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Abstract: Sustainable fisheries require strong management and effective gov-
ernance. However, small-scale fisheries (SSF) often lack formal institutions, 
leaving management in the hands of local users in the form of various govern-
ance approaches (e.g. local, traditional, or co-management). The effectiveness of 
these approaches inherently relies upon some level of cohesion among resource 
users to facilitate agreement on common policies and practices regarding com-
mon pool fishery resources. Understanding the factors driving the formation 
and maintenance of community cohesion in SSF is therefore critical if we are 
to devise more effective participatory governance approaches and encourage 
and empower decentralized, localized, and community-based resource manage-
ment approaches. Here, we adopt a social relational network perspective to pro-
pose a suite of hypothesized drivers that lead to the establishment of social ties 
among fishers that build the foundation for community cohesion. We then draw on 
detailed data from Jamaica’s small-scale fishery to empirically test these drivers 
by employing a set of nested exponential random graph models (ERGMs) based 
on specific structural building blocks (i.e. network configurations) theorized to 
influence the establishment of social ties. Our results demonstrate that multiple 
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drivers are at play, but that collectively, gear-based homophily, geographic prox-
imity, and leadership play particularly important roles. We discuss the extent to 
which these drivers help explain previous experiences, as well as their implica-
tions for future and sustained collective action in SSF in Jamaica and elsewhere. 
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1. Introduction
Sustainable fisheries require strong management and effective governance (Bundy 
et al. 2017). Yet small-scale fisheries (SSF) often lack formal institutional capac-
ity, which hampers effective governance (Andrew et al. 2007; Salas et al. 2007; 
Barnes-Mauthe et al. 2013b). Management is thus often left in the hands of local 
users in the form of various governance approaches (e.g. local, traditional, or co-
management) (Pomeroy 1995; Cinner et al. 2012; Wamukota et al. 2012). The 
effectiveness of these approaches inherently relies upon some level of cohesion 
among resource users in order for all or the majority of actors to get together to 
devise, implement, and maintain policies and practices regarding common pool 
fishery resources (Pomeroy and Andrew 2011; Cinner et al. 2012). 

Broadly stated, social cohesion refers to the forces that hold individuals and 
communities together through the maintenance of social relationships (Moreno 
and Jennings 1938; Festinger et al. 1950; McPherson and Smith-Lovin 2002). 
Social cohesion contributes to the development of shared views, perceptions, 
behaviors, and norms (Friedkin 2004; Prell et al. 2010), all of which are par-
ticularly important in bringing communities together to collectively manage SSF 
where institutional capacity is weak and formal authorities are absent. In this con-
text, community cohesion (i.e. social cohesion within a community) can reduce 
transaction costs, facilitate the development of commonly agreed upon harvesting 
rules, and contribute to self-monitoring (Pretty 2003; Berkes 2010; Nunan et al. 
2015).

Even where SSF have some institutional capacity, community cohesion can 
play an important support role. For example, community cohesion can facili-
tate social learning and contribute to navigating and responding to larger-scale 
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 institutional or environmental change (e.g. the establishment of MPAs, changes 
in user rights, climate-induced shocks) (Ostrom 1990; White et al. 2002; Christie 
2004; Salas and Gaertner 2004; Mills et al. 2013; Stevens et al. 2015; Barnes 
et al. 2017b; Crona et al. 2017). In addition, repeated social interactions between 
individuals can lead to the development of trust and contribute to the establish-
ment of mutual understanding about the status and conditions of natural resources 
(Ostrom 1990, 2005; Ostrom and Walker 2003). 

Despite the importance of community cohesion for supporting effective 
governance of SSF, we know little about the factors that bring and hold com-
munities together in this context (Jentoft 2000; Kumar 2005; Cinner et al. 2012; 
Nunan et al. 2015). Developing an understanding of these factors is critical 
for several reasons. First, we need to understand how communities of resource 
users emerge and develop if we are to devise more effective participatory gov-
ernance approaches. This understanding is also critical for devising policies 
aiming to encourage and empower decentralized, localized, and community-
based resource management approaches – i.e. the devolution of rights from 
public authorities to local communities (Pomeroy et al. 2004; Carlsson and 
Berkes 2005). Second, community cohesion forms an important foundation 
for the emergence and maintenance of key social processes that support effec-
tive resource governance (e.g. collective action, coordination, and learning; see 
Friedkin 1998; Bodin and Crona 2009; Frank 2011; Barnes et al. 2016). Though 
community cohesion has been studied in other contexts such as schools, sports 
teams, economic development, and civic engagement (e.g. Onyx and Bullen 
2000; Narayan and Cassidy 2001; Krishna 2002; Friedkin 2004), recent research 
has demonstrated that well-studied social-structural or social network theories 
do not always seamlessly apply to common-pool resource settings (Crona et al. 
2017). For example, Barnes et al. (2017a) showed that positive effects of bro-
kerage (ties that bring disparate groups together), which have been well-studied 
in the economic and organizational sciences (e.g. Burt 2004), did not appear to 
manifest for Hawaii’s longline fishers.

In this paper, we adopt a social relational network perspective (sensu Bodin 
and Crona 2009; Alexander and Armitage 2015) to propose a suite of hypoth-
esized drivers that lead to the establishment and maintenance of social ties among 
fishers, which build the necessary foundation for community cohesion. We then 
draw on detailed data from Jamaica’s small-scale fishery to test these hypotheses 
empirically. Specifically, we develop and analyze a suite of empirically driven 
and nested exponential random graph models (ERGMs) based on specific struc-
tural building blocks (i.e. network configurations), (see, e.g. Davis and Leinhardt 
1972) theorized to capture different drivers (i.e. processes) in which social ties 
are established. We then discuss the extent to which these drivers help to explain 
previous experiences (e.g. Crona and Bodin 2006; Barnes-Mauthe et al. 2013a, 
Cox et al. 2016), as well as their implications for future and sustained collective 
action with regards to SSF in Jamaica and elsewhere.
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2. Drivers of social tie formation in small-scale fisheries
There are three broad drivers frequently identified in the sociological literature 
that are thought to contribute to the establishment of social ties and understand-
ing how patterns of ties – i.e. social networks – evolve over time. These drivers 
include: (1) structurally driven tie formation; (2) attribute driven tie formation; 
and (3) exogenous contextual factors (Table 1). Structurally driven mechanisms 
posit that the establishment and maintenance of social ties are driven by existing 
direct and indirect connections (Rivera et al. 2010; Lusher et al. 2012). Attribute 
driven mechanisms posit that the establishment and maintenance of social ties 
are driven by similarities (or differences) in the attributes of actors (Rivera et al. 
2010; Lusher et al. 2012). Exogenous contextual factors suggest cultural, social, 
geographic, and/or ecological environments of individual actors drive the estab-
lishment and maintenance of social ties.  

While significant streams of research on these mechanisms have emerged, 
they have often done so in isolation (Rivera et al. 2010), and several scholars have 
called for an approach that considers multiple drivers of tie formation simultane-
ously (Monge and Contractor 2003; Rivera et al. 2010; Henry et al. 2011; Lusher 
et al. 2012). Accordingly, we focus here on understanding the role and interplay 
of four different processes spanning these drivers. The first driver is the structur-
ally driven tie formation process of triadic closure – i.e. the general tendency for 
friends of a friend to be friends (Granovetter 1973) – (e.g. Ramirez-Sanchez and 
Pinkerton 2009). The second driver is the attribute driven process of homophily 
– i.e. the formation of social ties between individuals who share some commonal-
ity such as fishing gear type – (e.g. Barnes-Mauthe et al. 2013a). The third driver 
represents the exogenous contextual factor geographic proximity – i.e. the forma-
tion of social ties between individuals who regularly occupy similar geographic 
spaces –  (e.g. St. Martin and Hall-Arber 2008). The fourth driver is an additional 
attribute driven process found to be critical in SSFs and other CPR contexts: lead-
ership (e.g. Alexander et al. 2015; Crona et al. 2017). 

The four processes and associated hypotheses examined here were selected 
through a stepwise process. The three broad categories identified by Rivera et al. 
(2010) and Lusher et al. (2012), which have been distilled from theoretical and 
empirical studies, serve as the starting point. For each broad category we then 
turned to the small-scale fisheries literature for empirical examples (including 
both qualitative studies and social network analysis). Simultaneously, we turned 
to the empirical context of this study to identify other relevant processes (e.g. 
leadership, landing sites). We then use the empirical setting as a final filter to 
identify those most relevant to examine in this context – e.g. while ethnicity 
and kinship have been identified in the small-scale fishery literature they are not 
appropriate for this context. Accordingly, this is not an exhaustive list of relevant 
hypotheses in relation to what factors and mechanisms might be contributing to 
community cohesions. Theoretical and empirical work informing each of the four 
hypotheses is included below. 
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Hypothesis 1. Triadic closure contributes to the formation of social ties 
among small-scale fishers.

Triadic closure and clustering are known to be some of the most common struc-
turally driven tie formation mechanisms in social networks (Lusher et al. 2012). 
They have been observed in a diversity of contexts ranging from a neighborhood 
church and textile factory to digital communications at a large university (Hammer 
1980; Kossinets and Watts 2006). These dense structures can be seen as a network 
representation of bonding social capital (see, e.g. Berardo 2014). Social capital 
has been of particular interest to those studying SSF (e.g. Ramirez-Sanchez and 
Pinkerton 2009; Barnes-Mauthe et al. 2015) because it has repeatedly been linked 
to successful natural resource management outcomes (Ostrom 1990; Pretty 2003), 
particularly the management of common pool fishery resources (Gutiérrez et al. 
2011; Cinner et al. 2012). Bonding social capital is characterized by strong, local-
ized social ties and high levels of social cohesion (Narayan and Cassidy 2001; 
Woolcock 2001). As such, it can be particularly important in SSF where institu-
tional capacity is weak because it can reduce transaction costs, contribute to the 
development of trust and commonly agreed upon harvesting rules, and promote 
self-monitoring (Pretty 2003; Berkes 2010; Nunan et al. 2015).

Hypothesis 2. Gear-based homophily contributes to the formation of social 
ties among small-scale fishers. 

Homophily is one of the most ubiquitous drivers of social tie formation (McPherson 
et al. 2001). Accordingly, the presence and role of homophily has been documented 
in several common pool resource use settings, including marine fisheries (Crona 
and Bodin 2006; Barnes-Mauthe et al. 2013a; Cox et al. 2016). The implications 
of this are substantial as the resulting network structures dictate the information 
people receive and the attitudes, beliefs, and values they are exposed to (Friedkin 
1998; Frank 2011; Frank et al. 2011; Barnes et al. 2016). While homophily struc-
tures all types of network ties (e.g. marriage, friendship) and can be attributed 
to many socio-demographic characteristics (e.g. age, gender), here we focus on 
homophily based upon the choice of fishing gear (hereafter referred to as gear-
based homophily). Being successful as a small-scale fisher, in an environment that 
is incredibly heterogeneous and highly variable, requires specific and contextual 
information (Crona and Bodin 2006). Therefore, it is likely that fishers will seek 
and share information with others whose experiences and resource needs are simi-
lar. Thus, in instances where a SSF is characterized by multiple gear types, which 
is incredibly common throughout the globe (Salas et al. 2007, McClanahan and 
Cinner 2008), sharing information with others using similar gears is likely. Indeed, 
gear-based homophily has been documented in SSF including coastal Kenya 
(Crona and Bodin 2006) and the Dominican Republic (Cox et al. 2016).

Hypothesis 3a. Geographic proximity, here captured by any two fishermen 
sharing a landing site, contributes to the formation of social ties among 
small-scale fishers. 
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Hypothesis 3b. Geographic proximity, via a shared landing site, drives small-
scale fishers to avoid establishing social ties with each other due to direct 
competition over nearby marine resources. 

Geographic proximity – i.e. the formation of social ties between individuals who 
regularly occupy similar geographic spaces – is another driver of social tie forma-
tion found to be common across several settings (Gieryn 2000; Rivera et al. 2010; 
Lusher et al. 2012; Maciejewski and Cumming 2015). In the context of near-shore 
SSF, landing sites reflect geographic proximity and serve as social spaces where 
fishers are more likely to have repeated interactions with others on their way to 
go fishing or upon their return. Accordingly, landing sites serve as a likely mecha-
nism driving the establishment and maintenance of social ties (hypothesis 3a). 

However, we also acknowledge that competition between fishers at the same 
landing sites can be fierce since they often go to the same/overlapping fishing 
sites and fish for common target species (Basurto et al. 2016). Thus, the incentive 
for collaboration might be negative. In such cases, one would expect that sharing 
a landing site would instead imply a propensity of fishers to avoid establishing 
social ties between each other. Therefore we suggest an alternative hypothesis 
(3b), noting however that these hypotheses and associated processes are not mutu-
ally exclusive, i.e. a positive and negative effect of geographic proximity on the 
establishment of social ties may exist simultaneously.

Hypothesis 4. Key leaders within communities drive the establishment and 
maintenance of social ties among small-scale fishers. 

The presence of local community leaders – e.g. president of a fisher  cooperative – 
serves as another driver of social tie formation. Many leaders will be sought after 
for specific information related to their position, experience, and knowledge. This 
leads to community leaders having more ties on average (Alexander et al. 2015; 
Mbaru and Barnes 2017). In the context of SSF, leadership has been noted as a key 
attribute for success (Grafton 2005; Bodin and Crona 2008; Gutiérrez et al. 2011; 
Alexander et al. 2015; Crona et al. 2017). Furthermore, as Crona et al. (2017) 
note, leaders can act as hubs, bringing people together, playing an important role 
in supporting and activating community cohesion.

3. Testing the drivers empirically
3.1. Methodological approach

Our empirical example uses detailed data on small-scale fishers operating within, 
or in close proximity to the Bluefields Bay Special Fishery Conservation Area 
(SFCA) in Jamaica (Figure 1). Jamaica has an active small-scale and artisanal 
fishery (Aiken and Kong 2000) that can be characterized as mixed gear (e.g. 
fish traps, gill nets, handlines, spear guns) and multispecies (e.g. reef fish, spiny 
lobster, conch, small coastal pelagic finfish, large offshore pelagic finfish). The 
fisheries are largely reef-dependent, occur near shore (Aiken and Kong 2000),  



526 Steven M. Alexander et al.

and  contribute to the livelihoods of 75% of households in some communities and 
nearly 5% of the island’s entire population (Burke and Kushner 2011; Burke et al. 
2011). Moreover, they provide close to 10% of protein consumed by Jamaicans, 
making the health of coral reefs a matter of food security, especially for rural fish-
ing communities (Waite et al. 2011). In an effort to protect  near-shore fisheries 
and other marine and coastal resources, Jamaica has established 14 SFCAs – i.e. 
marine no-take areas – which range in size from 1 to 18.73 km2 and have a legal 
mandate for co-management. 

The Bluefields Bay SFCA is located along the southwest coast of Jamaica 
in the parish of Westmorland and is 13.59 km2 – making it among the largest in 
Jamaica (Figure 1). Officially legislated and declared in 2009, a Memorandum of 
Agreement (MoA) was established with the Bluefields Bay Fishermen’s Friendly 
Society (BBFFS). Today, Bluefields Bay SFCA employs eight full-time war-
dens from the community who maintain a twenty-four hour patrol. An estimated 
160–200 fishers live in the vicinity of Bluefields Bay, largely in the coastal com-
munities of Belmont, Cave, and Paradise. These fishers launch their boats from 
seven different landing sites (see Figure 1), which vary significantly in their size 
(~4–50+ fishers), composition with regards to gear type, and formality – i.e. only 
two of the seven landing sites are officially registered by the Fisheries Division. 

Figure 1: Bluefields Bay Special Fishery Conservation Area and associated landing sites 
(Made by D. Campbell).
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Here, the main function of the landing sites is to provide fishers a place to store 
and launch their fishing boat. Accordingly, landing sites provide access to the sea, 
as private landowners own the majority of the coast. 

Previous research examining the social network among fishermen in Bluefields 
Bay found pockets of cohesion with significant fragmentation and numerous iso-
lated fishermen (Alexander et al. 2015). In addition, the findings suggest that 
the presence of institutional entrepreneurs and a cohesive central core played 
key roles in supporting a transition to co-management (Alexander et al. 2015). 
However, the authors also note that the overall lack of cohesion (illustrated by 
the high fragmentation) may prove problematic for the long-term success of co-
managed marine reserves. Accordingly, there is an imperative to understand what 
drives community cohesion in such settings. 

3.2. Data collection

Social network data were collected via questionnaires administered through 
personal interviews with fishers (n=122). The target population (~163–197; see 
Appendix 7.1) was defined as all fishers based at landing sites located within the 
boundaries of the SFCA in addition to those landing sites directly adjacent to the 
boundary (n=7; see Figure 1). This resulted in a response rate ranging from 60 to 
75%. To capture as complete a network data set of fishers as possible, lists of reg-
istered fishers provided by the Fisheries Division were coupled with lists of fish-
ers produced by local community partners. Respondents from the list were also 
asked to suggest other fishers at each landing site. In addition, multiple visits to 
each landing site at varying times of day over the course of two weeks were made. 
This modified snowball sampling method was carried out until network closure 
had been reached – i.e. the addition and mention of new names is minimal, akin 
to saturation (Hanneman and Riddle 2005).

The network data collected were based on information-sharing ties. 
Specifically, respondents were asked whom they exchange information with con-
cerning fishing and their time at sea – e.g. information related to fishing practices, 
locations, equipment, seasons, etc. (see Figure 2). Respondents were asked both 
whom they share information with and whom they receive information from (See 
Appendix 7.1 for the specifics of the survey question). All information-sharing ties 
– whether outgoing and/or incoming – were treated as binary (i.e. no directional-
ity or strength). Questions capturing information-sharing ties employed a name 
generator with free recall, which asked respondents to list individuals (Marsden 
2011). There was no upper limit placed on the number of individuals a respondent 
could nominate. Chua et al. (2011) note that this technique is well suited to cap-
ture strong ties. This method is particularly appropriate here as this study is con-
cerned with community cohesion, which is reflected by the structural pattern and 
distribution of strong, beneficial ties – i.e. the ties provide the actors with different 
resources and possibilities (knowledge, feedback, etc.) that they value positively. 
Fishing activities and personal attributes of each respondent were also collected 
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(e.g.  gender, age, gear type, landing site). For specific details on the construction 
of the social network from the survey responses see Appendix 7.2.

3.3. Attributes

3.3.1. Gear type
Fishers in Bluefields Bay, Jamaica use one of four types of fishing gear: (i) hook 
and line; (ii) fish pot (i.e. traps); (iii) net; and (iv) spear gun. However, in some 
cases fishers use more than one gear type, in which case they would be defined 
as ‘multi-gear’. Thus, gear type was operationalized as five binary variables so 
that any given fisher could only be assigned one gear type classification (See 
Figure 2D).

3.3.2. Landing site
In Jamaica, landing sites serve as social spaces where small-scale fishers are more 
likely to have repeated interactions with individuals on their way to go fishing 
or upon their return. While landing sites could be seen as a parallel exogenous 
network where a link corresponds to co-location (i.e. same landing site), here we 
operationalized this exogenous driver as seven binary attributes at the node level 
to reflect the seven different landing sites (see Figure 1) that bound the study site 
and network. Similar to gear type, fishers could only be assigned to one landing 
site (see Figure 2C). 

3.3.3. Leadership
To examine leadership, we created a binary attribute at the node level that identi-
fied wardens (i.e. park rangers) embedded within the network (n=4). We consid-
ered wardens as leaders since they possess formal authority to cite infractions and 
in some cases held leadership positions in the fisher cooperative (See Figure 2B). 

3.4. Exponential random graph modeling

Exponential random graph models (ERGMs) are statistical models developed 
for understanding network structure. As a class of stochastic network models, 
ERGMs are empirically informed, comparing observed, empirical networks with 
random networks (i.e. the null model). ERGMs are tie-based models – i.e. the 
focus is on processes and drivers that give rise to the formation and maintenance 
of network ties. This focus is operationalized through statistical analyses of the 
prevalence of different network building blocks (see Table 2), or network configu-
rations composed of a few nodes and ties (Moreno and Jennings 1938). By linking 
certain building blocks with different tie formation processes (Table 2), a theoreti-
cally informed analysis of the structure of empirical networks can be conducted 
(see, e.g. Bodin et al. 2016).

One of the strengths of ERGMs is the ability to statistically account for over-
lapping and nested building blocks (Lusher et al. 2012). In this way, it allows 
for the examination and consideration of the complex combination of processes 
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contributing to tie formation. Furthermore, nodal attributes can be incorporated as 
explanatory factors (Lusher et al. 2012). 

Similar to regression analysis, the ERGM gives each of the examined build-
ing blocks a parameter estimate and a standard error. The sign of a parameter 
value is interpreted as whether the associated building block and the underlying 
processes giving rise to this building block, are either enhanced or suppressed in a 
given empirical network (Lusher et al. 2012). The standard error is used to assess 

Table 2: Exponential random graph model configurations used for Models 1–5.

*Included as a control factor.
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statistical significance (Lusher et al. 2012). Building blocks whose parameters 
are not significantly different from zero would be interpreted as neither enhanced 
nor suppressed. It should be emphasized, however, that ERGMs are not regres-
sions, most importantly because they take into account the dependencies that are 
implicit in network formation. Regressions assume independent observations – 
not well suited for the analysis of network structures – while ERGMs take into 
account the interdependency of network ties (Lusher et al. 2012). 

3.4.1. Hierarchy of ERGMs
The underlying premise of using ERGMs is that overlapping and nested building 
blocks can be taken into consideration (Lusher et al. 2012). Hence, it is possible 
to disentangle the influences of entangled building blocks. However, ERGMs 
do not always converge. This often happens when the number of configurations 
included is high, though simple models can also suffer from convergence prob-
lems, especially if the models are not well specified – i.e. they do not represent 
the underlying tie formations processes well (Robins et al. 2012). Thus the abil-
ity to disentangle different effects is not always practically feasible. One way 

Table 3: Descriptions of the sequential exponential random graph models (ERGM) developed 
and associated hypotheses. 

Model  Description  Hypotheses

Model 1
Random model

 The random model suggests that ties are both random 
and uniformly distributed across all fishers (Bernoulli 
model). Accordingly, the model only includes the 
general edge configuration – alternatively referred to as 
the density parameter

 Baseline

Model 2
Triadic Closure

 The triadic closure model builds on Model 1 through 
the inclusion of the alternating triangle (ATA) 
configuration and suggests that there is a structurally 
induced propensity of friends of a friend also being 
friends resulting in clustering and cohesion

 H
1
 

Model 3
Triadic Closure +  
Homophily

 The homophily model builds on Model 2 through the 
addition of a suite of gear-based homophily parameters. 
The resulting model considers the propensity for 
fishers to establish and maintain ties with others using 
the same fishing gear (e.g. spear gun, net)

 H
1
 H

2 

Model 4
Triadic Closure + 
Homophily + Geographic 
Proximity

 The geographic proximity model includes a series 
of parameters concerning landing sites. Building 
on Model 3, this model considers the propensity of 
geographic proximity to drive the establishment and 
maintenance of ties between fishers (or alternatively, 
drives fishers apart)

 H
1 
H

2 
H

3a 

H
3b

Model 5
Triadic Closure + 
Homophily + Geographic 
Proximity + Leadership

 The leadership model adds the warden activity 
parameter and suggests that certain actors  
(i.e. wardens) will have more direct ties than the 
average actor

 H
1 
H

2 
H

3a 

H
b 
H

4
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to deal with this is to start with a simple model, and add more configurations 
incrementally (Table 3); making sure that convergence is reached at each step. 
Theoretically, this also makes sense in that in provides a way to investigate if 
the model performs better (i.e. is better able to represent the empirical data) as 
more configurations are added (see Bodin et al. 2016). In this context, it is impor-
tant to point out this process should ideally be theoretically informed, i.e. that 
configurations should be added to the model if there are reasons to believe they 
are important, and not only through an unconditional search for configurations 
increasing model fit (cf. stepwise regression). Accordingly, we take an approach 
of developing a series of nested models (Table 3). Similar to Lubell et al. (2014), 
the approach seeks to build in additional complexity and assumptions. 

We used MPNet software (Wang et al. 2014) for all ERGM. Model fitness 
was compared using the Mahalanobis distance measure developed by Wang et al. 
(2009). The Mahalanobis distance is a statistical measure that captures how far 
the observed network is from the center of a distribution of modeled networks 
(Wang et al. 2009). Accordingly, a smaller Mahalanobis distance suggests that 
the observed network falls closer to the center of the graph distribution generated 
from the model (Wang et al. 2009). In other words, a smaller distance indicates a 
better fitting model.

4. Results 
Model 1 (Random) includes only an edge parameter (see Tables 2 and 4). This 
is, as expected, not a well-fitting model, as indicated by the relatively large 
Mahalanobis distance.

In Model 2 (Triadic Closure) we see a positive parameter estimate and 
 significant standard error for the alternating triangle configuration (ATA, see 
Tables 2 and 4), which suggests a propensity for clustering and triadic closure. 
The reduction in the Mahalanobis distance of Model 2 as compared to Model 1 
suggests that the inclusion of the triadic closure parameter significantly increases 
the fit of the model (Wang et al. 2009).

In Model 3 (Triadic Closure + Homophily) the parameter estimate is positive 
and significant for two of the gear types (i.e. net and spear gun) (Tables 2 and 4). 
The parameter is not significant for the other two (i.e. hook and line and multi-
gear). This suggests that gear-based homophily contributes to tie formation and 
cohesion among some gear but not others. While the intention was to include all 
five-gear type interaction parameters for Model 3, the model would not converge 
when fish pot interaction was included. This is explained by the fact that only one 
fisher uses fish pots exclusively. All other fish pot fishers are captured in ‘multi-
gear.’ Net activity was included as a control because it increased the ability to 
accomplish model convergence, which indicates it represents an important tie for-
mation process in this context. Fishers using nets were significantly less socially 
connected across the entire community in comparison to others (demonstrated by 
the significantly negative parameter estimate for net activity, Table 4). However, 
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net fishers still showed a strong tendency to connect among themselves (demon-
strated by the strong and significant effect of net interaction, Table 4). 

In Model 4 (Triadic Closure + Homophily + Geographic Proximity), the geo-
graphic proximity parameter estimates are positive and significant for all landing 
sites included (Tables 2 and 4), suggesting they further contribute to the forma-
tion and maintenance of social ties. This mechanism is more enhanced for some 
landing sites (2 and 4) as compared to others. Model 4 would not converge with 

Figure 2: Information-sharing network among fishers in Bluefields Bay, Jamaica. Each circle 
represents a fisher, and the lines between them represent their information-sharing ties. Panel 
2A illustrates the basic structure of the social network among fishers. Panels 2B–D each 
include one of the attributes of interest; (B) leadership; (C) landing site; and (D) gear type. 
The network visuals were generated using the Fruchterman-Reingold layout algorithm in the 
package igraph in R, where nodes are placed on the plane using this force-directed layout 
algorithm.
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 parameters for all 7 landing sites. As a result, landing site 5 was not included 
(Table 4). However, based on a residual analysis, all landing site configurations 
seemingly deviate in a significantly positive manner from what would be expected 
in a random network (i.e. their t-ratios were >2.0, see Appendix 7.3 and Lubell 
et al. 2014). All parameters that were significant in Model 3 are still significant. 
The reduction in the Mahalanobis distance of Model 4 as compared to Model 
3 suggests that the inclusion of geographic proximity parameters significantly 
increases the fit of the model (Wang et al. 2009).

In Model 5 (Triadic Closure + Homophily + Geographic Proximity + 
Leadership) the leadership parameter estimate (i.e. warden activity) is positive 
and significant, suggesting that wardens tend to have more ties than would be 
expected by chance (Tables 2 and 4). Leadership thus contributes to the emergent 
network structure, alongside geographic proximity, and gear-based homophily. 
Based on a comparison of the Mahalanobis distance, Model 5 is the best-fitting 
model. Also note that the parameter estimate for ATA reduces when geographical 
proximity and warden activity is accounted for, demonstrating that triadic closure 
is in part explained by space and by wardens serving as “local hubs”, thereby 
increasing the likelihood for triangles to form (Table 4).

5. Discussion
5.1. Triadic closure and social capital

Granovetter (1973) suggested the general tendency for friends of a friend to be 
friends. Since then, this process of triadic closure has emerged as one of the most 
common structurally driven tie formation processes (Hammer 1980; Kossinets 
and Watts 2006). The significant effect of triadic closure (i.e. the alternating tri-
angle configuration, ATA) found here suggests the presence of clustering and 
bonding social capital (see, e.g. Berardo 2014). Such social fabric (i.e. bonding 
social capital) within communities reduces transaction costs and contributes to the 
development of trust (Friedkin 2004). Furthermore, the sharing of multiple ties 
among a set of resource users (exemplified by the ATA configuration) provides 
the “social infrastructure” necessary to facilitate the development of commonly 
agreed upon harvesting rules and contributes to self-monitoring (Ostrom 1990; 
Pretty 2003; Berkes 2010; Nunan et al. 2015). 

However, it is important to note that a positive tendency for triadic closure 
does not mean all actors are necessarily confined in one large coherent cluster. 
For example, a strong tendency for triadic closure could also lead to the establish-
ment of a set of more or less isolated islands in the network. As Alexander et al. 
(2015) and Bodin and Crona (2009) note, such pockets of bonding social capital 
within a sparse and fragmented network may prove problematic in the long term 
for sustaining new governance arrangements, such as co-management, because 
it can cause different groups with competing interests to form. Hence, albeit the 
presence of triadic closure seems beneficial from a bonding social capital point 
of view, it does not by itself equate with cohesiveness on the whole network 
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level. Moreover, there is also a potential ‘dark side’ of having too much bond-
ing social capital (Di Falco et al. 2011). This reflects the fact that high levels of 
social cohesion can sometimes cause people to become locked into current trajec-
tories, leading to the rejection of new ideas, information, and knowledge that may 
prove necessary to effectively adapt to changing social and ecological conditions 
(Barnes et al. 2017b).

5.2. Gear-based homophily

Success as a small-scale fisherman in a heterogeneous and highly dynamic envi-
ronment requires tacit knowledge (Crona and Bodin 2006). Accordingly, our 
results demonstrate that some fishers tend to seek and share information with 
others whose experiences and resource needs are similar – i.e. there is a tendency 
for gear-based homophily, which supports findings from other SSF (e.g. Crona 
and Bodin 2006; Cox et al. 2016). The type of gear fishers use is often associated 
with their social identity (Miller and Van Maanen 1982) and a more distinct form 
of occupation than the broader category “fisher” (Crona and Bodin 2006). These 
are both well known for structuring homophilous social interactions, i.e. social 
ties with others who are similar (McPherson et al. 2001), where tacit knowledge 
transfer is thought to be enhanced (Cross et al. 2001). 

In contrast to previous inquiries in SSFs, we found that not all gear types 
demonstrate homophilic tendencies. Specifically, we found that hook and line and 
multi-gear fishers did not display significant homophily, which may in part be 
explained by the nature of these fishing activities. The use of hook and line in 
near-shore reef fisheries in Jamaica is a fairly solitary endeavor, often done at 
night. In contrast, fishers often fish in groups when using other types of gear, 
which is more likely to promote social cohesion since it requires cooperation and 
motivation to contribute to the group’s success (Friedkin 2004). In this case multi-
gear, on the other hand, equates to a fisher using anywhere between two and four 
different gear types. Accordingly, whom fishers have tendencies to form a tie with 
may depend upon which of those gears is their primary gear type (e.g. fishers who 
primarily use fish pots may have a tendency to form a tie with other fish pot users 
– yet unfortunately we did not collect this information). Multi-gear users may 
also be more prone to forming ties with a diverse array of fishers using different 
gear types to better buffer against the complexity of situations encountered when 
applying different fishing techniques. This implies that multi-gear users may be 
key for promoting greater connectivity across different types of fishers, thereby 
having a positive impact on community cohesion.

5.3. Geographic proximity

Geographic proximity is another common driver of social tie formation (Gieryn 
2000; Rivera et al. 2010; Lusher et al. 2012). Much of the previous work focused 
on geographic proximity and social ties in SSF relates to fishing grounds (e.g. 
Maya-Jariego et al. 2016). To this end, for example, Martin and Hall-Arber (2008) 
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speak of the emergence of “communities at sea.” However, these fisheries are off-
shore using larger boats, reflecting a very different context than that most often 
found in SSF. For example, in near-shore, reef-based SSF, fishers are hardly more 
than a few kilometers from shore. In Bluefields Bay, Jamaica, they are rarely 
more than a kilometer from shore. Accordingly, landing sites reflect a form of 
geographic proximity and serve as social spaces where fishers are likely to have 
repeated interactions with individuals on their way to and from fishing at sea. 
Furthermore, fishers often spend prolonged periods of time at the landing sites 
socializing, repairing fishing gear, and cooking after they return from the sea. 
Thus, landing sites are social spaces that facilitate prolonged engagements rather 
than fleeting interactions. Indeed, we find that across the landing sites, proximity 
plays a significant role in structuring interactions. 

Place-based interactions can play a significant role in fostering a sense of 
place and contributing to community cohesion. For example, Brown (2015) found 
that fishing wharfs in Cape Brenton, Nova Scotia contributed to supporting and 
maintaining social connections among fishers. In combination with our findings, 
this suggests that landing sites – in the broadest sense – provide an entrée for 
supporting local institutions, building a sense of place, and fostering community 
cohesion. 

However, the strong tendency for social ties between fishers at the same 
landing site (i.e. positive parameter for geographic proximity) coupled with the 
clustering of ties (i.e. strong tendency toward triadic closure) is problematic for 
community cohesion as it suggests the potential for fragmentation between land-
ing sites. Indeed, Alexander et al. (2015) note an “us vs. them” mentality between 
some of the landing sites posing a significant barrier to collective action. This 
suggests that strengthening community cohesion will require actively building 
ties across landing sites – perhaps a role for wardens or other community leaders. 

5.4. Leadership

The presence of local community leaders serves as another driver of social tie 
formation. As leaders are sought after for their information, influence, and power 
associated with their position and experience, they accrue more ties on average 
than others. In our case, we find that being a warden is a strong predictor of 
social ties, suggesting that leadership executed by wardens is particularly strong. 
Furthermore, residual analysis indicates that the model adequately captures all 
hubs – i.e. no actors other than the wardens tend to be acting as hubs. At the out-
set, we identified possible hubs by an attribute (i.e. being a warden). However, 
through residual analysis we test our a priori assumptions by taking a relational 
perspective to see whether all hubs are captured by the configuration of war-
den activity (See Appendix 7.3) – which it does. These results may well reflect 
the presence and role of the local fisher cooperative where some of the wardens 
have formal leadership roles. Accordingly, this raises the question as to whether 
wardens are popular because of their role in the cooperative, or because of their 
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status as park rangers involved in monitoring and enforcement. Though existing 
research from this region suggests that wardens whom also hold a leadership posi-
tion in the cooperative are even more popular (i.e. higher number of direct ties) 
than wardens who do not (Alexander et al. 2015). 

Community leaders (i.e. wardens) are not only a driver of social tie formation; 
they also interact with community cohesion in important ways. When community 
cohesion is considered as a latent resource or asset, then community leaders can 
bring people together to activate the latent cohesion necessary for collective action 
and the successful management of common-pool fisheries resources (Crona et al. 
2017). On the other hand, local community leaders can also be involved in elite 
capture – defined here as situations where certain individuals dominate decision-
making and in turn disproportionally improve their access to benefits from com-
mon-pool fishery resources (sensu Ribot 2007). In such instances, ‘leadership’ 
can have the complete opposite effect, whereby community cohesion erodes and 
fragmentation amplifies. Accordingly, elite capture and perceived legitimacy are 
important considerations for effective governance approaches where local users 
play a significant role (e.g. local, traditional, or co-management).

5.5. Cooperation and competition in SSF

By its very nature, the foundation of community cohesion implies some level of 
cooperation among individuals who actively make decisions to form coopera-
tive social ties with others. Understanding the tendencies towards cooperation is 
of particular interest in the context of common-pool resource systems such as 
SSF, as competition over shared resources is a critical issue that has to be over-
come in order to manage them sustainably (Hardin 1968; Ostrom 1990; Salas and 
Gaertner 2004). Importantly, two configurations from our final model suggest that 
in this case, there are higher levels of cooperation than competition. The first is the 
strong tendency toward triadic closure, indicated by the positive ATA parameter 
(Table 4). The second is the overwhelming persistence of a positive parameter for 
geographic proximity across landing sites. We discuss both of these further below.

Cooperating in SSF is a risky business – e.g. some might decide to take the 
information they receive from others to enrich themselves without reciprocating – 
due to the heterogeneity of marine environments, dynamic variability of fisheries, 
and the general lack of secure ‘property’ rights (Wilson 2006). Thus, if fishers are 
to truly cooperate, existing theoretical and empirical research suggests that they 
would seek to establish bonding relationships characterized by trust when the risk 
of defection increases (Berardo and Scholz 2010). The general high risk of coop-
eration in SSFs is in contrast to less-risky problems such as coordination where 
the cost of deflection is low and thus bonding relationships are not as essential. 
Hence, the strong presence of triadic closure suggests that fishers use their ties for 
cooperative purposes related to their profession as fishers. 

The persistence of a positive parameter for geographic proximity across land-
ing sites also provides insights regarding cooperation. Fishers that compete over 
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shared resources at a given landing site might be one’s fiercest competitors, but 
they are also fishers that one repeatedly encounters and likely interacts with, 
creating an obvious tension (e.g. Basurto et al. 2016). This tension leads to our 
two contrasting hypotheses, 3A and 3B: (3A) the social closeness outweighs the 
competitive pressure (positive parameter) suggesting cooperation; or (3B) fishers 
avoid their fiercest competitors (this would imply a negative parameter for binary-
homophily based on landing site). Accordingly, the positive parameter found here 
indicates that there is more of a cooperative rather than antagonistic atmosphere 
at landing sites – or put another way, fishers choose their cooperators from their 
fiercest competitors. 

One can further envision interplay between triadic closure and geographic 
proximity here. If you were to choose your cooperators among your fiercest com-
petitors, the risk of engaging in cooperation would most likely be deemed as high. 
Hence, that would further emphasize the propensity to form cooperative ties in 
ways that minimize the risk for defection, i.e. triadic closure. Hence, by consid-
ering the strong and significant effects of triadic closure and geographical prox-
imity together, further support is provided for Basurto and colleague’s (2016) 
recent suggestion that competition and cooperation to some extent co-evolve. 
Accordingly, it is plausible that if increased competition coincides with social 
changes that reduce social cohesion and trust (e.g. polarization, loss of sense of 
place, etc.), fishers would be less inclined to respond to increased competition 
with increased cooperation. In such cases, competition might outcompete coop-
eration, which likely reduces the fishers’ collective abilities to manage their com-
mon good, and could initiate a vicious cycle of accelerating overharvesting and 
competition (i.e. a race to the bottom) (Hilborn et al. 2005, Costello et al. 2008). 

6. Conclusion
Community cohesion forms an important foundation for the emergence and main-
tenance of key social processes that support effective resource governance, such 
as collective action, coordination, and learning. Indeed, fragmentation and low 
social cohesion can undermine collective action and contribute to undesirable out-
comes (Crona and Bodin 2010; Barnes-Mauthe et al. 2013a; Barnes et al. 2016). 
Where state support is weak, the social ties that bind communities together (i.e. 
social networks) – and associated aspects of leadership and social capital – can be 
critical for effectively organizing actors to get together to devise, implement, and 
maintain local institutions and institutional arrangements (Ostrom 1990; Pretty 
2003). This is particularly evident when it comes to co-management of SSF 
(Gutiérrez et al. 2011; Pomeroy and Andrew 2011; Cinner et al. 2012).

In complex common pool fishery resource settings such as SSF, existing 
research has shown that multiple drivers are at play that contribute to the estab-
lishment and maintenance of social ties, e.g. the type of gear fishers use (Crona 
and Bodin 2006) and ethnicity (Barnes-Mauthe et al. 2013a). These patterns of 
social relationships have implications for the sharing of information, adoption of 
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new norms and behaviors, and compliance with rules (Friedkin 1998; Frank 2011; 
Barnes et al. 2016). Yet untangling the drivers of social cohesion and fragmenta-
tion in SSF, characterized as multi-gear and multi-species, has been understudied.

Here we identified the underlying processes (micro-level social interactions) 
that lay the foundation for community cohesion in SSF, and discussed their impli-
cations for effective governance more broadly. In line with previous research 
(Crona and Bodin 2006; Cox et al. 2016), we demonstrated that the type of gear 
fishers use contributes to explaining the formation and maintenance of social ties. 
We also show that community leadership (i.e. wardens/park rangers with employ-
ment overlooking fisheries activities in this case) promotes network activity (i.e. 
they sustain many social ties with fishers). While this does not rule out the exis-
tence of other forms of leadership, in our case, wardens unarguably uphold influ-
ential positions in fishers’ information sharing networks. Finally, we demonstrate 
an interesting interplay between geographic proximity and cooperation and com-
petition (cf. Basurto et al. 2016). Our results suggest cooperation and competition 
may to some extent be co-evolving, as fishers seemingly do not shy away from 
engaging in in-depth cooperation with those whom may be considered their fierc-
est competitors. As illustrated here, this study and the approach leveraged allows 
for the in-depth investigation of key social processes at play and helps to provide 
critical insights regarding the drivers of community  cohesion in SSF.
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7. Appendix
7.1. Data collection

Total number of fishers across Jamaica is not well known. In order to establish 
an initial target population of fishers to survey with additional snowballing we 
combined two lists of fishers. The first was a list compiled by a local community-
based organization and the second was a list of registered fishers provided by the 
Division of Fisheries. We then returned to these two lists to cross-reference names 
of fishers who were identified as individuals who the survey respondents either 
shared or received information from. Due to the lack of data, we used the network 
survey responses as a way to establish a range for the target population.

Total # of fishers surveyed  130  
Total # of fishers surveyed from target landing sites  122  
Total Alters* not surveyed  106  
Alters* outside the network boundaries
 Organizations/agencies  7  
 Individuals from organizations/agencies  8  
 Fishers from other landing sites  13  
Total outside network  28  
Total inside network  41  
Unknown  34  

 Target population  Response rate

Low-end total (total from target landing site + inside network) 163  74.8%
Upper-end total (total from target landing site + inside 
network + unknowns)

 197  59.5%

*Alters refers to the names of individuals and/or organizations that a person being surveyed identifies as 
sharing or receiving information from. 
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7.2. Network construction

To collect social network data respondents were asked whom they share infor-
mation with and whom they receive information from. These responses were 
cross-referenced to create the resulting social network (i.e. matrix). Two things 
are important to note. The first is that while the responses provide directionality 
for a given tie, we created a non-directed network – reflecting the presence or 
absence of a tie between two fishers – to simplify the ERGM. The second is that 
while ERGM can handle directed ties and configurations exist that incorporate 
directionality; it would have significantly increased the number of configurations 
that would have been needed to be included in the model development.

7.3. Exponential random graph model development, analysis, and 
interpretation

7.3.1. Residual analysis
Residual analysis involves an examination of a configuration’s t-ratio from the 
Goodness of Fit results and can be used in a few different ways. It can be used to 
consider whether an omitted configuration (perhaps due to issues of convergence) 
would have been significant if included (indicated by a t-ratio <2).

Similarly, residual analysis can be used to test model assumptions. For exam-
ple, to see whether ‘warden activity’ adequately captured all of the hubs (i.e. well 
connected leaders), we used residual analysis to see if the model adequately cap-
tures the 2-star configuration – which also reflects a hub. If this configuration 
were not adequately explained by the configurations included in the model – spe-
cifically warden activity – then we would need to revisit our assumptions regard-
ing wardens being an adequate representation of leaders in this case. Note that the 
results suggest that statistically ERGM does not pick up other hubs. However, the 
distribution of ties among actors is not even – as to be expected – and thus there 
are other actors with above average ties (see Figure 2) who may also be a ‘hub.’

Residual analysis can also be used to evaluate your model fit by examining the 
t-ratio for all configurations included in the model (indicated by a t-ratio <0.2). 
See Lubell et al. (2014) for additional details.

7.3.2. Control factors
While the theoretical focus of Model 2 was on homophily, which is captured via 
‘interaction’ configurations, Net Activity was included as a control factor to improve 
model fit. Without the Net Activity configuration, residual analysis of the t-ratio 
reveals that the configuration is not well captured in the model (t-ratio=−2.059). 
However, when Net Activity is included in the model as a parameter, the Goodness 
of Fit is much better when comparing the resulting Mahalanobis distance (Md). 
Without Net Activity the Md is 296,023 while the inclusion of Net Activity results 
in an Md of 100,893. Furthermore, because of the nested model approach the 
parameter continued to be included. 
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7.3.3. Models 4 and 5
Models 4 and 5 did not converge during the model estimation phase despite an 
increase in multiplication factor of 60 (see Wang et al. 2014). However, instead 
we ran the Goodness of Fit simulation with 10 times the number of suggested 
iterations. A residual analysis examining configurations included in the model 
confirmed that the model was a good fit (t-ratios smaller than 0.1 in absolute 
value; see Wang et al. 2014).


