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Advanced algorithms are required to reveal the complex relations between neural

and behavioral data. In this study, forelimb electromyography (EMG) signals were

reconstructed from multi-unit neural signals recorded with multiple electrode arrays

(MEAs) from the corticospinal tract (CST) in rats. A six-layer convolutional neural

network (CNN) was compared with linear decoders for predicting the EMG signal.

The network contained three session-dependent Rectified Linear Unit (ReLU) feature

layers and three Gamma function layers were shared between sessions. Coefficient

of determination (R2) values over 0.2 and correlations over 0.5 were achieved for

reconstruction within individual sessions in multiple animals, even though the forelimb

position was unconstrained for most of the behavior duration. The CNN performed visibily

better than the linear decoders and model responses outlasted the activation duration

of the rat neuromuscular system. These findings suggest that the CNN model implicitly

predicted short-term dynamics of skilled forelimb movements from neural signals. These

results are encouraging that similar problems in neural signal processing may be solved

using variants of CNNs defined with simple analytical functions. Low powered firmware

can be developed to house these CNN solutions in real-time applications.

Keywords: machine learning, artificial neural network, convolutional neural network, corticospinal tract,

microelectrode array, signal processing, neural signal decoding

1. BACKGROUND AND SIGNIFICANCE

Multi-electrode arrays (MEAs) are pushing the limits of technology to increase the number of
channels and thereby expand the size of neural data collected in a single experimental session
(Viventi et al., 2011; Xu et al., 2017). As the amount of data increases, manual review and analysis of
neural data will become increasingly difficult. New electrodes and hardware will make it a pressing
necessity for automated processing of large quantity of neural data. As a result, attention has
been turning to machine learning for answers. Recently Deep Learning (DL) has emerged as a
particularly promising paradigm.

DL is a machine learning technique using Artificial Neural networks (ANNs) with multiple
hidden layers. In the past decade, ANNs has made significant breakthroughs in image recognition
(He et al., 2015; Rastegari et al., 2016) and natural language processing (Amodei et al., 2015; Lipton,
2015; Wu et al., 2016). Due to their origins as connectionist models of neural circuits (Hopfield,
1982; Hopfield and Tank, 1985), ANN can naturally simulate the types of processing performed
by the nervous system. In addition, ANNs can be easily parallelized as demonstrated by various
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large-scale applications (Dean et al., 2012; Abadi et al., 2016).
These traits will make ANN based approaches increasingly
relevant to neuroscience.

ANN model parameters are estimated by computing
gradients: numerical partial derivative of output error (costs)
relative to model parameters. The process is modular: Each layer
of the ANN only needs to define the derivative of its output
relative to its inputs and parameters within the layer, and the
partial derivative of any parameter in the model can be computed
via the Chain Rule in a process known as back propagation
(Hecht-Nielsen, 1989; Chauvin and Rumelhart, 1995). Each
layer of an ANN contains an activation function, allowing
growing stacks of layers to approximate increasingly complex
non-linear functions. ANNs for commercial applications like
image classifiers can have hundreds of layers (Bengio, 2013;
LeCun et al., 2015), allowing them to represent non-linear
transformations between sets of data.

DL is starting to see adoption in many areas of neural signal
processing such as in EEG classification tasks (Schirrmeister
et al., 2017), Epilepsy Detection (Gadhoumi et al., 2016),
Visual Presentation based BCI (Shamwell et al., 2016), and
cognitive performance measurement (Hajinoroozi et al., 2016).
The approach as been particularly successful in decoding motor
activity and imagery with discrete classes from EEG signals (Ren
and Wu, 2014; Sakhavi et al., 2015; Stober, 2017; Tabar and
Halici, 2017; Tang et al., 2017; Lawhern et al., 2018). There
were notably four brain-computer-interface (BCI) competitions
hosted by BBCI group of Berlin Institute of Technology since
2003 (Sajda et al., 2003; Blankertz et al., 2004; Müller et al., 2004).
In 2016, a group at Stanford and Google developed Latent Factor
Analysis via Dynamic Systems (LFADS) (Sussillo et al., 2016), an
auto-encoder that uses recurrent networks for both encoding and
decoding stages in order to extract underlying dynamics from
spike trains, representing a major step forward in applying ANNs
to problems in neuroscience. Applications of DL in neuroscience
will gain popularity as other investigators are encouraged by these
initial success.

This paper demonstrates a method of solving the decoding
problem where the output is a continuous valued signal (EMG
bursts) using unsorted Multi-Unit Activity (MUA) as inputs. It
is a difficult problem analytically because one cannot picture
how neural signals might explain the EMG activity by visual
inspection Figure 2. This is supported by the relatively poor
performance of linear decoders.

Convolutional ANNs are of particular interest because they
allow the relations between signals to be described as time-
invariant filters. Each layer draws non-linear features from
outputs of the previous layer. Because inputs are padded only
from the front Figure 3, the ANN captures consistent causal
relations between inputs (neural signal envelope) and output
(EMG envelope). Larger network depths increase the types of
non-linearities that can be represented. Reconstruction of EMG
bursts could be achieved by a convolutional network comprised
of six layers. This depth was empirically determined to be
appropriate for the complexity of the available data, performance
of network over six layers quickly plateaued due to diminishing
returns. (see Figure 10 and discussions).

The spinal cord was chosen as a testbed because it is not
known to contain any memory function and therefore should
have short impulse response as a system. Many regions of the
brain, in contrast, contain recurrent connections allowing them
to persist in a memory state until perturbed. Identifying such
systems will require autoregressive or recurrent models.

The datasets used were recorded as a part of a proof-of-
concept study for Spinal Cord-Computer Interfaces (SCCI) (Gok
and Sahin, 2016, 2017). The SCCI as a neural interface was
proposed by our group (Prasad and Sahin, 2006, 2010), which
extracts volitional motor information from descending tracts of
the spinal cord above the level of injury site. The SCCI approach
is motivated by a number of advantages compared to traditional
cerebral interfaces. First and foremost, SCCI can potentially tap
into command signals at the spinal cord level where descending
signals from many cerebral cortices converge.

2. MATERIALS AND METHODS

Data Collection
Rats were trained for a reach-to-pull task inside a Plexiglas box
with a 3x1cm window on the wall. A vertical steel rod attached to
a force transducer was located just outside the window. Animals
reached with one forelimb through the window and pulled on the
rod with sufficient force to be rewarded with sugar pellets. Refer
to Gok and Sahin (2016) for details of experimental apparatus.
Three to four seconds during each pull were recorded as a trial,
centered about the time of contact of the hand with the rod. The
animal’s paw was typically in contact with the rod for less than
a second per trial (averaged approx. 500 ms) (Dashed Vertical
Lines in Figure 1), and the remainder of the data represented
unconstrained movements to and away from the rod. Animals
performed over hundred successful trials per day. The current
analysis used all the data, over 80% of which were unrestricted.
Figure 1 shows raw signals from a typical trial.

To collect command signals from the spinal cord, after dorsal
laminectomy, a 4× 7 planar MEA was inserted vertically into the
dorsal median sulcus between the two halves of the spinal cord,
with the MEA contacts facing the direction of the trained hand
at C4 level. As a result the electrode contacts were made at the
ventral most part of the dorsal column (Guo et al., 2014; Gok and
Sahin, 2016, 2017). The ribbon cable of the MEA was attached
to an Omnetics micro connector held above the spinal cord by
a stainless steel wireframe anchored to the spinous processes
on the C2 and C5 vertebra. Teflon coated 25um stainless steel
wires collected EMG from the bicep and triceps muscles, as
well as a wrist flexor and an extensor muscle. These wires were
subcutaneously tunneled through a metal tube to the top of
the head to a second Omnetics micro connector fixed to the
skull using dental acrylic and metal screws. For rat 1 and 2,
both neural and EMG signals were acquired at 16 kHz using
Triangular Biosystems (TBSI) wireless head stages. For rat 3
and 4, the signals were collected at 30 kHz using the Ripple
Inc.’s (Salt Lake City, UT) tethered amplifier. Data collected from
the two later animals had less crosstalk and were of a higher
quality.
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Pre-processing
Neural signals from rat 1 and 2 were band-pass filtered at
20 Hz–3,500 Hz by the built-in filter in the amplifiers before
digitization and another 20 Hz 3rd order zero-phase high-pass
Butterworth filter before finding the envelopes to remove any
remaining movement artifacts. Envelopes for both neural and
EMG signals were computed by taking the square root of the
square of the signal filtered with a Gaussian kernel (σ = 10ms).
In the frequency domain, this filter is another Gaussian centered
on zero with σ = 100/πHz and a half-power frequency of
approximately 37.5 Hz. Therefore the estimated evelopes are the
RMS power of the signal, and the Gaussian kernel provided the
smoothing function. Figure 2 shows a typical trial at this stage.
The EMG Envelopes were further low-pass filtered using a third
order zero-phase low-pass filter at 5–1 Hz to make it less uneven
(5Hz: Figures 6, 7; 1Hz: Figure 9; 5–1 Hz: Figure 8). Filtered
signal envelopes were then down-sampled to 100 Hz. The final
pre-processed inputs were 4-s trials containing 27 neural and 4
EMG channels collected simultaneously.

A session contains varying number of trials collected on the
same day. Trials were divided into sequential groups of five. The
first 3 trials from each group were assigned to the Training Set,
and the next 2 were assigned to Cross-Validation Sets A and
B, and the process was repeated for the remaining trials. This
resulted in 60, 20, and 20% trials assigned to Training, Test, and
Validation Sets, respectively. See Cross-Validation for Details.

Training was repeated 16 times in each session and the
highest values were reported (see Cross Validation for details
and justification), During the repeated training there was no
randomization in trial assignments. At each repetition the same
trials were assigned to Training and Cross-Validation Sets.
The only difference between training attempts were the initial
condition of the network.

Network Configuration
The network layers designs were such that they were
convolutional in the time domain and densely connected
in the spatial domain. This design was based on the assumption
that there are little hierarchical spatial structure in the data
because the contacts were located in a plane parallel to the fibers.
This rationale is similar to one presented in Schirrmeister’s
paper (Schirrmeister et al., 2017). Each layer contained one
convolutional filter per output channel. Each filter had the same
width as the number of input channels and a length specified
by its network and layer number. Inputs were padded in front
to the same length to ensure that each layer was causal, and the
output channels had the same lengths as the input channels (# of
trials in session × 400 time bins × 1 output width × 1 channel).
These outputs grouped together to form inputs to element-wise
leaky ReLU (Gu et al., 2015) activation function (Rectified Linear
Units) to extract features. Outputs of the ReLU served as inputs
to the next layer. This organization is shown in Figure 3.

Networks were comprised of six layers. The first three were
session-dependent feature layers. They had a length of 1 in the
time dimension (10 ms) and the widths of 27 → 21 → 15 →

9 (denoting that the first layer had 27 inputs and 21 outputs,
and so on). As a result all sessions from the same animal were

FIGURE 1 | Recordings of a typical trial. In this 3 s trial the animal was in

contact with the rod for less than 0.5 s, the interval marked by dashed lines.

The position is only known within the interval.

transformed into 9-dimentional trials and concatenated to form a
single data set. These layers were intended to compensate for day-
to-day electrode micromotions by transforming neural envelopes
into an identical set of 9 features that were assumed to exist
in all sessions. This design was based on the prediction that
the actual dimensionality of motor command signals was much
lower than the number of recorded signals (Narayanan, 2005).
The redundancy is also evident in the relatively small number of
signals required for a successful BCI.

Two configurations for CNN were examined in this study
to test the effectiveness of Convolutional Kernels with a closed
form. Reconstructions were produced from the concatenated
feature vectors computed in the previous step using 3 additional
session-invariant layers. In both configurations they had the
widths of 9 → 6 → 3 → 1. In the naive configuration,
there were no assumptions on the shape of the filters. Each layer
had the length of 10 time bins (100 ms) and there were no
restrictions on their values. An alternative solution was devised
to reduce the number of parameters to be estimated by Feature
Engineering—specifically, describing the connection between
layers using Gamma functions. Details of the implementation are
explained in the following subsection.

The number of layers in the network was determined
empirically. The performance improved with an added second
and third layer. However it plateaued quickly due to diminishing
returns Figure 10. The performance with twice as many
layers were not noticeably different. In addition, very deep
networks with over 10 layers were vulnerable to being stuck
due to vanishing gradient. Batch Normalization and Residual
Connections allowed training of these networks but there were
no benefit to the additional complexity.

Feature Engineering
In a Gamma function layer the connection between each pair of
input and output channels is defined by the closed form in 2. It
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FIGURE 2 | EMG (Top) and Neural (Bottom) signal envelopes from a trial. By visual inspection, there did not appear to be a significant correlation between the two

signals. The poor performance of linear decoders testifies to the lack of correlation. Top: Blue, Wrist flexor; Orange, Biceps; Green, Triceps; Red, Wrist Extensor.

FIGURE 3 | Illustration of one layer of CNN. The input signal has n trials, each containing d channels. In this illustration, this input is padded and convolved with a

different filter per output channel. Each filter has an identical width as inputs (d), and therefore the convolution produces a single channel of output. Because the filters

apply identically to each trial, the output channel has the same number of trials as the input. Output channels are grouped together and fed into element-wise ReLU

rectification. Output of ReLU is the input to the next layer. This repeats until the output is a single channel, which is compared to a low-pass filtered EMG signal.

Convolution in Tensorflow proceeds right to left due to conventions of CNNs. To account for this, inputs are flipped before the convolution and outputs are flipped

again afterwards.

is formulated to allow back-propagation of errors and prevent
covariance drifts from layer to layer. The gamma function filter
has a length of 300 ms (30 time bins), with the initial time
to peak and delay randomized in the order of 10 ms. The

function is completely specified by three parameters: Area under
the curve (α), time to first non-zero point (t0) and inverse of
the time constant (β). β and t0 were defined as exponents of
TensorFlow variables so they are always positive. θ is a constant
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FIGURE 4 | Sample of convolutional Kernels: debug output of input weights to

a randomly chosen first layer units from 9 input features. Time is in bins of

10 ms, up to 300 ms.

determining the sharpness of the corner and was set to 10 in this
study.

tf =
1

θβ
ln

[

exp [θβ (t − t0)]+ 1
]

(1)

F (t) = αβ2tf exp
(

−βtf
)

(2)

Gamma functions are defined as functions of the transformed
time variable tf , where tf is a SoftPlus function of t and t0, a
smoothed version of the ReLU. SoftPlus was used instead of ReLU
because gradient of ReLU at 0 is technically complicated. Using
SoftPlus, tf is differentiable with respect to the time delay variable
t0 for every point t on the filter. Unlike ReLU, output of a SoftPlus
function is strictly greater than zero. This meant adding an ǫ is
not necessary to prevent division by zero errors caused by infinite
gradients. The Exponential Linear Unit (ELU) provides a possible
alternative but it was not tested in this project.

The Gamma function has two terms: tf multiplied with

exp
(

−βtf
)

both of which are differentiable with respect to tf .
Therefore, automatic gradient can be computed from F (t) back
to α,β and t0 for all t. The factor β2 maintained constant area
under the curve when β changed. This allowed the optimizer to
independently adjust the length of the Gamma function without
changing variance of the output. Because the area under the
curve is always α, only α needed Xavier Initialization to prevent
covariance drifts. β and t0 can be initialized randomly within
their range. Convolutional Kernels were plotted after training
to confirm the network had learned Gamma functions Figure 4.
β values does not reflect sensitivity to particular frequencies
because the convolution operates on evenlopes rather than the
raw signal.

Training
For a given EMG signal, the optimization error was defined
as the sum of squares of the difference of reconstructed and

low-pass-filtered EMG across all time points excluding the first
second for all trials in a session. It was removed to prevent
solutions using the transient response of the network. Each EMG
signal was treated independently. Coefficient of correlation and
coefficient of determination were simultaneously computed for
the training set and the Cross Validation Sets but these values did
not participate in the optimization.

The network was implemented using Tensorflow 1.2 and
python 3.3. GPU processing was performed using a single
GTX 1080 using CuDA 8.0 and CuDNN 6. Optimizations
were performed using an adaptive moment estimation (ADAM)
optimizer with a learning rate of 0.1. The remaining optimizer
parameter retained their default values in Tensorflow (B1 = 0.9,
B2 = 0.999, ǫ = 10−8). The number of training steps were 1,000.
This number of steps was sufficient to over-fit in vast majority
of training sequences: R2 values were not the highest at the last
step for non-training group A and B. L1 and L2 regularizations
were disabled because using an early stop (choosing a model
from a step before 1,000) with a validation set was more
effective.

Cross Validation
Training is an optimization process; the result can vary
significantly depending on initial condition. To account for this,
16 attempts were made for each EMG signal in every session. To
determine the point of over-fit, cross-validation was used. During
a training attempt, every step can be considered a differentmodel.
Only the models where R2 were the highest for group A and B
were retained as model Amax and Bmax, respectively. Neither Set
A nor B were included in training, so they can both be considered
Validation Sets and be used to determine the optimal step to end
the training.

Because Set A and B have no overlap, they can also both be
considered as the test set when the other set is used as Validation
set to choose a stopping point. To compute performances using
B as the test set, one model in each session was chosen among
the 16 Amax models to be tested on Set B without using any
information from Set B. Amax Models were sorted by the sum
of the R2 values for Training Set and Set A and the model with
the highest sum was chosen. Only this model was tested on
group B, and its performance was defined as Amax (B) for that
session. Likewise a single Bmax model was chosen for the sum
of its R2 values on Training and Set B, and its performance was
defined as Bmax (A) . To account for difference in data qualities,
the overall performance of a session is the mean of Amax (B)

and Bmax (A) for that session. Figure 5 illustrates this selection
process. The 16 attempts should not be considered sample drawn
from a random distribution because only one model was selected
for testing without knowledge of the test set. Because there were
no pretraining, an attempt either converges or not, this can be
seen in column 5 and 7 in Figure 5. as a result the mean R2 value
over all attempts is usually close to 0. For this reason the mean
performances are not meaningful.

Two-fold validation were a computationally efficient way to
detect for variations caused by trial selections. Because multiple
training attempts are required for each test set, it would have
been costly to resample trials to generate robust statistics. the
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FIGURE 5 | Cross validation for a session from Rat 15—The same session in

Figure 7, marked with black arrow in Figure 6B. Training was attempted 16

times from different initial conditions (a0–a15). Each attempt produced 2

Models, Amax and Bmax, which had the maximum overall R2 across all

sessions for set A and B, respectively. The sum of R2 of each Amax for set A

and Test were summed (marked by arrows on a0), and the model with the

highest sum was tested on B (marked by arrows on a13). Likewise, the model

among Bmax with the highest sum of R2 for set B and Test was tested on A.

The average of these two values were the overall performance for the session.

Note that this is not necessarily the highest possible R2, as seen in the first half

of the table.

cross validation revealed large difference in performance between
the two test set in some cases (Error bars in Figure 6).This
identical procedure were also applied to controls described next
for consistency.

Control
To confirm that the optimizer drew inference from neural
data rather than fitting a model with slow transients, time
permutation was used as a control. Time points of neural
envelopes were randomly switched with another from the
same or a different trial. This shuffle occurred as the last
step of pre-processing, and did not reduce signal envelopes to
DC. Sixteen control networks was trained on the scrambled
input signal and produced reconstruction on intact test sets.
The results of scrambled controls are shown in gray in
Figures 6, 7, 9.

To examine if neural networks captured complex relations
that cannot be represented with simpler models, a linear decoder
was included for comparison. For consistency, the linear decoder
was implemented as a neural network of one layer and no

rectification. Linear decoders received identical pre-processed
inputs as the CNNs with one exception: Neural Evenlopes for
linear decoders were low-pass filtered to the same frequency
as the EMG signals (Ususally 5Hz). They would otherwise be
very noisy. The results of linear decoders are shown in blue in
Figures 6, 7, 9. Given identical inputs, the differences between
performances of linear and CNN decoders can be attributed to
models with and without memory.

3. RESULTS

Figure 6 shows overall performance for all subjects, sessions
and EMG channels. The performance in reconstructing different
EMG signals appeared to be correlated across days, suggesting
that day-to-day electrode drift has a large impact on data quality.
Because all EMG signals collected on the same day as a group
were predicted well or otherwise, it suggest a common set of
neural signals was required for the prediction and it was either
present or completely absent.

The CNN visibly out-performed baseline linear decoders for
rats 3 and 4 Figures 7A,B. Notable exceptions were sessions
where some signals could not be reconstructed using any method
(Rat 4 day 10 and 21, Rat 3 day 12 and 21). In those cases both
methods had performance similar to or below the level of random
controls or DC signals. Remarkably, for a number of sessions and
EMG signals, the CNN model was able to reconstruct the EMG
with R2over or close to 0.2 , while the linear decoder could not
reconstruct them at all (R2 below 0.05).

This is also observed in Rat 2, especially for Wrist Flexor.
The CNN model also outperformed the linear decoder on
Wrist Extensor and Biceps of this animal, except for Day 13
and 34 at the start and the end of the experiment. the CNN
performed below both linear decoder and control for Triceps of
this animal. However the linear decoder also had negative R2

for most sessions in this data set, suggesting an experimental
issue. Performance of Linear and CNN models were comparable
for Rat 1. In summary, CNN models did at least as well as the
Linear Decoder except for Tricep of Rat 2, where both method
had difficulties.

The R2 values appeared to be modest, but the variance errors
were not distributed uniformly in time, i.e., a large amount of
RMS error appeared to arose from a relatively small number
of erroneously reconstructed time bins. This was demonstrated
in Figure 7, which presents the test sets Amax (B) (the First 18
plots) and Bmax (A) (the remaining half) for Triceps, Day 25,
rat 3 (marked by the black arrow in Figure 6B). The CNN
produced reconstructions that were qualitatively different from
those generated by linear decoders as shown in cyan in Figure 7,
the linear decoder appears to have only captured the rising edges
of EMG bursts. However, the correlation was 0.378 and 0.410 for
the first and second half, respectively.

This concentration of error was caused by the very uneven
nature of the data. The model must accurately reconstruct the
timing of EMG bursts. Otherwise, RMS errors quickly became
very large whenever the network failed to reconstruct a burst, or
if it predicted a burst at an incorrect time point. The standard
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R2 may not be the best measure of error in this kind of data
because it considers only vertical distances and not horizontal
ones (time delays). The results from 1Hz Figures 8, 9 supportted
this. Perhaps some variation ofminimum editing distance (Victor

and Purpura, 1996; Schreiber et al., 2003) can provide a better
measure in the future.

At a glance, the EMG profiles in each trial appears to be
similar. This was caused by the alignment of trials (see section

FIGURE 6 |
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FIGURE 6 | Overall performance for four EMG signals from 4 subjects over days. X axis is the days after electrode implant. Solid lines- R2, Coefficient of

Determination, Dashed Lines- R, Correlation Coefficients. Red: Performance of Gamma Function Networks, Cyan, Control: Linear Decoder; Brown, Control: Gamma

Function Network trained on shuffled inputs. (B) Green lines shows the performance of unrestricted CNN; black arrow in indicates the data set for the plots shown in

the next figure.

Materials and Methods). Stereotyped profiles raised concerns
of whether the reconstructions were made using neural signals.
This was addressed by the a control network, whose output

is shown as a dashed brown line in Figures 7, 9. Because
an initial segment of each trial did not factor into error
calculations, and that segment was longer than the transient of
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the network, it was mathematically impossible to generate fits by
transients.

When combined, the result shows that while CNN performed
well only on some sessions, it would have been impossible to
reach these performances by chance, considering the visible
difference between the performances of CNN, and linear and
random controls in these cases. The discussion section will
speculate on the prediction performances achieved.

Reconstructions of some sessions were improved when the
cutoff frequency of the low-pass filter applied to the EMG

envelope was reduced. This effect is dramatic and R2 in some
cases exceeded 0.4 at 1 Hz (Figure 8). A probable cause is
that a low pass filter convert bursts into smoothed rates that
made temporal errors less detrimental. This was also seen in
Figure 9, where R2 = 0.454 for Set B and 0.431 for Set A. The
observation that the model performed better at lower cut-off may
have additional implications for interpreting the reconstruction,
which will be discussed in detail in the next section.

Figure 10 shows the affect network depth had on performance
on the dataset in Figure 7. The top plot showed change in

FIGURE 7 |

Frontiers in Neuroscience | www.frontiersin.org 9 October 2018 | Volume 12 | Article 689

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Guo et al. CNN Decodes Spinal Cord Signals

FIGURE 7 | Reconstruction (Red, CNN; Cyan: Linear; Brown Dashed: Scrambled CNN Control) of low-pass filtered EMG signals (Black lines) from neural signals.

Original EMG envelopes without low-pass filtering were drawn in gray dots for reference. This signal was marked by a black arrow in 6b. Scrambled Control (Brown):

Training was carried out on scrambled singals, producing predictions that are essentially flat after the first transient. Horizontal axis: Time bins of 10 ms, each trial is

4 s long. This duration is identical for Figures 7, 9.

performance when the number of regression layers increased
while session-dependent feature layers were kept constant. A
network with a single layer had a performance similar to the
linear control, while one with two layers performed similarly
to one with three layers, except for the session at 21 days.
additional layers lead to diminishing return and eventually
degradation in performance. The lower plot showed change in

performance when the number of feature layers were increased
while regression layers were kept constant. Networks with 1, 2, or
3 feature layers all performed similarly, while a network with 6
feature layers performed marginally better.

Gamma function networks were still able to train when
sampling rate was set to 1kHz, producing a reconstruction with
R2 = 0.202, R = 0.334 for test set B of the dataset in Figure 7
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FIGURE 8 | R2-value for reconstruction of low pass filtered EMG for various sessions of rat 3. Horizontal axis: Cut-off frequency for EMG, 0–5 Hz. Vertical Axis, R2.

Each line represented a different session.

in four attempts. while a naive CNN without closed form did
not converge after 16 attempts due to the increased number of
parameters. Therefore, a closed form improved the network’s
ability to converge and computational performance. At sampling
rate of 100 Hz, both networks converged and produced similar
reconstructions (Red vs. Green Line in Figure 6B).

4. DISCUSSIONS

Gamma Function Networks
The CNNs in this study were organized unconventionally as an
adaptation to neural data. Unlike images, the time dimension
of neural (and EMG) data is much greater than its feature
dimension, and there appeared to be little spatial structure
within the feature dimension. This is consistent with the data
presentation in Schirrmeister et al.’s (2017) paper (Schirrmeister
et al., 2017). Conventionally, the CNNs employ small filters with
limited span to discover features embedded in the data in a
hierarchy (Krizhevsky et al., 2012). While this method worked,
training was not straightforward. It required the data to be
sampled at a low frequency and kernel length to be limited to
avoid overwhelming complexity.

Complexity of neural network models must be match the
amount of data available. Because the ANNs approximate the
solution by cascade of activation functions (Hecht-Nielsen,

1989), optimizers can draw connections in the training data
unrelated to true mechanisms and are not predictive of the test
data. The more complex the network, the more training data is
required to prevent this. The best practice established is to let
the optimizer select network parameters such as the shape of
filters, however when training data is limited, this would result
in parameters that can quickly over-fit the training set.

The Gamma functions improved performance by reducing the
number of parameters to be estimated. This reduced over-fitting
when working with limited data. Unlike L1 or L2 regularizations,
an analytic function carries the implicit assumption that layer
responses are continuous. The reduced complexity allowed
a network comprised of analytic functions to train without
constraining kernel length using prior knowledge of probable
system response times. Because analytical functions retain the
same number of parameters regardless of the sampling rate,
a CNN of analytical functions could work at higher sampling
frequencies, while an unrestricted CNN cannot.

The gamma function was initially chosen because it resembled
the shape of excitatory post-synaptic potentials (EPSP), thus
presented a resemblance for construction of muscular action
potentials and end-plate potentials. However, this approached
most likely worked for a different reason in practice because
diagnostics showed that the output signals were an order of
magnitude longer than neuro-muscular end-plate potentials in
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the rat Figure 4. It is possible that any one sided unimodal
functions would perform equally well.

Relations to Past Work
The result showed that Convolutional ANN are capable of
predicting EMG activities during skilled movements. Unlike in
the previous study (Guo et al., 2014), this paper was concerned
largely with free movements where the limb position was
unknown.

Due to the presence of the spinal reflex pathways that include
the peripheral feedback, neural signal alone is insufficient to

predict EMG signals in unrestricted movements. The spinal
cord expresses a stretch reflex, where passively stretching muscle
causes them to contract to resist the stretch (Ghez and Shinoda,
1978). This reflex is caused by muscle spindles activating alpha
motor neurons and can occur in the absence of voluntary
command. The stretch reflex is postulated to stabilize postures
and movements against external perturbations (Feldman, 1986;
Levin and Feldman, 1994).

Because of this, movements are jointly determined by
descending signals, mechanical properties of the limbs, and the
local feedback circuits in the spinal cord. Identical descending

FIGURE 9 |
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FIGURE 9 | Reconstruction of set (B) using set (A) as validation, the EMG signal is the same one shown in Figure 7a, filtered to 1Hz. The input to linear control were

also filtered to 1Hz.

signals may result in different EMGs depending on external
factors. However, it is possible to treat this entire system,
including downstream mechanics and feedback, as a non-
linear FIR filter and perform system identification in the
context of stereotyped, skilled movements. For instance, a
model could detect a shift in neural signal encoding intentions,
and predict an EMG bursts of certain size and duration
based on transient system response to similar shifts without
knowledge of limb positions. These predictions would be
correct as long as the animal performed the same kind of
movement.

Speculatively, the presented Convolutional Neural Network
(CNN) contained more than a model of neuromuscular
activation for two reasons. Firstly, the optimizer produced
Gamma functions which can persists for over 50ms per layer,
leading to model responses that can last over 100 ms Figure 4.
Considering the neural propagations times to the muscles
implanted with EMG electrodes in the rat (<10 ms), this response
time is much longer than expected neuromuscular activation
delay and duration.

Secondly, point to point linear decoders (without temporal
memory) were frequently ineffective at similar cutoff frequencies
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FIGURE 10 | Reconstruction of the same signal in Figure 6B using increasing

number of network layers. Darker and thinner lines corresponds to deeper

networks. Red and Cyan line correspond to the network and linear control

shown in previous figures. Top: Fixed feature layers, Bottom: Fixed

Regression layers.

(Red vs. Cyan in Figures 6, 7, 9). This suggests no simple
instantaneousmapping exist between the neural signal and EMG.

Together, these factors suggest that the ANN made implicit
predictions of movements, possibly fast transient mechanics
of limbs in response to changes in command signals. At this
time, it is not yet clear which aspects of the movements were
captured by the networks because ANN models are black-
boxes for parametric analysis. Therefore, the next logical step
for this project will be to apply CNN to data generated by an
analytical biomechanic model (Hogan, 1985; Hogan and Sternad,
2012) that can be manipulated to test the limits of the CNN’s
capabilities.

Future Directions
Recurrent architecture is another possible direction for
improvement. This can be pursued in two ways. The first is

autoregressive models. The difference between predicted and
measured EMG signals may contain information about system
dynamics, such as limb velocities, which may be used to make
better predictions. Autoregressive models can take advantage
of this difference, however care must be taken to account
for self-correlation in EMG signals in time. Recent advances
in Sequential Convolution Architectures Such as ByteNet
(Kalchbrenner et al., 2016) SliceNet (Kaiser et al., 2017) and
PoseNet (Chen and Wu, 2017) makes this a promising avenue of
future investigation.

Alternatively, one could adopt fully recurrent network
architectures like Long Short Term Memory (LSTM) (Gers Jj
et al., 1999) or Deep Autoregressive Network (DARN) (Gregor
et al., 2014) These may work better than convolutional ones if
the context predicts movements better than timing. Recurrent
Neural Network such as LSTM have persistent states, which
are only replaced under some specific input contexts (specific
features which cause write gate to open). These networks do not
require predicting (neural) features to be at a fixed distance to
the predicted (EMG) features. While powerful, these networks
are also very difficult to train with limited data, because an
EMG burst could potentially be explained by any neural features
occurring beforehand.

Beside testing alternative ANN architectures, it will be
important to examine whether orthogonal basis function
expansion (Marmarelis, 1993; Chan et al., 2009) can produce a
better solution. Basis function expansions can be thought as a
two layer equivalent network - the first layer convolves inputs
with a series of fixed orthogonal waveforms, and the results of
these convolutions and their products enter a densely connected
output layer with logistic activation. Speculatively, multiple layers
of Gamma functions can represent a similar set of non-linearities
as Laguerre basis functions, but a study is still required to verify
this.

Other than sessions manually rejected due to excessive artifact
contamination, there did not appear to be parameters (date
or length) that effectively predicted performance of a session.
Session performances were also largely unaffected by depth of the
network or number of features extracted by session dependent
layers Figure 10. Attempts were alsomade to train the network to
select appropriate frequency bands by modulating the Gaussian
Envelope (see reprocessing) with sinusoidal signal from 1 to
500 Hz. This produced 20 signals per neural channel and the
resulting 540 signals were fed into either spatial convolutions
or densely connected layers. Both approaches slightly decreased
the performance, possibly because they drastically increased
the complexity of the feature layers, and each session did not
contain a large amount of data. Results of these explorations
suggested that causes for performance variability were
experimental.

While some evidence suggest that this may have been
caused by micro-motion of the electrode contact with respect
to neural tissue carring the relevant information, additional
data will be necessary to determine the exact nature of these
variability. Long episodes of continuous recording may also
be effective way to increase data availability, regardless of the
behavior that the animals are engaged in, as long as they
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are active. Data dominated by long periods of silent neural
signals are very unbalanced however, and will require additional
preprocessing.

An advantage of CNN models is that they rely on matrix
operations already implemented in existing graphics acceleration
hardware. In this project, One training step for one EMG
signal and one animal took 55–62 ms with sampling period
of 10 ms and approximately 1,500 ms with the sampling
period of 1 ms. However, predictions took much less time
than a single training step because only the forward pass
was needed. For all the practical purposes predictions were
instantaneous. An embedded system with on-board processing
power equivalent of a modest laptop graphics processor is in
theory sufficient to run the predictions in real time. While
the initial training is slow, it can be carried out over days
or weeks on an embedded or implantable system, without
transferring a large amount of data. This will only require
external supervision to switch the model from training to
predictive mode.

5. CONCLUSIONS

CNNs were able to reconstruct EMG signals from neural signals
recorded from the CST tract of freely moving rats for selected
sessions, well above the level of linear decoders. Additional
evidences suggest that this was probably accomplished by

an implicit prediction of movement dynamics. These result

shows variations of the CNNs defined with analytical functions
and using session-to-session transfers may present powerful
options for decoding neural signals, as long as testable controls
can be formulated to account for alternative interpretations.
Analytical mechanistic models as well as additional data will
help in better interpreting the results. CNN models can
operate on existing graphics processing hardware, making
it possible to develop efficient standardized self-contained
implantable systems to house these models for real-time
applications.
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