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Purpose: In several multicenter clinical trials, HLA-DR was found to be a potential

biomarker of dry eye disease (DED)’s severity and prognosis. Given the fact that HLA-DR

receptor is a heterodimer consisting in an alpha and a beta chain, we intended to

investigate the correlation of inflammatory targets with the corresponding transcripts,

HLA-DRA and HLA-DRB1, to characterize specific targets closely related to HLA-DR

expressed in conjunctival cells from patients suffering from DED of various etiologies.

Methods: A prospective study was conducted in 88 patients with different forms of DED.

Ocular symptom scores, ocular-staining grades, tear breakup time (TBUT) and Schirmer

test were evaluated. Superficial conjunctival cells were collected by impression cytology

and total RNAs were extracted for analyses using the new NanoString® nCounter

technology based on an inflammatory human code set containing 249 inflammatory

genes.

Results: Two hundred transcripts were reliably detected in conjunctival specimens

at various levels ranging from 1 to 222,546 RNA copies. Overall, from the 88

samples, 21 target genes showed a highly significant correlation (R > 0.8) with

HLA-DRA and HLA-DRB1, HLA-DRA and B1 presenting the highest correlation

(R = 0.9). These selected targets belonged to eight family groups, namely

interferon and interferon-stimulated genes, tumor necrosis factor superfamily and

related factors, Toll-like receptors and related factors, complement system factors,

chemokines/cytokines, the RIPK enzyme family, and transduction signals such as the

STAT and MAPK families.

Conclusions: We have identified a profile of 21 transcripts correlated with HLA-DR

expression, suggesting closely regulated signaling pathways and possible direct

or indirect interactions between them. The NanoString® nCounter technology in

conjunctival imprints could constitute a reliable tool in the future for wider screening of
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inflammatory biomarkers in DED, usable in very small samples. Broader combinations

of biomarkers associated with HLA-DR could be analyzed to develop new diagnostic

approaches, identify tighter pathophysiological gene signatures and personalize DED

therapies more efficiently.

Keywords: HLA-DR, inflammatory targets, NanoString® assay, conjunctival imprints, dry eye disease

INTRODUCTION

The definition of dry eye disease (DED) has recently been revised
to “a multifactorial disease of the ocular surface characterized by
a loss of homeostasis of the tear film, and accompanied by ocular
symptoms, in which tear film instability and hyperosmolarity,
ocular surface inflammation and damage, and neurosensory
abnormalities play etiological roles” (1).

Indeed, among the DED definition criteria, its pathogenesis
has been largely described as the result of chronic inflammation
and activation of the immune system, with involvement of a
wide variety of inflammatory mediators, notably chemokines and
cytokines (2–5). These markers have been explored in either tears
or the conjunctiva (6), such as: Human leukocyte antigen-DR
(HLA-DR) (7, 8), Interleukins (ILs): IL-6, IL-1α, IL-8 (9), IL-1β,
Matrix Metalloproteinases-9 (MMP-9) (10), Interferon-gamma
(IFN-γ), IL-17, and CXCL10 (11).

HLA-DR is a transmembrane heterodimer consisting of alpha
(α) and beta (β) glycoprotein chains, and belonging to the
major histocompatibility complex (MHC) class II receptors.
The α and β chains are encoded by separate genes and their
expressions are exquisitely controlled at the transcriptional level
(12).They are constitutively expressed by antigen-presenting cells
(APCs), such as macrophages, B-lymphocytes, and dendritic
cells, but they can also be induced in activated T-lymphocytes and
non-professional APCs such as epithelial cells in inflammatory
conditions (13).

Using flow cytometry, a technique designed to quantify both
levels of expression of a marker by a cell population and the
number of cells bearing the targeted protein, HLA-DR was
detected in conjunctival epithelial cells obtained by conjunctival
imprints (CIs) from DED patients (7). It was reported to
be associated with disease severity (14) and correlated with
symptoms and signs as corneal fluorescein staining (13). Several
multicenter trials have included this methodology as a tool
evaluating ocular surface (OS) inflammation (13, 15). Therefore,
HLA-DR is now considered as one of the most promising
markers of OS inflammation (16, 17).

To better understand the regulatory loop of HLA-DR
expression and to investigate the specific inflammatory targets
associated with HLA-DR induction, a transcriptomic and
multiplexed approach was used on the CIs of ocular surface
disease (OSD) patients. Additionally, as the (α/β) heterodimers
are the main products of the HLA-DRA and B1genes,
respectively, investigations of the gene transcripts correlated
with them can contribute to a better understanding of the
transcriptional activation and regulation of HLA-DR’s complex
expression.

Previous transcript analyses were mainly carried out using
detection methods as classical PCR, qPCR, RNA-Seq, or
microarray (9, 18, 19). In contrast to RNA-Seq, which is
based on sequenced RNA converted to a cDNA library, the
microarray method is based on the direct detection of the
hybridized RNA with labeled probes. Although microarray
and RNA-Seq are two major high-throughput technologies
for studying RNA expression, these techniques suffer from
certain disadvantages such as the presence of background
noise. NanoString® technology combines the advantages of both
microarray and RNA-Seq with a high resolution and a low
level of background noise. It uses digital color-coded bar probes
to ensure a multiplexed measurement of gene expression (20).
This quantitation method offers a high level of accuracy and
sensitivity of individual transcript counts without enzymatic
reactions, specifically with a minimal amount of total RNA (21).
It is a powerful gene screening technology, used for determining
gene expression profiles and has application in molecular-level
diagnosis analysis, in several diseases (22).

In this study, we therefore used this new NanoString®

nCounter technology to characterize specific inflammatory
targets associated with HLA-DR in order to identify related
signaling pathways triggered in a conjunctival inflammatory
context in DED patients regardless of their underlying
etiology.

MATERIALS AND METHODS

Clinical Evaluation and Specimen
Collection
This prospective single-center study was conducted from January
2014 to December 2015 at the Clinical Investigation Centre (CIC
INSERM 1423) of the Quinze-Vingts National Ophthalmology
Hospital. The study was conducted in accordance with the
Declaration of Helsinki (1964) and approved by the CPP–Ile-
de-France V Ethics Committee (number 10793). All patients
were informed of the aim and methods of the study and gave
their consent. The aim of the study was to examine the gene
correlation levels with HLA-DR in a DED patient population
without consideration on their etiology. In this study, 88 patients
were included, 19 males and 69 females, suffering from various
causes of DED: primary Sjögren syndrome (pSS, n = 30),
meibomian gland dysfunction (MGD, n = 41), allergy-related
DED (n = 7), iatrogenic disorders (n = 5), and graves’ disease
(n = 5). Conjunctival superficial cells were collected using
application of a polyether sulfone filter (Supor®, Gelman, Pall
Science, Ann Arbor, MI, USA) onto the anesthetized bulbar
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conjunctiva and immediately put into a 2-mL plastic dry tube and
stored at (−80◦C) until use.

RNA Isolation From Conjunctival Imprint
Cells and Quality Measurement
Total RNAs were extracted from conjunctival cells using an
RNA-XS kit from Macherey-Nagel. RNA yield and purity
were assessed using NanoDrop ND-100 Spectrophotometer
(NanoDrop technologies, Rockland, DE, USA). The RNA purity
was assessed using the absorbance ratio between RNA and
proteins, read at 260 and 280 nm, respectively (A260/280). Total
RNA integrity was evaluated with the Agilent 2100 bioanalyzer
(Agilent Technologies, Wilmington, DE, USA) according to the
manufacturer’s specifications.

An RNA integrity number (RIN) greater than 8 was
considered as an acceptable quality criterion for the analysis. The
instrument software generates a RIN score based on its entire
electropherogram. RIN values range from 1 to 10, from a totally
degraded RNA to the highest-quality RNA. A cut-off of RIN= 8.0
was used to ensure good RNA quality. RNA from CIs shows a
high quality with a RIN greater than 8 for all samples. Total
RNA, with a high RNA quality and purity (A260/280 = 1.8;
RIN > 8), isolated from conjunctival cells collected from the
88 DED patients was used for quantitative analysis using the
inflammatory NanoString® CodeSet panel.

Nanostring® nCounter Assay
The gene expression panel (Table 1) was measured in
conjunctival cells using a multiplexed hybridization assay
and specific fluorescent barcode probes with no amplification
step. Inflammatory gene expression was measured with
nCounter® human Inflammation v2 CodeSet1 Technologies,
Seattle, WA, USA) on the NanoString® nCounter analysis
system (NanoString Technologies).

The code set is constituted of biotinylated capture probes
and reporter probes attached to color barcode tags for the 249
inflammation-related human genes and six internal reference
genes (Table 1). Briefly, purified RNA was diluted in nuclease-
free water to 20 ng/µL, making a final assay concentration of
100 ng. Samples were incubated 16–22 h at 65◦C as per the
manufacturer’s standard protocol to ensure hybridization with
reporter and capture probes. After hybridization, the samples
were processed in the Prep Station and counted in the digital
analyzer.

Nanostring Data Analysis
The number of counts fromRCC files of each gene in the CodeSet
was analyzed using Microsoft Excel software. The number of
transcript copies was then normalized using the geometric mean
of six reference genes and was log2-transformed for further
analysis.

1https://www.nanostring.com/products/gene-expression-panels/ncounter-

inflammation-panels

Statistical Analysis
The correlations between the different inflammatory mRNA
counts were evaluated with the Spearman correlation test (R)
using Graph Pad Prism 7.0 software; R > 0.8 was considered as
an appropriate correlation level allowing the selection of targets
of interest for accurate gene profiling.

RESULTS

Inflammatory Gene Expression in
Conjunctival Cells From DED Patients
NanoString® nCounter analysis covering 249 target genes was
used among the 38-gene families (Table 1). Two hundred out of
the 249 genes analyzed were detected with more than 50 copies,
whereas 49 genes (Table 2) were not detected or were below 50
RNA copies per sample. However, the genes corresponding to
the family of Tumor Necrosis Factor (TNF) receptors, Mitogen
Activated Protein Kinase (MAPK), and Signal Transducer and
Activator of Transcription (STAT) families were detected in all
DED patient sub groups.

Correlations of Detected Inflammatory
Mediators With Both HLA-DRA/B1

Receptor Transcripts
We next investigated the pairwise Spearman correlation among
the 200 genes detected and their relationships with both HLA-
DR receptors HLA-DRA and HLA-DRB1. Of the 200 genes
detected, 21 displayed correlations higher than 0.8 with both
HLA-DR (Tables 3A,B). The related inflammatory transcripts
included: IRF1, IFI44, HDH2D, Mx1, OAS2, CD40, TRAF2,
TRADD,TLR2, TLR3, MyD88, CL22, IL15, C2, CFB, RIPK2,
STAT1, STAT2, STAT3, MAPK8, and MAPKAP2, with a highly
positive and significant correlation (R > 0.8, p < 0.0001∗∗∗).
These inflammatory targets belonged to eight major families:
(1) IFN and interferon-stimulating genes (ISGs), (2) TNF
superfamily, (3) the receptor interacting protein kinase family
(RIPK), (4) chemokines/cytokines, (5) toll-like receptors, (6)
complement and complement regulatory proteins (CRPs), (7)
STAT (8) MAPK families. Finally, HLA-DRA and HLA-DRB1
displayed a very high significant correlation between them
(R= 0.90, p< 0.0001∗∗∗). Figure 1 shows the distribution of each
gene on the whole sample population as related to its family.

Differential Distribution of Inflammatory
Genes in Patients With Sjögren Syndrome
Dry Eye (SSDE) and Non-sjögren Syndrome
Dry Eye (NSSDE)
Following selection of the highly correlated (R > 0.8)
inflammatory targets with bothHLA-DR transcripts, in the whole
population (n = 88), we wanted to investigate the differential
correlated genes between the twomajor groups of patients; group
1 (SSDE, n= 30) and group 2 (NSSDE, n= 58) according to their
correlation with HLA-DRA and HLA-DRB1. As upper described,
a pairwise Spearman correlation among the 200 genes detected
with both HLA-DR receptors HLA-DRA and HLA-DRB1 were
applied. Figures 2A,B shows in ascending manner, the genes
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TABLE 1 | Gene expression CodeSet panel analyzed using nCounter® Human Inflammation v2.

Functional family n Gene name

MHC and cell surface receptor 11 HLADRA, HLADRB1, CD4, CD86, CD163, AGER, TREM2, FXYD2, MRC1, TBXA2R, TYROBP

IFN and ISGs 16 IFNA1, IFNB1, IFNG, IFI44, IFIT1, IFIT2, IFIT3, IRF1, IRF3, IRF5, IRF7, HSH2D, MX1, MX2,

OAS2, OASL

TNF superfamily 11 TNF, LTA, LTB, CD40LG, FASLG, TNFSF14, CD40, TRAF2, TNFAIP3, TRADD, BIRC2

Chemokines and receptors 31 CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL13, CCL16, CCL17, CCL19, CCL20,

CCL21, CCL22, CCL23, CCL24, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL9, CXCL10,

CCR1, CCR2, CCR3, CCR4, CCR7, CXCR1, CXCR2, CXCR4

Interleukins and receptors 30 IL1A, IL1B, IL2, IL3, IL4, IL5, IL6, IL7, IL8, IL9, IL10, IL11, IL12A, IL12B, IL13, IL15, IL17A,

IL18, IL21, IL22, IL1RN, IL6R, IL10RB, IL22RA2, IL23A, IL23R, IL1R1, IL1RAP, IL18RAP, TSLP

Prostaglandin receptors 9 PTGDR2, PTGER1, PTGER2, PTGER3, PTGER4, PTGFR, PTGIR, PTGS1, PTGS2

Toll-like receptors 9 TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9

Growth factor 1 AREG

TGF 4 TGFB1, TGFB2, TGFB3, TGFBR1

VEGF 1 FLT1

Leukotriene receptors 4 LTB4R, LTB4R2, CYSLTR1, CYSLTR2

Complement and CRP 20 C1QA, C1QB, C1R, C1S, C2, C3, C4A, C5, C6, C7, C8A, C8B, C9, CFB, CFD, CD55,

C3AR1, ITGB2, MASP1, MASP2

GTPase family 5 RAPGEF2, HRAS, RHOA, CDC42, RAC1

Serine/threonine kinase 6 LIMK, PRKCA, PRKCB, RIPK1, RIPK2, ROCK2

Tyrosine kinase 2 PTK2, RPS6KA5

Enzymes 12 ALOX12, ALOX15, ALOX5, ARG1, BCL2L1, HDAC4, NOS2, NOX1, OASL, PLA2G4A, PLCB1,

PPP1R12B

G-Protein subunit 5 GNB1, GNGT1, GNAQ, GNAS, OXER1

HSP family 2 HSPB1, HSPB2

NOD-family 2 NOD1, NOD2

Adaptor proteins 9 GRB2, KEAP1, LY96, MBL2, MYD88, MYL2, PDGFA, SHC1, TOLLIP

Co-factors 6 CFL1, CRP, DAXX, DEFA1, KNG1, NLRP3

CSF 3 CSF1, CSF2, CSF3

MMP 2 MMP3, MMP9

Transcription factors 3 ATF2, BCL6, CEBPB, CREB1, DDIT3, ELK1, FOS, HIF1A, HMGB1, HMGB2, HMGN1, JUN,

MAFF, MAFG, MAFK, MAX, MEF2A, MEF2BNB, MEF2C, MEF2D, MYC, NFATC3, NFE2L2,

NFKB1, NR3C1, RELA, RELB, SMAD7, TCF4, TWIST2

MAPK 15 MAP2K1, MAP2K4, MAP2K6, MAP3K1, MAP3K5, MAP3K7, MAP3K9, MAPK1, MAPK14,

MAPK3, MAPK8, MAPKAPK2, MAPKAPK5, MKNK1, RAF1

STAT family 3 STAT1, STAT2, STAT3

Endogenous genes 6 CLTC, GAPDH, GUSB, HPRT1, PGK1, TUBB

The 249 genes were classified according to their family and interacting factors. The CodeSet includes six internal reference genes. MHC II, Major histocompatibility complex class II; IFN,

interferon; ISGs, IFN-stimulating genes; TNF, tumor necrosis factor; CRP, complement regulatory proteins; GTPase, guanosine triphosphatase; CFS, colony-stimulating factors; MMP,

matrix metalloproteinases; MAPK, mitogen-activated protein kinases; STAT, signal transducer activator transcription; HSP, heat shock protein; NOD, nucleotide binding oligomerization

domain.

significantly correlated with both HLA-DRA and HLA-DRB1
in group 1 and group 2. Group 1 (SSDE) present more genes
correlated with both HLA-DR (A/B1) than group 2 (NSSDE),
with 102 genes vs. 80 genes, respectively. Among the correlated
genes, 59 genes were common between both groups while 43 and
21 genes differentially correlated genes with group 1 (SSDE) and
group 2 (NSSDE), respectively (Figure 2C).

Discussion
In this study, we aimed to describe tissue-specific transcriptional
networks associated with HLA-DR expression in conjunctival
cells of patients with DED stemming from various causes.
Presence of HLA-DR is important in inflammatory cells for

antigen presentation to CD4T cells but in epithelial cells, antigen
presentation is unlikely and HLA-DR has been considered in the
last decades of research in ocular surface diseases mainly as a
marker of the inflammatory state, of its level and possibly its
mechanisms. The CIs are biological specimens of small size with
rare cells compared to blood samples or other tissue samples. The
Nanostring technology applied to CIs allows the investigation of
numerous targets in only one imprint. CIs provide 3 main cell
types from the superficial conjunctival layers with a majority of
epithelial cells (more than 90%), followed by goblet cells and
inflammatory/immune cells (mainly lymphocytes and dendritic
cells). The numbers of these latter cells can also vary considerably
according to the level of inflammation, so the source of HLA-DR
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TABLE 2 | List of undetected inflammatory genes in conjunctival cells from CI

samples collected in DED patients.

n Gene name

MHC and cell surface receptor 2 FXYD2, TBXA2R

IFN and ISGs 2 IFNA1, IFNB1

Chemokines and receptors 9 CCL2, CCL7, CCL8, CCL11, CCL16,

CCL19, CCL21, CCL23, CCR3

Interleukins and receptors 9 IL1A, IL2, IL9, IL10, IL11, IL12B, IL13,

IL21, TSLP

Prostaglandin receptors 4 PTGIR, PTGS1, PTGER3, PTGDR2

Toll-like receptors 2 TLR7, TLR9

TGF 2 TGFB2, TGFB3

VEGF 1 FLT1

Leukotrien receptors 1 CYSLTR2

Complement and CRP 8 C5, C6, C7, C8A, C8B, C9, MASP1,

MASP2

Enzymes 2 ALOX12, ARG1

Adaptor proteins 2 MBL2, MYL2

Co-factors 1 KNG1

CSF 1 CSF2

MMP 1 MMP3

Transcription factors 2 MEF2B,TWIST2

A total RNA of 100 ng was analyzed on the nCounter® human inflammation v2 chip

containing 249 unique fluorescent barcoded probes to detect mRNA abundance. Forty-

nine genes were not detected. Genes were classified according to their family.

in relation with a specific function, i.e., activation vs regulation,
cannot be fully assessed. Nevertheless, whatever the cell type,
these gene expressions reflect the reality of the presence of a
local inflammatory stimulation and its relation to HLA-DR. As
mentioned above, the pathophysiology of OSD and especially
DED is complex and not yet fully understood, but DED is largely
recognized as being associated with OS inflammation, resulting
in symptoms of eye irritation, alteration of conjunctival and
corneal epithelial cells, and corneal barrier dysfunction (1–3, 5,
55).

Considering the complexity of DED diagnosis in terms of
clinical criteria, signs and symptoms, many studies, for more
than 30 years, have been conducted trying to find reliable
biological markers correlated with pathophysiological disease
patterns. Here, we have investigated 249 mRNA targets known to
be involved in inflammation using the NanoString® technology,
considering the extensively reported studies examining the
relationships between inflammation and DED (2, 5). Therefore,
based on the interest raised by HLA-DR expression in DED
patients and the usefulness of measuring this marker in clinical
trials for investigating the level of inflammation (13), we
focused particularly on the relationships of HLA-DRA and HLA-
DRB1 transcripts of HLA-DR heterodimers α and β (23) with
inflammatory genes.

Our results highlighted the expression of a large variety of
inflammation-related mediators in conjunctival cells from DED
patients. Among the 200 transcripts found to be expressed
in conjunctival cells, we focused on those with the strongest
correlations with the two HLA-DR transcripts. For that purpose

we used very strict criteria, only selecting as markers of interest
those with correlation coefficients above 0.8. This allows us to
reduce correlation background noise and focus on families of
mediators and pathways most likely to play a role in HLA-
DR-related cascades of activation. These markers belong to the
IFN, TLR, and TNF signaling pathways mediated by STATs
and MAPKs, and to the complement and cytokine families
(Tables 3A,B). The main interest shown by these results is that in
addition to having several targets correlated with HLA-DR, these
targets could be integrated into common signaling pathways.
Figure 3 summarizes the signaling pathways associated with
HLA-DR overexpression in conjunctival cells. Our data confirm
the role of IFN, TLR, and TNF pathways, and highlight their
close interactions. Indeed, the association of these three families
with HLA-DR was previously demonstrated in studies reporting
the implication of IFN, TLR, and TNF pathways in molecular
processes induced at the cellular level during DED (35, 56, 57).

Nevertheless, the most representative targets were those
associated with IFN signaling, represented by IRF-1 (24), IFI-
44 (25–27), HSH2D (28, 29), Mx1 (30–32), and OAS2 (33, 34).
These ISGs are induced by the three types of IFNs, type I IFNs
(IFNα and IFNβ), type II IFN (IFNγ), and type III IFN (IFNλ)
(Table 3B). IFNs bind to their cognate receptors and initiate a
signaling cascade, involving the JAK family of tyrosine kinases
and the STAT family of transcription factors, which leads to the
transcriptional induction of the ISGs. Cellular actions of IFNs are
largely mediated by the proteins encoded by ISGs, which have
important roles in innate immunity against different families of
microorganisms. Previous studies reported that the expression
of HLA-DR in conjunctival cells might be regulated by IFNγ

(57, 58). Indeed, IFNγ induces class II transactivator (CII-TA)
expression on different cell types such as epithelial cells, thus
stimulating the up-regulation of class II molecules, such as HLA-
DR via the SXYmodule present in all classical MHC class II genes
(59).

However, no investigation has yet been conducted on the
regulation of these ISGs on HLA-DR expression or on their
role in conjunctival cells during DED. Interestingly, IRF-1 was
found to be increased in human corneal epithelial cells (HCECs)
after a Pseudomonas aeruginosa bacterial challenge (60) and
seems to be essential for MHC class II gene expression, as
described in the mouse macrophage cell line RAW264.7 (61).
Moreover, the down-regulation of MHC II gene expression in
primarymicroglial cells byminocycline was reported as mediated
by preventing the nuclear translocation of IRF-1 (62). IFI-44
was found up-regulated in the peripheral blood and minor
salivary glands of SS patients (63, 64) and displays an anti-
proliferative activity in human melanoma cell lines (65). MX1
and OAS2 were also detected in the blood of patients with
an autoimmune disease, namely systemic lupus erythematous
disease, in which their roles were not totally defined (66).
HSH2D is able to inhibit IL-2 in Jurkat T cells (67) and its
transcripts were found up-regulated in primary airway epithelial
cells by IFN type I and III (68). Thus, the association of IRF-1,
IFI-44, Mx1, OAS2, and HSH2D with HLA-DR could suggest
a possible relationship between viral infection and HLA-DR
expression.
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The second family group found to be correlated with HLA-
DR was TLR members and effectors. This confirms the well-
described close relation between IFN and TLR, in the ocular
surface inflammatory context, through an autocrine loop that
amplifies the IFN response (35, 69). TLRs that recognize
pathogen-associated molecular patterns (PAMPs) trigger innate
immune responses by activating signaling pathways dependent
on the MyD88 adaptors and then induce the expression of
type I IFNs, pro-inflammatory cytokines, chemokines, and
antimicrobial proteins. Hence, TLR members contribute in the
exacerbation of various ocular surface inflammatory processes
during infection (36, 37). TLR2 and TLR3 as cell surface and
intracellular receptors, respectively (38, 39), are also expressed
in human limbal and conjunctival epithelial cells and were
demonstrated to play a role in cytokine secretion (69, 70). IFNγ

induced TLR2 in ex vivo conjunctival cells (36) and TLR3 agonist
induced the expression of IFN-β, Mx1 and OAS2 in human
corneal epithelial cells (71). The up-regulation of TLR2 and
TLR3 may confer an enhanced ability for pathogen recognition,
whereas their reduced expression may lead to an inadequate
response and therefore an increased risk of infection (35).

In addition to the correlation of TLR and IFN cell signaling
members with HLA-DR, the TNF signaling pathway (40),
through CD40 (41), TRAF2 (42, 43), TRADD (44), and RIPK2
(45, 46), also seems to be involved in this complex loop of
regulation. This latter pathway is mediated by CD40 transduction
signal via CD40-TRAF2 to promote nuclear factor-kappa B
(NF-κB) and the mitogen-activated protein kinase (MAPK)
family (72). TRADD also has a TRAF-binding motif that leads
to the recruitment of TRAF1/2, and RIPK2 was described to

TABLE 3 | Selected inflammatory targets displaying a high correlation with HLA-DRA and HLA-B1 in conjunctival cells.

Genes Gene name HLA-DRA HLA-DRB1

R p R p

(A) OF THE 200 DETECTED GENES, 21 TARGETS DISPLAY A HIGH CORRELATION (R > 0.8) WITH BOTH HLA-DR TRANSCRIPTS

HLA-DRB1 Major histocompatibility complex, class II, DR alpha 0.90 ***

HLA-DRA Major histocompatibility complex, class II, DR beta 1 0.90 ***

IFN AND ISGs

IRF1 IFN regulatory factor 1 0.88 *** 0.89 ***

IFI44 Interferon-induced protein 44 0.84 *** 0.84 ***

HSH2D Hematopoietic SH2 domain containing 0.83 *** 0.87 ***

MX1 Myxovirus (influenza virus) resistance 1 0.85 *** 0.86 ***

OAS2 2′-5′-oligoadenylate synthetase 2 0.82 *** 0.82 ***

Toll-Like Receptors and Related Factors

TLR2 Toll-like receptor 2 0.82 *** 0.82 ***

TLR3 Toll-like receptor 3 0.82 *** 0.78 ***

MYD88 Myeloid differentiation primary response gene (88) 0.80 *** 0.84 ***

TNF Superfamily

CD40 CD40 molecule 0.84 *** 0.84 ***

TRAF2 TNF receptor-associated factor 2 0.80 *** 0.86 ***

TRADD TNFRSF1A-associated via death domain 0.81 *** 0.85 ***

Enzymes

RIPK2 Receptor-interacting serine-threonine kinase 2 0.84 *** 0.85 ***

Chemokines/cytokines

CCL22 Chemokine (C-C motif) ligand 22 0.80 *** 0.76 ***

IL15 Interleukin 15 0.80 *** 0.84 ***

Complement and CRP

C2 Complement component 2 0.88 *** 0.89 ***

CFB Complement factor B 0.83 *** 0.82 ***

STAT

STAT1 Signal transducer and activator of transcription 1 0.89 *** 0.88 ***

STAT2 Signal transducer and activator of transcription 2 0.86 *** 0.90 ***

STAT3 Signal transducer and activator of transcription 3 0.85 *** 0.87 ***

MAPK

MAPK8 Mitogen-activated protein kinase 8 0.82 *** 0.82 ***

MAPKAPK2 Mitogen-activated protein kinase-activated protein kinase 2 0.81 *** 0.82 ***

Spearman’s rank-order correlation test was carried out; p< 0.001***. continued
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TABLE 3 | continued

Genes Family/functions References

(B) CHARACTERISTICS OF SELECTED GENES ACCORDING TO THEIR FAMILY AND FUNCTIONS

HLA-DRA Alpha chain of the heterodimer MHC class II (α, β)/cell-surface glycoproteins/APCs (8, 23)

HLA-DRB1 Beta chain of the heterodimer MHC class II (α, β)/cell-surface glycoproteins/APCs (8, 18, 23)

IFN AND ISGs

IRF1 Type I, II IFN/interferon regulatory transcription factor family/regulating apoptosis (24)

IFI44 Type I, IFN/viral response/antiproliferative/associated with hepatitis C virus infection (25–27)

HSH2D Type I, IFN/intracellular protein tyrosine kinase signaling, regulation of cytokine

signaling and cytoskeletal reorganization

(28, 29)

MX1 Type I, III IFN/GTPases/viral response/programmed cell death regulation of apoptosis (30–32)

OAS2 Type I, III IFN/2–5A synthetase family/viral response/degradation of viral RNA (33, 34)

Toll-like Receptor and Related

TLR2 Cell-surface protein/pathogen recognition/innate immunity/apoptosis (35–38)

TLR3 Cell-surface protein/recognizes viral dsRNA/innate immunity/apoptosis, NF-κB

activation/production of type I IFN

(35, 38, 39)

MYD88 Cytosolic adapter protein/innate and adaptive immune response/interleukin-1 and

Toll-like receptor signaling pathways.

(38)

TNF Superfamily

CD40 TNF receptor superfamily member 5/adaptive immune response/TNFR/membrane

receptor/regulation of immune reactions

(40, 41)

TRAF2 Adaptor molecule/p38, Akt and JNK activation (42, 43)

TRADD Adaptor molecule/apoptosis/cell death signaling and NF-κB activation (44)

Enzymes

RIPK2 NF-κB activation/apoptosis/innate and adaptive immune pathways (45, 46)

MAPK

MAPKAPK2 Kinases/MAPKs subtype p38/regulation of pro-inflammatory cytokines (47, 48)

MAPK8 Kinases/stress-responsive c-Jun N-terminal kinase (JNK)/proliferation, differentiation,

transcription regulation

(49)

STAT

STAT1 Activators of transcription/cell viability/response to IFN (50)

STAT2 Activators of transcription/cell viability/response to IFN (50)

STAT3 Activators of transcription/cell viability/response to IFN (50)

Chemokines/Cytokines

CCL22 Ligand of chemokine receptor CCR4/Th2 cell migration (51)

IL15 Type-I cytokine family/regulates T and natural killer cell activation and

proliferation/activation of JAK kinases/not secreted/monocytes/macrophages

(52)

Complement AND CRP

C2 Extracellular region/classical pathway of complement activation/innate immunity (53)

CFB Extracellular region/alternative pathway of complement activation/innate immunity (54)

The selected genes showing high correlations with R > 0.8 are described according to their family and their function in various cells.

modulate inflammasome activation through autophagy (45).
The interaction between TRADD and RIPK2 with its death
domain and C-terminal caspase activation and recruitment
domain (CARD), respectively, promotes apoptotic signals
(Figure 3).

These results support the idea that the main function of CD40
as a co-stimulatory molecule involved in APC-T-cell interactions
is presumably amplified by downstream adaptor proteins,
TRAF2, and TRADD. Overexpression of TRAF2 is sufficient
to activate NF-κB and AP-1 in the absence of extracellular
stimuli (73). Overexpression of TRADD leads to two major
TNF-induced responses, apoptosis and activation of NF-κB, by

inducing effectors caspase such a caspase-3/7, causing apoptosis
(74). We could postulate that these induced signals do not act
simultaneously in conjunctival cells, but proceed by sequential
steps. Furthermore, previous studies demonstrated that CD40
expression was up-regulated in inflammatory eyes and positively
correlated with HLA-DR (75), and was significantly reduced after
cyclosporine A, an anti-inflammatory and immunosuppressive
treatment (76). This confirms the findings from a previous study
showing the association of apoptosis with HLA-DR induction
(77), and the key role of apoptosis in the pathogenesis of
DED (78). These findings highlight the pivotal role of IFN and
TNF responses in the development of a cell-mediated immune
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FIGURE 1 | RNA abundance of the selected highly correlated genes with both HLA-DR transcripts according to their family. RNA abundance is represented by the

detected RNA copies on the y-axis. Numbers above the hatched rectangle correspond to each target family selected: (1) IFN and ISGs, (2) TNF superfamily, (3) TLR

and related factors, (4) chemokines/cytokines, (5) complement and CRP (6) RIPK enzymes, (7) STAT, (8) MAPK.

response, with a specific interaction of the downstream target
with HLA-DR in DED.

As expected, these transduction signals were associated with
the well-conserved signaling MAPKs pathways, which promote
the expression of inflammatory cytokines and chemokines. In
this study, two of them: MAPKAPK2 (47, 48) and MAPK8 (49),
members of the p38 MAPK and JNK cascades, respectively, were
specifically selected according to their correlation with HLA-
DR transcripts. Interestingly, MAPKAPK2 (MK2) is designed as
an emerging therapeutic target, as once inhibited, it is able to
block the production of IL-1, TNFα, and other cytokines (79),
and MK2-deficient mice showed a reduction of IL-6 and TNFα
production (80). More interestingly, a recent study conducted
on the effect of the MK2 inhibitor on a mice model of dry
eye showed a suppression of cell apoptosis and a decrease of
MMP3 and MMP9 in corneal epithelium. Also, SB203580, a
selective p38-MAPK inhibitor, showed therapeutic effects on dry
eye in a mouse model of Sjögren syndrome (MRL/lpr mice)
(81). MAPK8 (JNK1) was also investigated in a mouse model of
dry eye, showing an increased level of phosphorylated JNK1/2
in the corneal and conjunctival epithelia (82). Finally, JAK and
STAT signaling pathways are closely related to HLA-DR as its
expression is modulated in conjunctival cells after treatment of

DED patients with tofacitinib (CP-690, 550), a selective inhibitor
of the Janus kinase (JAK, JAK1-3) (83).

The remaining targets implicated in inflammatory process
and belonging to the STAT family: STAT1, STAT2, STAT3 (50),
chemokines/cytokines: CCL22 (51) and IL15 (52), complement
and CRP:C2 (53) and CFB (54) were briefly described in
Table 3B.

The second part of this study gives a brief overview of
correlated genes specifically associated with the two major
pathological groups as SSDE and NSSDE. As expected the SSDE
group presents more genes correlated with HLA-DR than the
NSSDE group. More interestingly, 43 and 21 selective genes are
only associated with SSDE and NSSDE respectively. These results
highlight that the conjunctival profile of HLA-DR correlated
genes with SSDE and NSSDE patients present some differences
in molecular inflammatory responses.

Among these selective genes for SSDE, MMP9 (R = 0.6),
Transforming growth factor beta (TGFB) (R = 0.46), and
CCL3 (R = 0.44), present a particular interest to distinguish
inflammatory responses and for therapy management especially
in SSDE group. TGF-β is known to regulate the immune system,
and enhance the synthesis and deposition of extracellular matrix,
during wound repair (84). As previously described, level of
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FIGURE 2 | Correlation analysis of genes with HLA-DRA and HLA-DRB1 based on the Spearman’s correlation coefficients of genes in SSDE and NSSDE patients.

(A,B) Represent Heat Map of genes significantly (P < 0.05) correlated with both HLA-DR-A and HLA-DRB1, in a descending manner. (C) Venn diagram showing the

number of specific and common targets identified in the two groups of patients. SSDE, syndrome Sjögren dry eye; NSSDE, non syndrome Sjögren dry eye.

TGF-β1 mRNA within the conjunctival epithelium of patients
with SS is higher when compared to non-DE controls (9) and
its bioactivity increases in tears (85). MMP-9 has important roles
in the DED inflammatory process (86), likewise tears and saliva
of SS patients contain high levels of MMP-9 (9). Finally, tear
expression of CCL3 was reported to be increased in DE patients
compared to healthy control subjects, especially in those with SS
(87) and CCR5 receptor of CCL3 is positively correlated with
HLA-DR in conjunctival cells of patients (88); it is also known
also that CCL3 shows a significant distribution in salivary of pSS
compared to non-SS sicca (89). More interestingly among the
genes correlated with HLA-DR in both SS and NSS groups, two
of them present an inverse correlation with HLA-DR in the two
groups. As: High-mobility group nucleosome-binding protein
1 (HMGN1) (R = −0.45 in SSDE) and (R = 0.43 in NSSDE)
followed by Cell division cycle 42 (CDC42) (R=−0.43 in SSDE)

and (R = 0.44 in NSSDE). HMGN1 is a member of the HMGN
family of proteins that bind specifically to nucleosomes and is
known to affect chromatin structure and function, including
transcription and DNA repair (90). It is also described to act
as a novel alarmin critical for LPS induced development of
innate and adaptive immune response (91). Cdc42 is a small
GTPase of the Rho family, has pivotal functions in cell migration
and proliferation, and is known to be essential for human T-
cell development, where loss of expression induces apoptosis
and reduced proliferation (92). Even if these genes display
a mild correlation of R = 0.4, the mirror suggested effect,
could be interesting for further investigation concerning the
molecular responses associated with HLA-DR in an autoimmune
and non-autoimmune context of DED. Indeed, at this stage of
the investigation, we cannot hypothesize to a functional role
corresponding of this loss of expression in presence of high level
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FIGURE 3 | Proposal for a pattern of signaling pathways associated with increased HLA-DR expression in conjunctival cells. This figure presents the localization of the

targets identified with their possible interactions in the conjunctiva’s spatial microenvironment. The four major signaling responses, in black circles, are mediated by (1)

TLR responses, (2) IFN responses, (3) TNF responses, and (4) members of complement pathways. The target genes selected via their high correlation with HLA-DR

are mentioned in bold red. The first line of pathogen recognition could be mediated by TLR responses via MAPK and NF-κB to induce inflammatory cytokine

responses as INFs. IFNs bind to their receptors and initiate a signaling cascade, involving the JAK-STAT family of transcription factors, which leads to the

transcriptional induction of the ISGs (IRF-1, IFI-44, HSH2D, Mx1, and OAS2), class II transactivator (CII-TA), and HLA-DR complex, which will migrate to the

membrane. CD40, TRAF2, TRADD, and RIPK2, involved in TNF pathways, promote NF-κB and the MAPK family: MK2 and MAPK8, members of the p38 MAPK and

JNK cascades, respectively. Pathogen-associated molecular patterns (PAMPs); CCAAT/enhancer binding protein beta(C/EBPβ); AP-1 transcription factor

subunit(AP−1); IFN regulatory factor IRF-3 and IRF-7(IRF3/7); IFN-stimulated response element (ISRE); IFNγ-activated site (GAS); phosphate(P); class II transactivator

(CIITA); MHC class II-specific regulatory module (XYS); nuclear factor kappa B subunit 2(p52); NF-κB subunit transcription factor RelB (RelB).

of HLA-DR in SSDE, but we only point out the deleterious effect
of this target in presence of high level of inflammation especially
in case of severe DED. This could be also helpful in managing
SSDE and NSSDE with anti-inflammatory therapy (93).

In summary, this original work highlights the implication
of a large set of inflammatory mediators in DED with the
same tendency as with two HLA-DR forms (A and B1). All
these identified target genes could work in concert in a spatial
microenvironment to efficiently promote cell recruitment and
maintain an inflammatory state in conjunctival cells (Figure 3).
This combination of genes associated with HLA-DR corresponds
to biologically meaningful modules in a network, which could
become future candidates for drug development. These outcomes
also support the assumption that inflammation is a core
pathophysiological process in DED, maintaining a vicious circle
of inflammation, and a self-perpetuating cycle ensues (4).

Moreover, the nCounter analysis system from NanoString®

technologies applied on CIs is a reliable tool for multiplexed gene
expression analysis of the inflammatory biomarkers in DED, and
more generally other OSDs, especially when only tiny samples
are available. This tool was applied in ophthalmology for the
first time and is a powerful tool for the detection of specific
molecular targets. This methodology expands the repertoire of
approaches for expression profiling and offers several advantages
over existing technologies, as it requires less sample material, has
no enzymatic bias, and provides a direct digital readout. As yet,
however, no single protein or panel of markers has been shown
to discriminate between the major forms of DED. The gene
expression profiling could contribute to understanding more
fully the discrepancy between signs and symptoms in DED (94)
and the failure of some therapies. Although this transcriptomic
platform is still in its early stages in clinical use, especially in
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the cancer biology field (95, 96), it is expected that NanoString®-
based inflammatory expression panels can play a more important
role in the future for classifying DED patients and predicting
their response to different treatment strategies. Finally, these
molecular actors, selected upon a high level of correlation with
HLA-DR, could improve our knowledge on the pathophysiology
of DED, for a better understanding of the underlying regulation
loop and to define their role in conjunctival cells and the ocular
surface.
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