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A major issue for present HIV-1 research is to establish model systems that reflect or
mimic viral replication and pathogenesis actually observed in infected humans. To this
end, various strategies using macaques as infection targets have long been pursued.
In particular, experimental infections of rhesus macaques by HIV-1 derivatives have
been believed to be best suited, if practicable, for studies on interaction of HIV-1 and
humans under various circumstances. Recently, through in vitro genetic manipulations
and viral cell-adaptations, we have successfully generated a series of HIV-1 derivatives
with CXCR4-tropism or CCR5-tropism that grow in macaque cells to various degrees.
Of these viruses, those with best replicative potentials can grow comparably with a
pathogenic SIVmac in macaque cells by counteracting major restriction factors TRIM5,
APOBEC3, and tetherin proteins. In this study, rhesus macaques were challenged with
CXCR4-tropic (MN4/LSDQgtu) or CCR5-tropic (gtu + A4CI1) virus. The two viruses
were found to productively infect rhesus macaques, being rhesus macaque-tropic HIV-
1 (HIV-1rmt). However, plasma viral RNA was reduced to be an undetectable level in
infected macaques at 5–6 weeks post-infection and thereafter. While replicated similarly
well in rhesus peripheral blood mononuclear cells, MN4/LSDQgtu grew much better
than gtu + A4CI1 in the animals. To the best of our knowledge, this is the first report
demonstrating that HIV-1 derivatives (variants) grow in rhesus macaques. These viruses
certainly constitute firm bases for generating HIV-1rmt clones pathogenic for rhesus
monkeys, albeit they grow more poorly than pathogenic SIVmac and SHIV clones
reported to date.
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INTRODUCTION

HIV-1 has emerged from ancestral viruses by extensive recombination and/or adaptation
events (Sharp and Hahn, 2011). It exhibits an exquisitely complicated replication format,
about which much remains to be precisely clarified (Blanco-Melo et al., 2012; Engelman and
Cherepanov, 2012; Grütter and Luban, 2012; Malim and Bieniasz, 2012; Freed and Martin, 2013;
Campbell and Hope, 2015; Dahabieh et al., 2015; Freed, 2015; Nakayama and Shioda, 2015;
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Harada and Yoshimura, 2017; Heusinger and Kirchhoff,
2017; Yamashita and Engelman, 2017; Foster et al., 2018).
HIV-1 is highly adapted to humans in nature, and thus
strictly tropic only for humans and chimpanzees. Following
infection, HIV-1 persists in humans, and after lengthy
persistent state, ultimately causes AIDS-related diseases and
AIDS in most cases if not treated appropriately. Due to the
exceptionally narrow host range of HIV-1, primarily based
on its sophisticatedly regulated replication, animal models
for experimental infections have been difficult to develop
from the dawn period to the present stage of HIV-1 research.
Ambitious attempts to establish in vivo systems effective and
potent for model studies on HIV-1 continue to be one of major
approaches toward basic and clinical studies on HIV-1 and
AIDS.

A number of animal models have been proposed and tested
so far to perform in vivo studies on HIV-1 (Ambrose et al.,
2007; Nomaguchi et al., 2008, 2011; Hatziioannou and Evans,
2012; Nishimura and Martin, 2017). Surrogate models for
HIV-1 infection in humans include feline immunodeficiency
virus (FIV) in cats and simian immunodeficiency virus isolated
from the rhesus macaque (SIVmac) infection in macaques
(Hirsch et al., 1989; Slee et al., 1995; Veazey et al., 1998;
Auwerx et al., 2004; Sparger, 2006; Ambrose et al., 2007;
Chahroudi et al., 2012; Hatziioannou and Evans, 2012). Of
note, the SIVmac/macaque system has been frequently and
widely used for various study purposes, but not the FIV/cat
model (Hatziioannou and Evans, 2012). As for the other
animal models, because none of experimental animals are
susceptible to HIV-1 infection as described above, challenge
viruses and/or host animals need to be artificially manipulated.
Small animal model systems, i.e., transgenic mice/HIV-1,
transgenic rats/HIV-1, and transgenic rabbits/HIV-1, have been
unsuccessful due to the lack of robust HIV-1 replication
and/or disease progression (Dunn et al., 1995; Browning et al.,
1997; Keppler et al., 2002; Hatziioannou and Evans, 2012).
Exception is the humanized mouse model (human immune
system mouse model). A number of humanized mouse models
have been generated and extensively used for HIV-1 research
(Hatziioannou and Evans, 2012). However, there is clearly an
unavoidable limitation for the humanized mouse system. Since
humanized mice cannot have a complete functional human
immune system (cellular and humoral acquired immunity),
they cannot reproduce typical features of HIV-1 replication
and pathogenesis in vivo in response to HIV-1 infection.
As an alternative for SIVmac in the macaque system, a
chimeric virus designated SHIV has been extensively and
successfully utilized for input virus for experimental infection
of macaques since its initial description by us (Shibata
et al., 1991; Sakuragi et al., 1992; Shibata and Adachi, 1992).
SHIVs are genetically engineered virus clones that basically
carry the env (Shibata et al., 1991), pol-reverse transcriptase
(RT) (Uberla et al., 1995), or pol-protease (Ishimatsu et al.,
2007) gene of HIV-1 in the backbone of SIVmac genome.
An SHIV carrying HIV-1 pol-RT and Env also has been
constructed (Smith et al., 2010). Of these SHIVs, Env-SHIV
has been most widely and successfully used, especially for

immunotherapy research for HIV-1 (Nishimura and Martin,
2017).

MACAQUE-TROPIC HIV-1 DERIVATIVE
CLONES

To experimentally and demonstratively perform studies on
HIV-1 replication and pathogenesis in the presence of host innate
and acquired immunity, non-human primate (NHP) models are
essentially required. For this aim, three species of macaques,
rhesus, cynomolgus, and pig-tailed macaques have been currently
used for HIV-1 infection experiments. Macaques belong to Old
World monkeys, and are susceptible to SIVmac but not to HIV-1
(Nakayama and Shioda, 2012). Nevertheless, rhesus macaques
of Indian origin are best characterized, most utilized and most
successfully used NHPs for SIV- or SHIV-based model studies on
HIV-1/AIDS (Nomaguchi et al., 2011; Hatziioannou and Evans,
2012). Although pig-tailed macaques have been quite frequently
and widely used for HIV-1 model studies, they unusually
rapidly progress to AIDS upon infection with SIVmac (Batten
et al., 2006; Hatziioannou and Evans, 2012; Klatt et al., 2012).
In addition, they lack the TRIM-mediated restriction against
HIV-1 Gag-capsid (CA), and their immunological background
is not so well characterized relative to that of rhesus macaques
(Igarashi et al., 2007; Hatziioannou et al., 2009; Hatziioannou
and Evans, 2012; Nakayama and Shioda, 2012). Cynomolgus
macaques have not been so widely used for HIV-1/AIDS model
studies (Hatziioannou and Evans, 2012). SIVmac and SHIV are
found to be less pathogenic to cynomolgus monkeys, and their
immunological features are also less characterized (Reimann
et al., 2005; Pendley et al., 2008; Budde et al., 2010; Dietrich et al.,
2011; Hatziioannou and Evans, 2012).

Although SIV and SHIV infect rhesus macaques and cause
AIDS in the animals, their genomes are very different from
HIV-1 genome. In addition to profound sequence variations,
their genome compositions are distinct. Vpx gene is not
present in HIV-1 genome, whereas vpu gene does not exist
in SIVmac genome. SHIVs are SIVmac-derivative chimeric
viruses as described above. Therefore, it has been consensus to
have macaque-tropic HIV-1 derivative clones for experimental
macaque infections. To overcome the species barrier against
HIV-1, and generate the HIV-1 infection model system
using macaques, it was absolutely necessary to pinpoint the
viral genomic regions responsible for the narrow host range
of HIV-1. We and others have independently and almost
simultaneously identified the regions, i.e., Gag-CA and Vif,
and successfully generated macaque cell-tropic HIV-1 clones
[designated simian-tropic (st) HIV-1, HIV-1 derivative, or
HIV-1mt (macaque-tropic)] (Hatziioannou et al., 2006; Kamada
et al., 2006; Nomaguchi et al., 2011; Saito et al., 2011).

From the prototype HIV-1mt designated NL-DT5R (Kamada
et al., 2006), we have modified its genome stepwise and improved
its replication potential in macaque cells through sequentially
introducing necessary mutations/variations by in vitro
mutagenesis coupled with viral genome adaptation in cells
(Nomaguchi et al., 2008, 2011, 2013a,b,c; Kuroishi et al., 2009;
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Saito et al., 2011; Doi et al., 2017). Of particular note and
importance, we resultantly have obtained CXCR4-tropic and
CCR5-tropic HIV-1rmt (rhesus macaque-tropic) clones that
grow well in rhesus cells (Nomaguchi et al., 2013b, 2014;
Doi et al., 2017). Figure 1 shows the basic genome structure
of our HIV-1rmt clones. CXCR4-tropic MN4/LSDQgtu is
demonstrated to be resistant to major anti-restriction factors
(TRIM5α, APOBEC3, and tetherin) present in cynomolgus and
rhesus macaque cells (Nomaguchi et al., 2013b), and grows best
in rhesus cells among macaque-tropic HIV-1 derivative clones to
the best of our knowledge (Nomaguchi et al., 2014).

GROWTH OF HIV-1RMT CLONES IN
RHESUS MACAQUES

For routine check and characterization of our HIV-1rmt clones,
an immortalized lymphocyte cell line of rhesus origin was
established, and designated M1.3S (Doi et al., 2010, 2011).
Generally, CCR5-tropic MN5/LSDQgtu grew more poorly in
M1.3S cells and rhesus peripheral blood mononuclear cells
(PBMCs) than CXCR4-tropic MN4/LSDQgtu (Doi et al.,
2013; our unpublished data). After confirming the replication
ability in M1.3S cells, we comparatively examined the three
HIV-1rmt clones (MN4/LSDQgtu, MN5/LSDQgtu, and
gtu + A4CI1 in Figure 1) for their growth properties in rhesus
PBMCs as previously described (Nomaguchi et al., 2013b,
2014). Representative results are shown in Figure 2A. As is
clear, MN4/LSDQgtu grew much better than MN5/LSDQgtu.
However, notably, gtu + A4CI1 that carries an env gene from

a clinical HIV-1 isolate, and had been adapted in M1.3S cells
(Doi et al., 2017), grew comparably well with MN4/LSDQgtu
in two preparations of rhesus PBMCs. The results in Figure 2A
clearly show that the three HIV-1 derivative clones are tropic
for rhesus PBMCs, and that CCR5-tropic gtu + A4CI1 grow
much better than CCR5-tropic MN5/LSDQgtu in the cells. We
then inoculated MN4/LSDQgtu and gtu + A4CI1 into rhesus
macaques to determine whether the two virus clones can replicate
in the animals to a readily detectable level, i.e., to confirm that
they are really rhesus macaque-tropic. As shown in Figure 2B,
both viruses significantly grew in the animals as monitored
by viral RNA in plasma, a definite experimental indication as
HIV-1rmt. However, virus production reached the peak (∼105

viral RNA copies/ml for MN4/LSDQgtu and ∼104 viral RNA
copies/ml for gtu + A4CI1) at 1–2 weeks post-inoculation and
was transient, being undetectable at 5–6 weeks post-inoculation.
Numbers of circulating CD4-positive T-lymphocytes in the three
animals were not affected significantly by the infections (data
not shown). While the peak level was 10- to 103-fold lower
than that for pathogenic SIVmac and SHIV, MN4/LSDQgtu
grew obviously better than gtu + A4CI1 (compare the results
for MM581/602 and MM631). In another series of infection
experiments using two rhesus macaques, where multiple
CCR5-tropic virus clones (gtu + A4CI1 plus a few of the other
distinct CCR5-tropic clones) were simultaneously inoculated
into the animals to anticipate growth-enhancing adaptive
recombination/mutations to occur, both monkeys were certainly
infected with the virus(es), and transiently produced viral RNAs
in plasma as observed for infected MM631 in Figure 2B (data
not shown). It has been well established that most rhesus TRIM5

FIGURE 1 | Basic genome structure of HIV-1rmt clones. The three HIV-1rmt clones indicated have been constructed from three distinct primate immunodeficiency
viruses as shown. Genomic regions of HIV-1rmt clones derived from HIV-1 NL4-3, SIVmac MA239, and SIVgsn 166 (SIV isolated from the greater spot-nosed
monkey) are depicted by white, blue, and orange areas, respectively. Generation and characterization of HIV-1 NL4-3 (Adachi et al., 1986), SIVmac MA239 (Shibata
et al., 1991), CXCR4-tropic HIV-1rmt designated MN4/LSDQgtu (Nomaguchi et al., 2013b; Nomaguchi et al., 2017), CCR5-tropic HIV-1rmt designated
MN5/LSDQgtu (Nomaguchi et al., 2013b; Nomaguchi et al., 2017), and CCR5-tropic HIV-1rmt designated gtu + A4CI1 (Doi et al., 2017) have been fully described
previously. MN4/LSDQgtu and MN5/LSDQgtu carry growth-enhancing mutations in Gag-capsid, Pol-integrase, and Env regions as previously described (Nomaguchi
et al., 2013a,b). GenBank accession numbers for sequences of NL4-3, MA239, 166, MN4/LSDQgtu, and MN5/LSDQgtu are AF324493, M33262, AF468659,
LC315178, and LC315179, respectively.
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FIGURE 2 | Growth property of HIV-1rmt clones in rhesus PBMCs and individuals. (A) Viral replication kinetics in rhesus PBMCs infected with CXCR4-tropic
MN4/LSDQgtu, CCR5-tropic MN5/LSDQgtu, or CCR5-tropic gtu + A4CI1. PBMCs were prepared from rhesus macaques MM630 and MM631, and spin-infected
with cell-free viruses obtained from transfected 293T cells as previously described (Nomaguchi et al., 2013b, 2014). Cell numbers and input viral amounts used were
2.0 × 106 and 4.1 × 106 RT units, respectively. (B) Kinetics of plasma viral loads in rhesus macaques inoculated with CXCR4-tropic MN4/LSDQgtu or CCR5-tropic
gtu + A4CI1. Rhesus macaques MM581, MM602, and MM631 were infected with cell-free viruses obtained from transfected 293T cells, and monitored for viral
RNAs in plasma as previously described (Otsuki et al., 2014; Ishida et al., 2016). MM581 and MM602 were inoculated intravenously with 4.3 × 105 TCID50 of
MN4/LSDQgtu as determined in a macaque cell line HSC-F (Akari et al., 1999). MM631 was inoculated with gtu + A4CI1 intravenously (5.0 × 106 TCID50 in HSC-F
cells) and intraperitoneally (1.5 × 107 TCID50 in HSC-F cells). Infection experiments (MM581/MM602 and MM631) were separately and independently conducted,
and the detection limits for the MM581/MM602 and MM631 experiments were 250 and 500 copies/ml, respectively. The TRIM5 genotypes as analyzed by the
previously described method (Wilson et al., 2008) for MM581, MM602, MM630, and MM631 are TRIM5TFP/TFP (Mamu-1/Mamu-3), TRIM5TFP/TFP

(Mamu-3/Mamu-3), TRIM5TFP/TFP (Mamu-3/Mamu-3), and TRIM5Q/Q (Mamu-4/Mamu-4), respectively.
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alleles (Mamu-1 to Mamu-6) affect HIV-1 replication, but not
Mamu-7. While rhesus TRIM5α proteins encoded by TRIM5TFP
(Mamu-1 to Mamu-3) and TRIM5Q (Mamu-4 to Mamu-6)
inhibit HIV-1 replication (TFP protein is more potent than Q
protein), rhesus TRIM5CypA encoded by TRIM5CypA (Mamu-7)
does not influence HIV-1 replication (Price et al., 2009; Ylinen
et al., 2010; Nakayama and Shioda, 2012, 2015; Nomaguchi
et al., 2013b). We therefore determined the TRIM5 genotype
of the four rhesus macaques used in Figure 2 as previously
described (Wilson et al., 2008; Nomaguchi et al., 2013b).
Macaques MM581, MM602, MM630, and MM631 were found
to carry TRIM5TFP/TFP (Mamu-1/Mamu-3), TRIM5TFP/TFP

(Mamu-3/Mamu-3), TRIM5TFP/TFP (Mamu-3/Mamu-3), and
TRIM5Q/Q (Mamu-4/Mamu-4), respectively. Based on these
results, distinct growth efficiencies of MN4/LSDQgtu and
gtu + A4CI1 observed in infected MM581/MM602 and
MM631 (MN4/LSDQ grew much better than gtu + A4CI1
in rhesus macaques) are unlikely to be attributable to the
TRIM5 alleles. In summary, we have demonstrated here that
both CXCR4-tropic and CCR5-tropic HIV-1rmt clones readily
infected rhesus macaques with restrictive TRIM5 alleles, albeit
less efficiently relative to standard SIV/SHIVs pathogenic for
rhesus macaques.

CONCLUDING REMARKS

This is the first report to demonstrate the capability of
CXCR4-tropic and CCR5-tropic HIV-1 derivative viruses to
grow in rhesus macaques. Thus far, pig-tailed and cynomolgus
macaques have been the only NHPs to perform in vivo
infection studies on HIV-1/AIDS using viruses genetically
recognizable as HIV-1 (Igarashi et al., 2007; Hatziioannou
et al., 2009, 2014; Saito et al., 2011, 2013; Thippeshappa et al.,
2011; Otsuki et al., 2014; Peng et al., 2018). The rhesus
macaque is by far the best suited NHP species for HIV-
1 model studies from various points of views as described
above. Our results described here would forward numerous
research projects in this research field. Considering that
MN4/LSDQgtu does grow considerably in rhesus macaques,
it can be utilized to analyze the early infection stage of
HIV-1 in vivo. Also, functional roles for HIV-1 accessory
proteins in viral replication in vivo, which remains to be
elucidated, could be examined by mutational analyses on
MN4/LSDQgtu. Needless to mention, various basic and clinical
projects become practicable when pathogenic HIV-1rmt clones
are available.

Issues to be addressed in the near future can be summarized as
follows. (i) Obviously, to increase heterologous viral populations
after infection, improving the replication capability of the
present HIV-1rmt clones is required. For viral persistence
in individuals, viral variations to certain extent may be
essential. In this regard, our experience indicates that Gag-
Pol region is still amendable by in vitro mutagenesis. Better-
growing CCR5-tropic viruses are particularly necessary to

mimic the HIV-1’s natural infection course in individuals. (ii)
More sequences derived from distinct clinical isolates may
be needed to generate new HIV-1rmt clones. This attempt
may result in obtaining new useful HIV-1rmt variants. (iii)
Viral adaptation in rhesus macaques, in addition to the
adaptation in cell cultures, should be considered to obtain
virus clones pathogenic for rhesus macaques. Finally, in
conclusion, studies in these directions are in progress in our
laboratories.

ANIMAL EXPERIMENTS

Monkey experiments in this study were carried out in
biosafety level 3 animal facilities, in compliance with the
institutional regulations approved by the Committee for
Experimental Use of Non-human Primates of the Institute
for Virus Research (Institute for Frontier Life and Medical
Sciences since October in 2016), Kyoto University, Kyoto,
Japan.
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