
Submitted 13 June 2018
Accepted 24 September 2018
Published 15 October 2018

Corresponding author
Iam Palatnik de Sousa,
iam.palat@gmail.com

Academic editor
Klara Kedem

Additional Information and
Declarations can be found on
page 11

DOI 10.7717/peerj-cs.167

Copyright
2018 Palatnik de Sousa

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Convolutional ensembles for Arabic
Handwritten Character and Digit
Recognition
Iam Palatnik de Sousa
Department of Electrical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil

ABSTRACT
A learning algorithm is proposed for the task of Arabic Handwritten Character and
Digit recognition. The architecture consists on an ensemble of different Convolutional
Neural Networks. The proposed training algorithm uses a combination of adaptive
gradient descent on the first epochs and regular stochastic gradient descent in the
last epochs, to facilitate convergence. Different validation strategies are tested, namely
Monte Carlo Cross-Validation and K-fold Cross Validation. Hyper-parameter tuning
was done by using the MADbase digits dataset. State of the art validation and testing
classification accuracies were achieved, with average values of 99.74% and 99.47%
respectively. The same algorithm was then trained and tested with the AHCD character
dataset, also yielding state of the art validation and testing classification accuracies:
98.60% and 98.42% respectively.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning
Keywords Offline character recognition, Arabic Handwriting Recognition, Convolutional Neural
Networks, Deep learning

INTRODUCTION
Offline handwriting recognition refers to the task of determining what letters or digits
are present in a digital image of handwritten text. It is considered a subtask of the more
general Optical Character Recognition. However, in many applications, from reading bank
checks to postal mail triage, offline recognition plays a key role, greatly motivating the
development of accurate and fast classification algorithms (Abdelazeem, 2009).

The domain ofArabicHandwritingRecognition (AHR), however, has only been explored
in depth more recently. Younis (2017) notes that AHR suffers from slow development
compared to Handwriting Recognition in other languages. He further mentions that
Arabic characters contain a specific set of challenges that make the task more difficult. Such
difficulties include the positioning of dots relative to the main character, the variability
caused by the use of the characters in multiple countries and different areas of knowledge
and work, among others.

Given this issue, using datasets that represent this variability on a large number of images
is essential.

How to cite this article Palatnik de Sousa (2018), Convolutional ensembles for Arabic Handwritten Character and Digit Recognition.
PeerJ Comput. Sci. 4:e167; DOI 10.7717/peerj-cs.167

https://peerj.com
mailto:iam.palat@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.167
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.167


In the previous decade, a dataset equivalent toMNIST (LeCun et al., 1998) was developed
to allow for a more direct comparison of the performance of classification algorithms on
Latin and Arabic digits.

This dataset was named MADbase (Abdleazeem & El-Sherif, 2008), and consists of
70,000 images of Arabic digits, written by 700 participants from different areas of work
and backgrounds. These are divided into a training set of 60,000 images and a test set of
10,000. This seems to be the largest dataset for this task available in literature. This makes
it an ideal choice for training the network and fine-tuning parameters. Furthermore, as
discussed in detail on the next section, previous results obtained from this dataset allow
for comparison with the results presented in this manuscript. It is worth noting that this
dataset is a modified version of an equivalent dataset called ADbase, which contains the
same images with a different image size. To create MADbase, ADbase images were resized
and transformed from binary to grayscale to be equivalent to MNIST.

While the MADbase dataset deals with digits, the Arabic Handwritten Character Dataset
(AHCD) (El-Sawy, Loey & Hazem, 2017) includes 16,800 images of isolated characters
divided in training set of 13,440 and a test set of 3,360 images. This seems to be the largest
dataset available for this classification task.

Regarding previous results, Mahmoud (2008) presented a method for recognition of
handwritten Arabic digits based on extraction of Gabor-based features and Support Vector
Machines (SVMs). The dataset used in this case contained 21,120 samples provided by
44 writers. The average classification accuracy rates obtained were of 99.85% and 97.94%
using three scales & five orientations and four scales & six orientations respectively.

Abdleazeem & El-Sherif (2008) applied several classification methods to the MADbase
dataset. Their best result was obtained with a Radial Basis Function Support Vector
Machine (RBF SVM), with which a two stage classification was performed. In the first stage
several customized features were extracted from a similar dataset by the researchers, and
then used as input for the RBF SVM. The classifier was tuned to maximize the classification
accuracy, which had a final value of 99.48%. This value corresponds to the best parameter
combination.

El Melhaoui et al. (2011) used a small dataset of 600 digit images to obtain a 99%
recognition rate using a technique based Loci characteristics.

Pandi Selvi & Meyyappan (2013) proposed an approach for Arabic Digit recognition
using neural networks and training through backpropagation. The dataset used in this case
was also small, and the classification accuracy obtained was 96%.

Takruri, Al-Hmouz & Al-Hmouz (2014) obtained a test classification accuracy of 88%
using a dataset of 3,510 digit images, by using a three level classifier consisting on SVM,
Fuzzy C Means and Unique Pixels.

Salameh (2014) presented two methods for enhancing recognition of Arabic
Handwritten Digits. The methods combine fuzzy logic pattern classification to counting
the number of ends of the digit shapes to obtain a classification test accuracy of 95% for
some fonts.

Alkhateeb & Alseid (2014), using the ADbase dataset, obtained an 85.26% classification
accuracy by using Dynamic Bayesian Networks (DBN).

Palatnik de Sousa (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.167 2/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.167


Although it is hard to compare results provided by training with different datasets,
the larger datasets seem to result in worse classification accuracies, most likely since they
cover a larger sample of the variability of styles in handwriting. This further indicates that
using the largest, more challenging datasets available, with the largest number of writing
participants, is an ideal choice, as was done for this manuscript.

Loey, El-Sawy & EL-Bakry (2017) used Stacked Autoencoders on the MADbase dataset
to obtain a classification accuracy of 98.5%.

Mudhsh & Almodfer (2017) obtained a validation accuracy of up to 99.66% on the
MADbase dataset by usage of dropout regularization and data augmentation, and an
architecture inspired by the VGGNet Convolutional Neural Network (CNN) (Simonyan &
Zisserman, 2014). Importantly, they mention in the text that this validation accuracy does
not hold for the test set, without mentioning explicitly the test accuracy. The validation
method was a 10-fold cross-validation. They also tested the performance of the algorithm
on a dataset of 6,600 images of characters, obtaining a validation accuracy of 97.32%. Again
they mention that this validation accuracy does not hold for the test set, without clearly
stating the test accuracy.

Younis (2017) obtained an accuracy of 97.60% on the previously mentioned AHCD
dataset, by use of a Deep CNN with batch normalization and learning rate scheduling.

The general trend observed in these works is that feature extraction aids in the
classification task. This makes the choice of convolution based networks straightforward, as
these architectures are precisely constructed to be specialized feature extractors. It seems to
make sense that CNNs have the best results so far for this task, in these previously reported
results.

In this work, the best previous ideas and results are incremented further by usage of
some changes in architecture and in the training procedure. Namely both the VGGNet
inspiration and a batch normalized CNN are employed, combining their classifications
through ensemble averaging. The details of this method are described in the next section.

MATERIALS AND METHODS
The code for defining and training the networks was implemented in Python, using the
Keras framework with Tensorflow backend. The key aspects of the classification system are,
namely, the selection and preparation of the datasets, the network architecture, the training
schedule, the validation strategy, the data augmentation, and the ensemble selection. Each
of these is explained more in detail below.

Selection and preparation of datasets
The datasets chosen for training and parameter tuning were the MADbase and AHCD
datasets described in the previous section. For both datasets, the networks were trained
from scratch, although most of the parameter tuning was done with MADbase, since it is
a much larger dataset.

Since the images in both datasets are already prepared for training, the only pre-
processing done was converting the value of each pixel to float format and dividing by 255
for normalization purposes. Figure 1 shows some examples from each dataset.

Palatnik de Sousa (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.167 3/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.167


Figure 1 Example images from theMADbase and AHCD datasets.
Full-size DOI: 10.7717/peerjcs.167/fig-1

Network architecture
The classification method consists on an ensemble of four networks. These are actually two
networks, each trained with two different strategies (with data augmentation and without).
Rather than choosing whether to apply augmentation or not, both options are used and
the results are gathered in an ensemble classifier. This also allows for a direct comparison
of the predictive power of each individual network against the results of the ensemble. For
brevity, the ensemble of four networks will be called ENS4 throughout the manuscript.

The first type of CNN used in the ensemble was inspired by the VGG16 network, readily
implemented for Keras. This architecture couldn’t be used directly, however, because it
assumes the inputs are images of three channels (RGB) of default size 224 by 244 pixels, and
minimum size 48 by 48 pixels. Images below this size are too small to pass through the five
convolution blocks of the Network. The images of MADbase and AHCD have dimensions
of 28 by 28 pixels and 32 by 32 pixels, respectively. Furthermore they are grayscale images
with only 1 channel.

The solution to this was adapting the VGG16 architecture by removing the fifth
convolution block, and creating three channel images from the one channel images by
simply stacking the same single channel three times. Another adaptation added was a
dropout layer before the final dense softmax layer, and only using two dense layers instead
of three. The resulting 12 layer architecture, intended for these grayscale images, will be
called VGG12 on this manuscript, for brevity.

The second type of CNN used was designed from scratch in this work to include
the dropout and batch normalization regularizations within both the feature extraction
convolution blocks as well as the dense fully connected classification block. The architecture
was adapted after several experiments to be as simple as possible, allowing for fast training,
while still providing robust classifications. For brevity this architecture that includes

Palatnik de Sousa (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.167 4/13

https://peerj.com
https://doi.org/10.7717/peerjcs.167/fig-1
http://dx.doi.org/10.7717/peerj-cs.167


Figure 2 Diagrams of VGG12 and REGU. CONV refers to convolutional layers, POOL to max-pooling
layers, FULL to dense fully connected layers and NORM to batch normalization layers. Purple round rect-
angles correspond to convolutional feature extraction blocks, and orange round rectangles correspond to
fully connected classification blocks. More details about the architectures can be found on a suplemental
file along the manuscript.

Full-size DOI: 10.7717/peerjcs.167/fig-2

both types of regularizations (dropout and batch normalization) will be termed REGU
throughout the rest of the manuscript.

Figure 2 contains illustrative schemes of VGG12 and REGU.
Namely, VGG12 contains four convolution blocks and one fully connected block. The

convolution filters used in all convolution layers have size 3 × 3. The number of filters
used in the first block is 64, and doubles on every further block up to 512 on block 4. ReLU
activation was used for the convolution layers, as well as same padding. The max pooling
elements had a size of 2 × 2.

The fully connected block has two dense layers. The first, with ReLU activation, has 512
neurons. The second, with softmax activation, has 10 neurons for the case of MADbase
and 28 for the case of AHCD. A 0.25 dropout rate was used.

Regarding REGU, there are two convolution blocks and one fully connected block.
The first convolution block has two convolution layers with 32 filters of size 3 × 3 and
ReLU activation. A 0.2 dropout rate was used, followed by Batch Normalization. The max
pooling elements had a size of 2 × 2. The second convolution block is identical, except for
the number of convolution filters, which is 64 and for a Batch Normalization applied at
the start of the block.

The fully connected block in this case has Batch Normalizations before each dense layer.
The dense layers are identical to the case of VGG12. The first has 512 neurons and ReLU
activation, and the second has softmax activation and 10 neurons for MADBase and 28

Palatnik de Sousa (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.167 5/13

https://peerj.com
https://doi.org/10.7717/peerjcs.167/fig-2
http://dx.doi.org/10.7717/peerj-cs.167


neurons for AHCD. A 0.2 dropout rate was used. These descriptions are summarized in a
supplemental file that can be used for building this architecture on Keras.

Training schedule
The literature review and previous works cited show that, in general, the training for
AHR tasks is done with optimizers such as Stochastic Gradient Descent (SGD) or with
an adaptive method such as Adam (Kingma & Ba, 2014), often paired with learning rate
schedules.

However, a generalization gap between Adam and SGD has been observed recently
for many tasks involving image classification and language modelling (Keskar & Socher,
2017). It has been indicated that that SGD finds more optimal lower minimums for the
loss function, despite converging at a much lower rate than Adam. According to Keskar
and Socher, this favors the usage of Adam for the first epochs of training, providing a fast
convergence to lower losses, with a swap to SGD for a more fine convergence at the end of
the training. This swapping strategy closed the generalization gap on the tests performed
by Keskar and Socher.

A few experiments were performed with VGG12 and REGU using Adam, SGD and this
Adam and SGD swapping strategy. The initial results confirmed the observations of Keskar
and Socher, and as such the swapping strategy was adopted for the rest of the experiments.

Namely, the number of epochs before and after the swap was treated as a parameter to
be tuned, and eventually values of 20 epochs of Adam training followed by 20 epochs of
SGD training seemed to provide the best results.

For the 20 epochs of SGD training, inspired by previous works that used learning rate
scheduling, a strategy of reducing the learning rate periodically was adopted. Specifically,
this only happened if and when the test loss reached a plateau. There is an already
implemented function in Keras, ReduceonLRPPlateau, for this purpose. Whenever a
plateau was reached, the learning rate was multiplied by a factor of 0.1.

For this task in particular, the choice of this training strategy produced better results
when compared to use of SGD or Adam individually for 40 epochs. It is the first time
such a strategy has been employed for the task of Arabic Handwritten Character and Digit
Recognition.

It is also worth noting that using SGD individually didn’t reliably give similar results to
the swapping strategy, even when more training epochs were allowed, as SGD seemed to
have trouble converging on the first few epochs of training, remaining at high training and
validation and loss values.

The loss function used was Categorical Cross-entropy, which is adequate given the
softmax activation of the last dense layer of both VGG12 and REGU. Mean square error
was also tried in initial experiments, but it consistently resulted in worse performance.

Validation strategy
Both datasets used (MADbase and AHCD) provide separate test sets, but not separate
validation sets. If the test sets were to be used for validation purposes, this would make the
classifier heavily biased towards that specific test set. It would then be difficult to verify
how good the classifier is at generalizing.

Palatnik de Sousa (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.167 6/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.167


As such, using part of the training set for validation is the ideal approach. With the
validation set all the parameters were tuned to find the highest values of validation
accuracy, and only after this training was done, and no other changes were to be effected
to ENS4, the testing set was used for evaluation.

However this means that the validation strategy chosen for parameter tuning could affect
the generalization capabilities of the network. Furthermore, there is randomness present in
the training procedure, whether in weight initialization, in the data augmentation method,
the dropout regularization or other aspects. This suggests that multiple runs are necessary
to obtain an average behavior and performance of the classifier.

The most commonly applied validation methodologies that use multiple runs are Monte
Carlo Cross-Validation (MCCV) (Xu & Liang, 2001) and K-fold Cross-Validation (KCV)
(Refaeilzadeh, Tang & Liu, 2016).

In MCCV, a subset of the training set is chosen at random and used as a validation set.
This is repeated as many times as necessary, in general ensuring that the validation set
always has the same size.

In KCV the training set is divided into K subsets (named folds) of the same size, and
each fold is used as a validation set, while all of the other folds are gathered as a training
set. A very commonly used value for K is 10.

Generally speaking there isn’t a definitive answer as to which of these twomethodologies
is best for a given task, as this is highly dependent on the particularities of each dataset.
Mudhsh & Almodfer (2017), for instance, have used 10-fold cross validation in their study
of MADbase.

For this present manuscript, both MCCV and KCV were employed for the MADbase
dataset to give as much information as possible for fine-tuning the parameters, before the
test set was used for evaluation. Since the test set has 10,000 images for MADbase, the
MCCV was implemented so that the validation sets also had 10,000 images. This means
the training sets effectively had 50,000 images during training. A total of 10 runs were
performed in this manner, and the average performances were computed.

For the KCV, a 10-fold Cross-Validation was used to allow for direct comparison with
the results of Mudhsh & Almodfer (2017), but it must be noted that dividing the original
training set of 60,000 into 10 folds means each validation set has a size of 6,000. Since the
size of the validation set can be adjusted by changing the value of K, and the test set size
is fixed, a 6-fold validation was also performed (since this implies validation sets of size
10,000, the same as the provided test sets).

Given the smaller size of AHCD, using 10-fold cross validation makes the validation
sets too small compared to the test set, and as such only MCCV was employed in that
case, ensuring the validation and test sets had the same size. As with MADbase, this
cross-validation was repeated 10 times.

The results of the several runs with each method were averaged to allow for decision
making regarding parameter tuning. Once the best validation results were reached with
ENS4, the test set was used for evaluation.

Palatnik de Sousa (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.167 7/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.167


Data augmentation
The method of data augmentation has been used previously in AHR (Mudhsh & Almodfer,
2017). In the present study, data augmentation was applied to the training sets of both
MADbase and AHCD in some of the experiments. The purpose is to create a more varied
dataset that could make the classifier more robust. Since ENS4 includes both the networks
trained without and with data augmentation, the networks corresponding to the latter case
will be named VGG12_aug and REGU_aug for disambiguation.

The augmentation method used was the already implemented ImageDataGenerator on
Keras, with zoom_range, height_shift_range and width shift range parameters equal to
0.1. Other parameters were also tested, but invariably led to a worse performance of the
augmented classifiers. It is known that not all forms of augmentation are necessarily helpful
for all tasks (Mudhsh & Almodfer, 2017), and the tree chosen yield the best results for these
AHR architectures. The batch size of augmented images had a size of 128.

Ensemble selection
Once VGG12, VGG12_aug, REGU and REGU_aug were trained, the idea was to combine
their predictions into an averaged ensemble classifier (Simonyan & Zisserman, 2014). The
two main approaches that could be used for this include averaging the predictions of each
of the 4 networks that form ENS4, or using a maximum voting approach, where the biggest
softmax probability between the four networks is taken as the answer. Both methods were
initially used, with averaging eventually showing a better performance overall.

As such, the output softmax probabilities of ENS4 are the average calculated from the
outputs of VGG12, VGG12_aug, REGU and REGU_aug.

Roughly, the process of training the entire ensemble, took about 2 h per run on the
available hardware. GPU acceleration was used.

Weight initialization
Previous works in literature regarding AHR often don’t describe weight initialization
strategies. For this study we have used Glorot-Normal initialization (Glorot & Bengio,
2010). On their work, Glorot and Bengiomention how this initialization often outperforms
other normalized initializations. Indeed, this came to be the standard initialization for the
Keras framework.

For comparison, runs with He-Normal, Random normalized and All-zeroes
initializations were performed. Preliminary tests showed that the standard Glorot-Normal
initialization yielded better results, and so this was kept throughout the rest of the runs.

RESULTS
The optimizer swapping strategy described in the previous section, combined with the
learning rate scheduling, produces a consistent behavior of convergence of the loss function
with the training epochs. In the first twenty epochs, the Adam optimizer causes loss values
to drop towards lower and more stable values, and on the next 20 epochs SGD brings these
values to a lower, nearly constant minimum. An example of this behavior can be seen in
Fig. 3, showing the plots for loss and accuracy over the training epochs.

Palatnik de Sousa (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.167 8/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.167


Figure 3 Example of training and validation acurracy and loss as a function of training epochs. Each
of the four individual networks that compose ENS4 are portrayed. Up to the 20th epoch, under Adam op-
timization, the values gradually oscilate less. Notably when swapping to SGD at epoch 20 there is a slight
improvement of performance (higher acurracy, lower loss), followed by a narrower convergence of the
values. This behavior was consistent throughout all runs.

Full-size DOI: 10.7717/peerjcs.167/fig-3

Table 1 Summary of results. Averaged test and validation accuracies with different cross- validation
strategies. Entries in the table correspond to the individual networks (VGG12, REGU, VGG12_aug and
REGU_aug ) and ENS4.

MCCV KCV 10fold KCV 6fold

Accuracy
(%)

Standard
Deviation
(n%)

Accuracy
(%)

Standard
Deviation
(n%)

Accuracy
(%)

Standard
Deviation
(n%)

Validation (MADbase)
VGG12 99,56 0,05 99,60 0,06 99,62 0,05
REGU 99,61 0,05 99,58 0,06 99,58 0,08
VGG12_aug 99,63 0,05 99,59 0,06 99,62 0,06
REGU_aug 99,71 0,07 99,69 0,07 99,72 0,07
ENS4 99,74 0,06 99,73 0,05 99,74 0,07

Test (MADbase)
VGG12 99,20 0,05 99,23 0,08 99,26 0,07
REGU 99,17 0,04 99,15 0,10 99,18 0,05
VGG12_aug 99,32 0,04 99,31 0,03 99,32 0,03
REGU_aug 99,37 0,04 99,40 0,06 99,39 0,05
ENS4 99,43 0,03 99,44 0,04 99,47 0,04

After the initial parameter tuning was performed with MADbase, the 26 experiments
corresponding to 10 MCCV runs, 10 fold runs and six fold runs were performed. The
averaged results are summarized in Table 1. The full raw results of the runs, used to
calculate these averages, are presented as a supplemental file along the manuscript.

Interestingly, the only case where one of the individual networks outperformed the
full ensemble was for one of the REGU_aug results. Furthermore, REGU_aug consistently

Palatnik de Sousa (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.167 9/13

https://peerj.com
https://doi.org/10.7717/peerjcs.167/fig-3
http://dx.doi.org/10.7717/peerj-cs.167


outperformedVGG12_aug in all experimentswith this dataset, even though the architecture
is arguably much simpler (having effectively six layers compared to the 12 of VGG12).

For MADbase, the maximum value of test accuracy was observed during one of the
10-fold tests: 99.52%. This result outperforms the 99.48% RBF SVM result reported
Abdleazeem & El-Sherif (2008). The maximum validation accuracy was observed during
one the MCCV runs: 99.86%, which outperforms the 99.66% validation accuracy reported
by Mudhsh & Almodfer (2017).

It was also observed that the final averaged test accuracy of 6-fold validation forMADbase
was the best result among the three validation strategies. However it surpasses the other
two by only 0.02%. In the MADbase test dataset of 10,000 images this corresponds to a
difference of just two images. The difference in stdev is also small, of 0.01%. Overall this
does not seem to show a clear best choice between MCCV and KCV validation strategies.

As such, the AHCD dataset was studied using MCCV for parameter tuning. The
validation and test accuracies were, respectively, 98.60% and 98.42%. These also meet and
improve upon the state of the art values mentioned in ‘Introduction’.

DISCUSSION
Notably, standard deviation (stdev) of the results of 10 MCCV runs were lower than the
standard deviation of either KCV. The only exceptions are for the ENS4 validation stdev,
and the VGG12_aug test stdev. This seems to indicate that the MCCV yields less disperse
validation and test accuracies for MADbase.

The fact that REGU was observed to outperform VGG12 suggests the importance of
batch normalization for this task.

It was also observed that data augmentation resulted consistently in improvements for
both validation and test accuracies. Furthermore, ensemble averaging resulted in higher
validation and test accuracies while at the same time reducing the standard deviation over
the number of the experiments performed.

In terms of the validation and test accuracies, 10-fold cross-validation was consistently
a worse performing metric compared to sixfold cross-validation and MCCV. Generally
speaking whenever tenfold cross-validation was used for parameter tuning, the observed
accuracies were in general worse. This is true for both validation and test accuracies.

However for the most part, the observed differences were on the order of less than 10
misclassifications, which doesn’t justify preference for a particular validation strategy if it
would be much more computationally costly than the alternative.

The average test and validation accuracy values of ENS4 are very promising and improve
upon the presently available state of the art listed in ‘Introduction’, for MADbase. The best
test accuracy result of 99.52% indicates that ENS4 is the first classifier to outperform the
accuracy value of 99.48% of the two stage RBF SVM classifier by Abdleazeem & El-Sherif
(2008) for this dataset. Importantly, ENS4 achieves this in a single stage classification, with
no previous feature extraction.

Palatnik de Sousa (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.167 10/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.167


CONCLUSION
A method for Offline Arabic Handwritten Recognition was described in this manuscript.
The system was trained and tested on the two largest available datasets of Arabic digits and
characters. The architecture used consisted of an ensemble averaging of four Convolutional
Neural Networks. Of these four, two were inspired by VGGNet and two were written from
scratch using batch normalization and dropout regularization. Each of these was trained
twice: once with data augmentation, once without.

The training used a swapping method where the first epochs use an adaptive optimizer
(Adam) and the last epochs use regular stochastic gradient descent. It further used learning
rate scheduling if the loss decrease reached a plateau during the SGD training epochs.

Two validation strategies were considered: Monte Carlo Cross-Validation and K-fold
Cross-validation. For the latter, two values ofK were used, one commonly used in literature,
and one that ensures the test and validation sets have the same size for theMADbase dataset.
The results didn’t show a clear advantage of choosing either method for this dataset in
particular.

The use of a categorical cross-entropy loss function outperformed the use of a mean
squared error function for the same purpose, possibly because of the choice of softmax
activations for the final dense layer of the individual networks.

Glorot-Normal weight initialization outperformed the other alternatives tested (He-
Normal, All-zero, Random normalized). Future works could test initializations more
exhaustively, to see if there is a particular combination of initializations that yield better
results for AHR, although the results so far seem to indicate that other aspects of the
architecture and training are more relevant to the end result.

The results obtained improve upon the state of the art both the MADbase and AHCD
datasets. The fact the ensemble averaging gives promising results suggests future projects
could adapt other types of larger Convolution based Networks, or try different training
strategies, while also adding them to ensemble averaging classifiers. Other types of ensemble
averaging, such as weighted averages, could be explored more in depth for this purpose as
well.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Council for Scientific and Technological
Development of Brazil, through a PhD scholarship. There was no additional external
funding received for this study. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the author:
National Council for Scientific and Technological Development of Brazil.

Palatnik de Sousa (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.167 11/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.167


Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Iam Palatnik de Sousa conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, performed the
computation work, authored or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

There are three supplemental files. The text file includes relevant specific details about
the network architectures used in the manuscript.

The Excel file includes the raw results from the experiments run in the manuscript. The
ipynb file is the Pthon code notebook.

The raw data (specific details about the network architectures used, raw results from the
experiments run and the Python code notebook) is available as Supplemental Files.

AHCD: https://www.kaggle.com/mloey1/ahcd1.
MADbase: https://www.kaggle.com/mloey1/ahdd1/.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.167#supplemental-information.

REFERENCES
Abdelazeem S. 2009. Comparing Arabic and Latin handwritten digits recognition

problems.World Academy of Science, Engineering and Technology 54:451–455.
Abdleazeem S, El-Sherif E. 2008. Arabic handwritten digit recognition. International

Journal of Document Analysis and Recognition 11(3):127–141
DOI 10.1007/s10032-008-0073-5.

Alkhateeb JH, Alseid M. 2014. DBN—based learning for Arabic handwritten digit
recognition using DCT features. In: 2014 6th international conference on Computer
Science and Information Technology (CSIT). 222–226.

El Melhaoui O, MarocM, El HitmyM, Lekhal F. 2011. Arabic numerals recognition
based on an improved version of the loci characteristic. International Journal of
Computer Applications 24(1):36–41 DOI 10.5120/2912-3830.

El-Sawy A, LoeyM, Hazem EB. 2017. Arabic handwritten characters recognition using
convolutional neural network.WSEAS Transactions on Computer Research 5:11–19.

Keskar NS, Socher R. 2017. Improving generalization performance by switching from
Adam to SGD. ArXiv preprint. arXiv:1712.07628.

Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. ArXiv preprint.
arXiv:1412.6980.

LeCun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE 86(11):2278–2324 DOI 10.1109/5.726791.

Palatnik de Sousa (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.167 12/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.167#supplemental-information
https://www.kaggle.com/mloey1/ahcd1
https://www.kaggle.com/mloey1/ahdd1/
http://dx.doi.org/10.7717/peerj-cs.167#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.167#supplemental-information
http://dx.doi.org/10.1007/s10032-008-0073-5
http://dx.doi.org/10.5120/2912-3830
http://arXiv.org/abs/1712.07628
http://arXiv.org/abs/1412.6980
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.7717/peerj-cs.167


LoeyM, El-Sawy A, EL-Bakry H. 2017. Deep learning autoencoder approach for
handwritten arabic digits recognition. ArXiv preprint. arXiv:1706.06720.

Mahmoud SA. 2008. Arabic (Indian) handwritten digits recognition using Gabor-based
features. In: Innovations in Information Technology, 2008. IIT 2008. International
conference. Piscataway: IEEE, 683–687.

MudhshM, Almodfer R. 2017. Arabic handwritten alphanumeric character recognition
using very deep neural network. Information 8(3):105 DOI 10.3390/info8030105.

Refaeilzadeh P, Tang L, Liu H. 2016. Cross-validation. Encyclopedia of Database Systems
DOI 10.1007/978-0-387-39940-9_565.

SalamehM. 2014. Arabic digits recognition using statistical analysis for end/conjunction
points and fuzzy logic for pattern recognition techniques.World of Computer Science
& Information Technology Journal 4(4).

Selvi PP, Meyyappan T. 2013. Recognition of Arabic numerals with grouping and
ungrouping using back propagation neural network. In: 2013 international conference
on pattern recognition, informatics and mobile engineering (PRIME). Piscataway: IEEE,
322–327.

Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image
recognition. ArXiv preprint. arXiv:1409.1556.

Takruri M, Al-Hmouz R, Al-Hmouz A. 2014. A three-level classifier: fuzzy C means,
support vector machine and unique pixels for Arabic handwritten digits. In:
Computer Applications & Research (WSCAR), 2014 world symposium. Piscataway:
IEEE, 1–5.

XuQS, Liang YZ. 2001.Monte Carlo cross validation. Chemometrics and Intelligent
Laboratory Systems 56(1):1–11 DOI 10.1016/S0169-7439(00)00122-2.

Younis KS. 2017. Arabic handwritten character recognition based on deep convolutional
neural networks. Jordanian Journal of Computers and Information Technology 3(3).

Palatnik de Sousa (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.167 13/13

https://peerj.com
http://arXiv.org/abs/1706.06720
http://dx.doi.org/10.3390/info8030105
http://dx.doi.org/10.1007/978-0-387-39940-9_565
http://arXiv.org/abs/1409.1556
http://dx.doi.org/10.1016/S0169-7439(00)00122-2
http://dx.doi.org/10.7717/peerj-cs.167

