units each
(which is the baseline configuration), in 4 layers with 32 units, or
in 8 layers with 16 units each.We find that there is no appreciable
benefit of network depth. On the contrary, the deepest network
configuration leads to instable training results.

Furthermore, we have investigated the effect of changing the
capacity of the network by varying the number of recurrent units
in the 2 layer LSTM stack. As shown in Figure 8 (right), there
is a large effect on the training performance (blue curve) which
indicates stronger overfitting when the number of LSTM units
increases from 4 to 256. The validation performance is much
less affected up to 64 units per layer. A decline in validation
performance appears from thereon.

We further notice a slightly increased performance over the
baseline model with Kappa = 0.736 ± 0.007 for 16 LSTM units.
And while the difference is statistically not significant, the 16 unit
model might have been the better outset as it greatly reduces the
computational complexity in the model.

Personalization With Subject Specific
Information
The baseline sleep stager network shown in Figure 2 also accepts
demographic information (age and gender of the subject), and in
all prior experiments these inputs were not used, i.e., clamped to
zeros.

A major concern of using personalization is overfitting
because our dataset contains the data from 29 subjects only. We
have therefore studied this effect in a number of experiments
where we applied varying degrees of noise to the personalization
information during the training. The results are summarized in
Table A1 (Exp. 15 and Exp. 16).

For the age input, we added zero-mean Gaussian noise with
standard deviation σage, where one such noise value was chosen
for every training sequence of length Ntrainingwindows in a training
batch. Similarly, with a probability pgender we replaced the true
gender code (+1 for men, −1 for women) by 0. Only one type
of personalization was studied at a time. The other input was
disabled by clamping it to zero.

As shown in Figure 9 (left), age information does not lead
to a performance gain when applied directly, i.e., without any
regularization (σage = 0), but rather to a slight validation
performance drop to Kappa just below 0.7. It is not clear
if this is due to overfitting, as the training performance
as largely unaffected, though we generally observe a large
training/validation performance gap.

Also the use of gender information does not boost the
performance, as shown in Figure 9 (right), regardless of
whether the gender information is applied directly and without
augmentation noise (pgender = 0) or with varying degrees of
noise. The Kappa curves remain flat and show a large gap between
training and validation performance throughout.

Performance on the SIESTA Database
We trained our baseline network on the SIESTA database
(Table A1, Exp. 17) and achieved a training Kappa of 0.797 ±

0.001 and a validation Kappa of 0.760 ± 0.022. We notice that
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FIGURE 7 | Influence of L1 penalty (top left) and L2 penalty (top right) for the convolutional layer weights, as well as for the LSTM layer weights (center left and center

right). Influence of dropout for the LSTM layer forward paths (bottom left) and for recurrent paths (bottom right).

FIGURE 8 | Influence of the number of convolution layers (left), the number of LSTM layers (center), and the number of LSTM units per LSTM layer (right) on

performance. The LSTM configurations for the center plot are: 1 layer with 128 LSTM units, 2 layers with 64 units each, 4 layers with 32 units each, and 8 layers with

16 units each. For the right plot the LSTM stack consisted of 2 layers with Nunits units each.

the validation performance is slightly higher and that training-
validation gap is significantly smaller than when using our
in-house database. The validation confusion matrix and the
per-stage performance are shown in Tables 3, 4, respectively,

where the most striking difference is the improved N1 detection
performance.

We further tested the generalization properties of our network
by cross-evaluation with different databases as shown in Table 5.
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Here we trained and validated with the whole databases and
estimated the mean and standard deviation of Kappa by boot
strapping with 100 samples.

We find that training with SIESTA leads to a more
transferrable (higher generalization) network (Kappa = 0.703
on our database) than training with our in-house database
(Kappa= 0.454 on SIESTA).

Comparison With Other Methods
We compared our approach to two other classification methods,
namely a multinomial logistic regression classifier and the CNN
based architecture presented in Tsinalis et al. (2016). The logistic
regression based method is among the simplest approaches with
the lightest computational load, while the CNN of Tsinalis et al.
(2016) is the one that could be considered closest to our proposed
method.

The multinomial logistic regression requires the extraction
of suitable features from each 30 s epoch of the EEG signal. A
wealth of linear and non-linear feature extraction methods in
the time, frequency, and wavelet domains have been reported in
literature for automatic sleep staging (Fell et al., 1996; Estrada
et al., 2004). Frequency domain based features reflect essential
properties of sleep stages therefore we have used the magnitude
and phase component of the Fast Fourier Transform of the EEG
signal. Since the EEG signal is real-valued this results in 3,000
independent feature values for each epoch, and they capture all
information in the signal without loss. The logistic regression
classifier has therefore 3,000 inputs and 5 outputs and uses
15,000 weights and 5 bias values, totaling 15,005 coefficients. The

FIGURE 9 | Effect of personalization with age (left) and gender (right) for

varying degrees of added noise. The value “clamped” indicates that the

personalization input was clamped and no information entered the network.

TABLE 3 | Average confusion matrix of the baseline model on the SIESTA

database.

True label Output decision

N3 N2 N1 REM Wake

N3 0.76 0.23 0 0 0

N2 0.03 0.91 0.03 0.02 0.01

N1 0 0.33 0.37 0.12 0.17

REM 0 0.07 0.03 0.89 0.01

wake 0 0.03 0.07 0.02 0.89

TABLE 4 | Average per-stage performance of the baseline model on the SIESTA

database.

Stage Precision Recall F1-Score

N3 0.86 0.77 0.81

N2 0.84 0.91 0.87

N1 0.57 0.37 0.45

REM 0.84 0.89 0.87

wake 0.88 0.89 0.88

TABLE 5 | Validation Kappa scores for our in-house database and the SIESTA

database.

Validation Database

In-house SIESTA

Training database In-house 0.727 ± 0.005 0.454 ± 0.001

SIESTA 0.703 ± 0.002 0.760 ± 0.022

The diagonal values were obtained with three-fold CV, the off-diagonal values from

training and testing on the entire databases and boot-strapping the Kappa value with

100 samples.

classifier achieves a validation Kappa of 0.408 ± 0.041 on our
in-house dataset (see Table A1, Exp. 18).

The CNN of Tsinalis et al. (2016) consists of 2 convolutional
layers, including max-pooling, 2 dense layers, and an output
layer. This network requires an EEG input signal consisting of
the current 30 s epoch plus the preceding 2 epochs and the 2
following epochs, thus introducing a processing delay longer than
a minute. The network has 144697925 parameters in total, and it
achieves a validation Kappa of 0.708± 0.005 on our in-house data
set (see Table A1, Exp. 18).

DISCUSSION

The experiments reported in Section Insight Into the Type of
Features Extracted by the Convolutional Layers on the training
data requirements give valuable practical guidelines for an end-
to-end deep learning implementation of an automatic sleep
staging network based on a single EEG signal. Specifically,
about 20 training subjects are a viable minimum for such
a purely data driven design leading to a performance of
Kappa = 0.73, which is near the reported human inter-
rater agreement of about 0.75 for full-montage multi-channel
EEG data (Danker-Hopfe et al., 2009). Hence the neural
network sleep stager is almost indistinguishable from a human
annotator even though it operates only on a single-channel EEG
data.

Further, we establish that training sequence lengths much
shorter than a typical sleep cycle are feasible for training state-
of-the-art recurrent neural network. This eases the memory
requirement, which is of great practical impact especially when
the neural network is trained on a GPU with tight memory
constraints.

In almost all experiments we have observed a substantial gap
between training and validation performance, which failed to be
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closed by any of attempted regularization techniques described in
Section Regularization. A possible explanation is that the intra-
annotator agreement (of our single annotator) sets the upper
bound on the performance. Multiple scorings of the data by
the same annotator are planned as future work to validate this
hypothesis.

Our experiments in Section Architecture indicate that a
combination of convolutional layers and LSTM layers constitutes
an appropriate network architecture for causal sleep staging of
EEG data, and that high performance can be achieved with only
a single EEG channel. Interestingly, we also found that relatively
shallow networks with few convolutional layers and LSTM layers
perform well enough, and that relatively few recurrent units are
sufficient.

We further found in Section Personalization With Subject
Specific Information that user specific personalization with age
and gender information does not improve performance. The
reason could be that the benefit of personalization information
is masked by intra-annotator noise, or that the neural network
automatically learns features that are robust to age and gender-
related characteristics of the EEG signal.

The results of the experiments with the SIESTA database
shown in Section Performance on the SIESTA Database indicate
that, given such a large training database, a deep neural network
sleep stager can be trained that is almost indistinguishable in
performance from a human annotator.

We attribute the slight drop in performance with our in-house
database to its much smaller size, the fact that it was recorded
in less controlled home conditions vs. in lab environment which
increases signal noise, and the possibility of having noisier
ground truth annotations for validation, as only a reduced EEG
montage is used. We further find that a network trained with
the SIESTA database transfers well to the single-channel home
setting, also if the EEG montage is different and the EEG channel
has to be approximated.

The experiments in Section ComparisonWith Other Methods
show that our CNN/LSTM approach compares favorably with
the logistic regression method and the neural network of Tsinalis
et al. (2016). Our validation performance on our in-house
dataset is, as expected, significantly better than that of the
basic logistic regression classifier with simple frequency domain
features, though even the logistic regression performs better

than chance. Our performance gain over the method of Tsinalis
et al. (2016) is much smaller. It should be noted however, the
network of (Tsinalis et al., 2016) has a significantly larger memory
footprint as it requires 144 million parameters and it introduces
a 3-epoch processing delay, whereas our proposed baseline
CNN/LSTM network has only approximately 90,000 parameters
and introduces a 1-epoch delay while also performing slightly
better. Such a reduced memory requirement and low-latency
characteristic can be advantageous in an embedded real-time
implementation.

Various optimization strategies remain to be addressed in
future research such as: (1) an alternative loss function that
can express the intrinsic differences between sleep stages. Such
a loss function could, e.g., penalize the confusion between
N3 and N2 less than between N3 and wake. (2) Defining
and combining partial loss functions for each layer of the
network as proposed in Zhu and Bain (2017). (3) Sleep cycle
dependent sleep stage decisions to take into account the time
dependent probability of sleep stages that change between sleep
cycles.

CONCLUSION

A causal recurrent deep neural network consisting of CONV
and LSTM layers can achieve a sleep staging performance that
is very close to human inter-rater agreement. The performance
is robust against age/gender based sleep variability. This result
shows feasibility of high sleep staging accuracy using a single EEG
signal recorded at home.
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APPENDIX

TABLE A1 | Experimental results.

Exp. Parameter Value KappaTrain KappaValidation

1 Ntrainingsubjects 3 0.962 ± 0.002 0.637 ± 0.019

5 0.948 ± 0.017 0.675 ± 0.002

10 0.919 ± 0.009 0.688 ± 0.022

15 0.836 ± 0.112 0.650 ± 0.115

19* 0.885 ± 0.003 0.727 ± 0.005

2 Ntrainingwindows 8 0.777 ± 0.042 0.662 ± 0.071

16 0.830 ± 0.007 0.711 ± 0.004

32 0.846 ± 0.012 0.715 ± 0.012

64 0.870 ± 0.007 0.721 ± 0.011

128* 0.885 ± 0.003 0.727 ± 0.005

256 0.857 ± 0.040 0.724 ± 0.001

512 0.892 ± 0.009 0.724 ± 0.006

3 Shift

augmentation

off 0.863 ± 0.142 0.609 ± 0.096

on* 0.885 ± 0.003 0.727 ± 0.005

4 λCONV,L1 0* 0.885 ± 0.003 0.727 ± 0.005

0.001 0.854 ± 0.011 0.717 ± 0.005

0.01 0.829 ± 0.010 0.686 ± 0.023

0.1 0.667 ± 0.085 0.559 ± 0.023

5 λCONV,L2 0* 0.885 ± 0.003 0.727 ± 0.005

0.001 0.862 ± 0.015 0.726 ± 0.000

0.01 0.864 ± 0.003 0.717 ± 0.004

0.1 0.772 ± 0.107 0.640 ± 0.085

6 λLSTM,L1 0* 0.885 ± 0.003 0.727 ± 0.005

0.001 0.773 ± 0.008 0.729 ± 0.008

0.01 0.678 ± 0.063 0.639 ± 0.101

0.1 0.000 ± 0.000 0.000 ± 0.000

7 λLSTM,L2 0* 0.885 ± 0.003 0.727 ± 0.005

0.001 0.829 ± 0.006 0.730 ± 0.011

0.01 0.770 ± 0.008 0.723 ± 0.007

0.1 0.703 ± 0.001 0.664 ± 0.010

8 pdropout 0* 0.885 ± 0.003 0.727 ± 0.005

0.1 0.875 ± 0.014 0.730 ± 0.015

0.3 0.863 ± 0.004 0.741 ± 0.008

0.5 0.844 ± 0.009 0.742 ± 0.005

0.7 0.735 ± 0.109 0.679 ± 0.102

0.9 0.284 ± 0.277 0.246 ± 0.242

9 prec.dropout 0* 0.885 ± 0.003 0.727 ± 0.005

0.1 0.876 ± 0.005 0.729 ± 0.011

(Continued)

TABLE A1 | Continued

Exp. Parameter Value KappaTrain KappaValidation

0.3 0.866 ± 0.003 0.733 ± 0.012

0.5 0.857 ± 0.002 0.740 ± 0.011

0.7 0.852 ± 0.007 0.738 ± 0.017

0.9 0.795 ± 0.057 0.733 ± 0.018

10 Conv.

activation

leaky-

relu

0.812 ± 0.129 0.660 ± 0.106

relu* 0.885 ± 0.003 0.727 ± 0.005

11 Rec. type GRU 0.890 ± 0.007 0.726 ± 0.009

LSTM* 0.885 ± 0.003 0.727 ± 0.005

12 NCONVlayers 0 0.382 ± 0.067 0.344 ± 0.089

1 0.752 ± 0.122 0.630 ± 0.078

2 0.860 ± 0.014 0.722 ± 0.011

3* 0.885 ± 0.003 0.727 ± 0.005

13 NLSTMlayers 1 0.879 ± 0.005 0.718 ± 0.008

2* 0.885 ± 0.003 0.727 ± 0.005

4 0.855 ± 0.007 0.729 ± 0.003

8 0.430 ± 0.390 0.406 ± 0.366

14 Nunits 4 0.782 ± 0.008 0.723 ± 0.007

8 0.803 ± 0.004 0.729 ± 0.010

16 0.823 ± 0.008 0.736 ± 0.007

32 0.843 ± 0.005 0.731 ± 0.017

64* 0.885 ± 0.003 0.727 ± 0.005

128 0.906 ± 0.022 0.712 ± 0.007

256 0.969 ± 0.001 0.708 ± 0.007

15 σage 0 0.815 ± 0.125 0.642 ± 0.088

1 0.882 ± 0.008 0.713 ± 0.015

2 0.886 ± 0.004 0.720 ± 0.005

3 0.879 ± 0.001 0.718 ± 0.004

clamped* 0.885 ± 0.003 0.727 ± 0.005

16 pgender 0 0.883 ± 0.005 0.728 ± 0.011

0.2 0.882 ± 0.008 0.726 ± 0.003

0.4 0.885 ± 0.003 0.725 ± 0.008

0.6 0.883 ± 0.004 0.717 ± 0.013

0.8 0.876 ± 0.016 0.719 ± 0.002

clamped* 0.885 ± 0.003 0.727 ± 0.005

17 Database in-

house*
0.885 ± 0.003 0.727 ± 0.005

SIESTA 0.797 ± 0.001 0.760 ± 0.022

18 Method our* 0.885 ± 0.003 0.727 ± 0.005

log.

reg.

0.422 ± 0.013 0.408 ± 0.041

CNN

[6]

0.820 ± 0.002 0.708 ± 0.005

Kappa is shown as Mean ± STD.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 October 2018 | Volume 12 | Article 85

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Recurrent Deep Neural Networks for Real-Time Sleep Stage Classification From Single Channel EEG
	Introduction
	Methods
	Datasets
	Baseline Sleep Stager Network Design
	Training and Performance Evaluation Methods

	Experiments and Results
	Baseline Network Performance
	Insight Into the Type of Features Extracted by the Convolutional Layers
	Influence of Training Data Set Size and Sequence Length
	Regularization
	Architecture
	Personalization With Subject Specific Information
	Performance on the SIESTA Database
	Comparison With Other Methods

	Discussion
	Conclusion
	Author Contributions
	Acknowledgments
	References
	Appendix


