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Abstract. The CNES (French Space Agency) and DLR (Ger-
man Space Agency) project MERLIN is a future integrated
path differential absorption (IPDA) lidar satellite mission
that aims at measuring methane dry-air mixing ratio columns
(XCH4) in order to improve surface flux estimates of this
key greenhouse gas. To reach a 1 % relative random error on
XCH4 measurements, MERLIN signal processing performs
an averaging of data over 50 km along the satellite trajec-
tory. This article discusses how to process this horizontal av-
eraging in order to avoid the bias caused by the non-linearity
of the measurement equation and measurements affected by
random noise and horizontal geophysical variability. Three
averaging schemes are presented: averaging of columns of
XCH4 , averaging of columns of differential absorption optical
depth (DAOD) and averaging of signals. The three schemes
are affected both by statistical and geophysical biases that
are discussed and compared, and correction algorithms are
developed for the three schemes. These algorithms are tested
and their biases are compared on modelled scenes from real
satellite data. To achieve the accuracy requirements that are
limited to 0.2 % relative systematic error (for a reference
value of 1780 ppb), we recommend performing the averag-
ing of signals corrected from the statistical bias due to the
measurement noise and from the geophysical bias mainly
due to variations of methane optical depth and surface re-
flectivity along the averaging track. The proposed method is
compliant with the mission relative systematic error require-
ments dedicated to averaging algorithms of 0.06 % (±1 ppb
for XCH4 = 1780ppb) for all tested scenes and all tested
ground reflectivity values.

1 Introduction

Methane (CH4) is the second most important anthropogenic
greenhouse gas after carbon dioxide (CO2) (IPCC, 2013).
Despite its key role in global warming, there are still uncer-
tainties in the cause of the observed large fluctuations in the
growth rate of atmospheric methane. Measuring atmospheric
CH4 concentration on a global scale with both high precision
and accuracy is necessary to improve the surface flux esti-
mate and thus develop the knowledge of the global methane
cycle (Kirschke et al., 2013; Saunois et al., 2016).

The Methane Remote Sensing Lidar Mission (MERLIN –
website: https://merlin.cnes.fr/, last access: 22 October 2018)
is a joint French and German space mission with a launch
scheduled for 2024 (Ehret et al., 2017). This mission is ded-
icated to the measurement of the integrated methane dry-
air volume mixing ratio (XCH4). The German Space Agency
(DLR) is responsible for the payload while the French Space
Agency (CNES) is responsible for the platform (MYRIADE
Evolution product line). The payload data processing centre
is under CNES responsibility with significant contributions
from DLR.

MERLIN’s active measurement is based on a space-borne
integrated path differential absorption (IPDA) lidar. Just like
a differential absorption lidar (DIAL), MERLIN’s IPDA li-
dar uses the difference in transmission between an online
pulse with a frequency accurately set in the trough of several
CH4 absorption lines and an offline pulse whose wavelength
has a negligible CH4 absorption (Ehret et al., 2008). Further-
more, the two wavelengths are set close enough in such a way
that the differential effects of any other interaction, excluding
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Figure 1. Laser frequency positioning of the online and offline laser
beams. The online frequency is positioned in the trough of one of
the methane absorption line multiplets. The offline frequency is po-
sitioned so that the methane absorption is negligible.

CH4 absorption, are minimized. Figure 1 shows the position-
ing of the two wavelengths. However, unlike a DIAL, MER-
LIN’s IPDA lidar provides the column content of a specific
trace gas along the line of sight rather than the range-resolved
profile of CH4. This column-integrated methane mixing ra-
tio can be retrieved from the return signals after they are
backscattered on a hard target such as the surface of the
Earth or dense clouds. The much higher backscatter signal
from these targets allows for a system with a relatively small
power-aperture product as compared to a DIAL, which has
to rely on atmospheric backscatter.

The MERLIN measurements require a well-defined pro-
cessing chain that ensures the final performance of the mis-
sion. The processing chain is divided into four levels. Level 0
(L0) consists of raw data (backscattered signals and auxiliary
data), and level 1 (L1) processes the vertically resolved prod-
ucts and the differential absorption optical depth (DAOD)
values for both individual calibrated signal shot pairs and
for a horizontal averaging window. Level 2 (L2) computes
the XCH4 for both individual calibrated signal shot pairs and
for a horizontal averaging window, additionally using oper-
ational analyses from numerical weather prediction (NWP)
centres. Note that in the presence of clouds, two products
are provided; the first one computes the average for clear-
sky shots only, and the other one averages all shots. Finally,
level 3 (L3) produces XCH4 maps using a Kalman filter ap-
proach (Chevallier et al., 2017).

To reach a usable precision, space-borne IPDA lidar mis-
sions often require an averaging of measurements along the
orbit’s ground track (Grant et al., 1988). This process of av-
eraging data horizontally is a general concern for IPDA li-
dar missions. The data processing of the NASA Active Sens-
ing of CO2 Emissions over Nights, Days, and Seasons (AS-
CENDS) mission considers the averaging of multiple lidar
measurements along track over 10 s (70 km with no gaps) to
reduce the random error on the carbon dioxide mixing ratio:
XCO2 (Jucks et al., 2015). Likewise, MERLIN’s averaging
process is included into L1 and L2 algorithms in order to re-
duce the relative random error (RRE) of DAOD and XCH4

(Fig. 2). For the MERLIN mission, measurements are aver-

Figure 2. Principle schematics of the MERLIN IPDA lidar mea-
surement. The lidar emits two laser beams with slightly different
wavelengths (λon and λoff). Every measurement corresponds to the
small fraction of the two laser beams – called online and offline sig-
nals – that are reflected by a “hard” target (Earth’s surface, top of
dense clouds) to the satellite receiver telescope. For clarity, the three
averaging windows are represented with four measurements instead
of 150. On every averaging window, geophysical parameters such
as altitude (or scattering surface elevation when there are clouds) or
reflectivity vary.

aged over a nominal window length of 50 km corresponding
to about 150 shot pairs to reach an RRE of approximately
20 ppb.

The non-linearity of the equation relating calibrated sig-
nals and DAOD in combination with both the statistical
noise inherent to any measurement and the varying geophys-
ical quantities (altitude, pressure, reflectivity) of the sounded
scene increases the relative systematic error (RSE or bias)
and impairs measurement accuracy. Werle et al. (1993) de-
scribe RRE reduction when averaging signals using the con-
cept of Allan variance. Up to an optimal integration time,
measurement variance reduces because the measurement is
dominated by white noise. For greater integration times, the
estimation is biased due to drifts inherent to the measurement
systems. The aim of the present article is not to correct bi-
ases caused by real system drift but to correct biases that are
caused by the non-linearity of the IPDA lidar measurement
equation.

MERLIN must reach an unprecedented precision and ac-
curacy on XCH4 with a targeted RRE of 1 % (18 ppb). The
targeted RSE must remain under 0.2 % (±3 ppb) in 68 % of
cases; a limited budget of 0.06 % (±1 ppb for a XCH4 of
1780 ppb) is allocated to biases introduced by averaging al-
gorithms with algorithms to correct these averaging biases.
To reach the RRE target, levels 1 and 2 of MERLIN’s signal
processing requires a horizontal averaging of data over 50 km
along track (Kiemle et al., 2011). Thus, the single shot online
and offline random error is reduced by a factor of

√
150≈ 12.

For instance, for the typical target reflectivity (0.1), the on-
line and offline signal-to-noise ratios (SNRs) are of the order
of 6.1 and 16.5, respectively, and the equivalent SNRs for

Atmos. Meas. Tech., 11, 5865–5884, 2018 www.atmos-meas-tech.net/11/5865/2018/



Y. Tellier et al.: Averaging bias correction for the future space-borne methane IPDA lidar mission MERLIN 5867

the averaged signals are, respectively, 79.6 and 197.2. This
process greatly decreases the RRE of the XCH4 .

Section 2 gives an overview of the IPDA measurement and
MERLIN data processing. Section 3 defines and compares
biases of several averaging schemes (described below) and
suggests correction algorithms. Section 4 presents a compar-
ative evaluation of these averaging schemes and associated
bias correction procedures using modelled scenes based on
real satellite data. And finally, in Sect. 5, the results of the
simulation are described and a “best approach” algorithm
(i.e. the least biased on tested scenes) is proposed for the
MERLIN processing chain.

2 Overview of IPDA measurement and the MERLIN
processing chain

2.1 IPDA measurement

MERLIN active measurement is based on a short-pulse IPDA
lidar. The column content of methane between the satellite
and a “hard” target (ground, vegetation, clouds, etc.) is re-
trieved by measuring the light that is reflected by the scatter-
ing surface, which is illuminated by two laser pulses with a
slight wavelength difference. Figure 2 schematically shows
the principle of the nadir-viewing space-borne lidar MER-
LIN. The pulse-pair repetition rate is 20 Hz, and the sampling
distance is 350 m considering a ground spot velocity of about
7 km s−1. The online and offline ground spots are separated
by about 2 m, which is negligible compared to the ground di-
ameter of the spots of about 100 m (90 % encircled energy).
Shot pairs will be averaged over a 50 km window (about
150 shots pairs). The online wavelength λon (1645.552 nm;
6076.998 cm−1) is positioned in the trough of one of the
methane absorption line multiplets, whereas the offline wave-
length λoff (1645.846 nm; 6075.903 cm−1), which serves as
reference, is positioned such that the methane absorption is
negligible (Fig. 1). Both wavelengths are close enough so
that interactions with the ground and the atmosphere and in-
strumental response can be considered identical, notably for
reflectivity, which is defined as the ratio of the power re-
flected toward the satellite receiver to that incident on the
hard target. The difference is thus mostly sensitive to the dif-
ference in methane absorption.

2.2 MERLIN processing chain

When the offline and online radiation reach the photodetec-
tor (Avalanche Photo Diode), it is converted to photoelec-
trons and to an electrical current. The measured raw signal
obtained is the sum of the lidar signal and a background sig-
nal that is produced by background light, detector dark cur-
rent and electronic offset. This background signal must be
estimated to be removed from the raw signal. In the presence
of measurement noise, when the SNR is low, this process of

background signal removal can lead to a negative estimated
lidar signal.

For the sake of conciseness, we introduce for any vari-
able X the notation Xon,off that interchangeably represents
the online or offline variables Xon or Xoff. By measuring
the online and offline pulse energies denoted P on,off (P on or
P off, respectively), it is possible to compute the DAOD of
methane and then retrieve XCH4 for the sounded column. We
denote Qon,off the measurements after normalization by the
laser pulse energies, denoted Eon,off, and range r , which is
the distance from the satellite to the reflective target:

Qon,off
=
P on,off

· r2

Eon,off . (1)

The quantity Qon,off will be referred to as calibrated signals
in the following sections of the present article. The DAOD
used in this study, in which the contributions of other gases
are neglected, is denoted δ and is computed as Eq. (2):

δ =
1
2
· ln
(
Qoff

Qon

)
=−

1
2
· ln
(
τ 2
)
, (2)

where τ 2 is the relative two-way transmission. From δ, we
can derive XCH4 from Eq. (3) (Ehret et al., 2008; Kiemle et
al., 2011):

XCH4 =
δ

IWF
=

∫ 0
psurf

vmrCH4(p) ·WF(p,T ) · dp∫ 0
psurfWF(p,T ) · dp

, (3)

where psurf denotes the target pressure where the laser beam
hits the ground, p and T are the pressure and temperature
profiles, and vmrCH4(p) is the dry-air volume mixing ra-
tio profile of methane. The weighting function WF(pT ) de-
scribes the measurement sensitivity of XCH4 along the ver-
tical, and IWF is the integrated weighting function of the
column. These quantities are computed from meteorological
and spectroscopic data, and the WF is given by the following
equation:

WF(p,T )=
σon (p,T )− σoff (p,T )

g (p) · (Mair+MH2O · ρH2O (p,T ))
. (4)

MX denotes the molecular masses of the chemical species
X, ρH2O is the dry-air volume mixing ratio of water vapour,
g(p) stands for the acceleration of gravity (treated as altitude
and hence p dependent), and here, σon,off are the cross sec-
tions for the online or offline wavelengths (not to be confused
with the standard deviation notation σ used elsewhere in this
article).

As previously mentioned, in order to reach the targeted
1 % relative random error on XCH4 measurements, the sig-
nal processing of MERLIN requires a horizontal averaging
of the data. However, we will show in next section that the
non-linearity of Eq. (2) in combination with the measurement
noise and the variability of the observed scene (surface eleva-
tion, reflectivity, meteorology) along the averaging window
induces biases on the average XCH4 .
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2.3 MERLIN measurement noise

As will be seen in the following sections, the noise that af-
fects the measurement is one of the factors that induce the av-
eraging bias on the retrieved methane mixing ratio. The noise
originates from the detector noise, shot noise and speckle
noise. In the case of MERLIN system, the dominant noise
is the detector noise which is considered to be normal as it is
mainly thermal noise. Then, due to the high number of pho-
tons within the signal (approximately 103 for the dark current
and lidar signal), the Poisson statistics approximates a shifted
Gaussian distribution very well (central limit theorem). Fur-
thermore, according to Kiemle et al. (2011), the laser speckle
is not the dominant source of the statistical fluctuation and is
even negligible thanks to the relatively large field of view and
surface spot size. The normality of the noise on calibrated
signals Qon,off is also justified by real measurements (out of
the scope of this paper). The noise model used to generate
the simulated signals is based on MERLIN system parame-
ters and is presented in the Appendix A.

3 Averaging schemes and bias correction: a theoretical
approach

3.1 Definitions

In the following sections, we will use triangular bracket nota-
tion to denote the arithmetic sample mean 〈Y 〉 = 1

N

∑Ns
i=1Yi

of the quantity Y , and 1Yi = Yi −〈Y 〉 will represent the de-
viation of the ith quantity to this arithmetic mean. By exten-
sion, when we use a weighted sample mean of the quantity
Y , weighted by a quantity Z, we will denote it 〈Y 〉w[Z] =∑Ns
i=1wi[Z]·Yi , wherewi[Z] = Zi/

∑Ns
k=1Zk are the normal-

ized weights used. The expected value of a random variable
X will be denotedE[X], and the fact thatX follows a normal
distribution of mean value µ and variance σ 2 will be denoted
X ∼N

(
µ,σ 2).

We are interested in the retrieval of the column-integrated
methane concentration on a 50 km horizontal section along
the satellite track. This quantity will be hereafter denoted
XCH4

T
(where T stands for target). The information that we

can compute using the satellite measurements is the shot-
by-shot XCH4,i (i is the shot index), which is related to the
shot-by-shot volume mixing ratio of methane vmrCH4,i(p)

and the shot-by-shot weighting function WFi(p) by Eq. (3).
For the purpose of building the data processing chains, all
the quantities must be described on a gridded model (ver-
tical and horizontal discretization) of the atmosphere. This
grid is composed of (Nl ·Ns) cells where Nl is the number
of vertical layers of the model and Ns is the number of shots
that we want to average along the satellite path. To model
the atmosphere, the pressure at the interface of each layer (at
each Nl+ 1 levels) uses a hybrid sigma coordinate system
and is denoted Pi,j . Note that the standard notation for in-

dices will be kept consistent throughout this article. The first
index (often denoted i) will represent the shot index and the
second index (often denoted j ) will represent the layer index
(or level index). The term “level” stands for the vertical level
in pressure units. The pressure thickness of every layer, de-
noted 1Pi,j , is then derived from the pressure at every level.

The discrete form of Eq. (3) is

XCH4,i =

∑Nl
j=1vmrCH4,i,j ·WFi,j ·1Pi,j∑Nl

j=1WFi,j ·1Pi,j
. (5)

In order to define the average value XCH4
T

, we must define
average values for the volume mixing ratio of methane and
the weighting function. As the two quantities are intensive
properties, it is necessary to multiply them by the pressure
thickness to get the corresponding additive quantity. The av-
erage volume mixing ratio and the average weighting func-
tion of the j th layer are thus given by

vmrCH4 j =

∑Ns

i=1
πi,j · vmrCH4,i,j , (6)

WFj =
∑Ns

i=1
πi,j ·WFi,j , (7)

where the weights are defined as

πi,j =
1Pi,j∑Ns
k=11Pk,j

. (8)

The pressure thickness, as an extensive property, is averaged
arithmetically, and the average value is denoted 1P j . Then,
we can define the average column-integrated methane con-
centration as

XCH4
T
=

∑Nl
j=1vmrCH4,j ·WFj ·1P j∑Nl

j=1WFj ·1P j
. (9)

3.2 Averaging schemes and types of biases

There are several ways to average the XCH4 provided the
shot-by-shot calibrated signals Qon,off

i . Table 1 presents four
different averaging schemes: averaging of columns of XCH4

(AVX – first line of Table 1), averaging of columns of DAOD
and IWF (AVD – second line of Table 1), averaging of sig-
nals (AVS – third line of Table 1) and averaging of quotients
(AVQ – fourth line of Table 1). Since these four averaging
schemes do not average the same physical quantity, they are
differently biased.

There are two main causes of bias on the retrieved XCH4 :
the statistical bias and geophysical biases. The statistical
bias, which affects every shot individually, is not produced
by the averaging process and must be taken into account for
shot-by-shot measurement. It is induced by the random na-
ture of the measurement of online and offline signals into
non-linear equations. Figure 3 illustrates the statistical bias
on the DAOD, when online and offline signals follow normal
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Table 1. Averaging schemes and characteristics of their biases.

Averaging scheme Abbreviation Definition Bias characteristics

Averaging of columns
of XCH4

AVX XCH4
avx
= 〈

δ
IWF 〉w[IWF] – Statistical bias due to measurement noise on

every shot
– Type 1 geophysical bias from averaging con-
centrations instead of molecular content

Averaging of columns
of DAOD and IWF

AVD XCH4
avd
=
〈δ〉
〈IWF〉 – Statistical bias due to measurement noise on

every shot

Averaging of signals AVS XCH4
avs
=

1
2 ·ln

(
〈Qoff

〉

〈Qon〉

)
〈IWF〉

w
[
Qoff

] – Statistical bias due to measurement noise of
the resulting signals on the averaging window
– Type 2 geophysical bias due to linearization of
the DAOD variations and correlation between
DAOD and reflectivity variations
– Type 3 geophysical bias due to the higher sen-
sitivity to measurements with high offline signal
strength

Averaging of quotients
(not detailed in this pa-
per due to bad perfor-
mances)

AVQ XCH4
avq
=

1
2 ·ln〈

Qoff
Qon 〉

〈IWF〉 – Statistical bias due to measurement noise
mixed with geophysical biases into the non-
linear equation (cf. Appendix B)

distributions. It highlights that, in this case, the DAOD de-
rived from these signals is no longer normally distributed,
and it indicates a bias and a skewness. The second main
sources of bias are called geophysical biases. These biases
are induced by the process of averaging. The successive av-
eraged shots do not sound the same portion of atmosphere
(surface pressure and gas concentrations vary), they are not
reflected on the same surface (reflectivity varies) and the ele-
vation of the scattering surface is not constant in general (al-
titude and hard-target surface pressure vary). All these vari-
ations of geophysical quantities induce several biases on the
average values.

The first scheme, AVX, directly averages the column mix-
ing ratios of methane. Every shot is impacted by the statis-
tical bias developed in Sect. 3.3.1. Furthermore, since a col-
umn with a high total molecular content and another with
fewer molecules would count the same in the averaged mix-
ing ratio, the uniform weighting of methane concentrations
leads to the creation of a bias that is called geophysical bias
of type 1, described in Sect. 3.4.1.

The second scheme, AVD, computes the ratio of the mean
DAOD and the mean IWF. It is also impacted by the statis-
tical bias (cf. Sect. 3.3.1). However, this scheme takes into
account the fact that every column does not present the same
molecular content as DAOD and IWF are averaged sepa-
rately. Thus, it is not impacted by geophysical bias of type
1.

The third scheme, AVS, averages signals before comput-
ing relative transmissions, DAOD and XCH4 . The statisti-

Figure 3. Effect of the non-linearity on the DAOD distribution for a
low reflectivity (0.016 ice and snow cover). Panel (a) shows that the
online and offline calibrated signals are normally distributed. A sig-
nificant part of online calibrated signals (orange) is negative, which
makes the corresponding double shots unusable (undefined loga-
rithm). Panel (b) shows that the DAODs corresponding to the usable
calibrated signals are not normally distributed, and they present a
bias and are skewed. The true DAOD is 0.53 whereas the mean of
the distribution is about 0.54, which leads to a bias on the XCH4 of
approximately +34 ppb here.

cal bias is only applicable to the resulting averaged signals
such that this bias is highly reduced compared to AVX and
AVD (cf. Sect. 3.3.2). However, geophysical biases are in-
creased. First, when the DAOD varies from shot to shot –
due to altitude (or surface pressure) variations or methane
concentration variations for instance – the DAOD computed
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from averaged signals is not representative of the true mean
DAOD. This is called geophysical bias of type 2, presented
in Sect. 3.4.2. Secondly, for the AVS scheme, the average
DAOD is weighted by the offline signal strength. Conse-
quently, the variance of the average quantities is reduced.
However, a correlation between methane concentration and
reflectivity adds a bias to the retrieved quantities. This bias is
called geophysical bias of type 3 and will also be discussed
in Sect. 3.4.2.

The fourth scheme, AVQ, averages transmissions before
computing average DAOD (and average XCH4). The trans-
missions for every column are averaged with a uniform
weighting. Note that the major drawback of this scheme is
that it mixes several bias sources that cannot be easily cor-
rected. Indeed with the averaging being made inside the log-
arithm, it is not possible to separate the bias into two terms
due to the measurement noise and the variation of geophys-
ical parameters of the scene (cf. Appendix B). This scheme
will not be considered in the next sections.

In the following sections, for each averaging scheme of
Table 1 (except averaging of quotients), we will quantify sep-
arately the statistical bias and the geophysical biases and will
in the end combine them in order to determine the total bias
for various scenarios.

3.3 Statistical bias

3.3.1 Statistical bias on AVX and AVD

The averaging of columns (either XCH4 or DAOD) needs
DAODs to be computed for every couple of calibrated sig-
nals (Qoff,Qon). However, as the measurements are affected
by random noise and the IPDA lidar equation (Eq. 2) is not
linear, a bias appears when computing the DAOD (Fig. 3).
Let us define the estimator of the DAOD δ̂ as follows:

δ̂ =
1
2
· ln
(
Qoff

Qon

)
. (10)

The total noise contributions affecting offline and online sig-
nals are statistically independent. Thus, for each single shot,
the calibrated signals Qon and Qoff can be considered as in-
dependent random variables. Furthermore, due to the rela-
tively high number of photons in a single pulse, we can as-
sume that these random variables are normally distributed
around a mean value µon,off and with a standard deviation
σ on,off.

Under the normality assumption, Eq. (10) can be decom-
posed into three terms:

δ̂ =
1
2
· ln
(
µoff
+ σ off

·Xoff

µon+ σ on ·Xon

)
=

1
2
· ln
(
µoff

µon

)
+

1
2

· ln
(

1+
Xoff

SNRoff

)
−

1
2
· ln
(

1+
Xon

SNRon

)
, (11)

where Xon,off follows standard normal distributions. And the
signal-to-noise ratios are defined as

SNRon,off
=
µon,off

σ on,off . (12)

The first term of Eq. (11) is the parameter that needs to be
estimated (i.e. the unbiased DAOD), and the two last terms
are error terms that correspond to the bias of δ̂ due to the
non-linearity of the function:

Biasstat

(
δ̂
)
=

1
2
·E

[
ln
(

1+
Xoff

SNRoff

)]
−

1
2

·E

[
ln
(

1+
Xon

SNRon

)]
. (13)

The task is now to evaluate this bias to remove or at least
reduce it. Analytically, under the normal distribution hypoth-
esis, the expected values are defined by:

E

[
ln
(

1+
Xon,off

SNRon,off

)]
=

1
√

2π

+∞∫
−SNRon,off

ln
(

1+
x

SNRon,off

)
· e−

x2
2 dx. (14)

Providing that SNRon,off is high enough, we can use a Taylor
expansion of the logarithm around zero so that the bias can be
approximated by the following formula (Bösenberg, 1998):

Biasstat

(
δ̂
)
≈

1
4

[
1(

SNRon)2 − 1(
SNRoff)2

]
. (15)

The assumption that the calibrated signals follow a nor-
mal distribution does not rigorously hold when the DAOD is
computed. Indeed, over dark surfaces (low reflectivity), the
SNR may happen to be so low that either one or both cal-
ibrated signals Qoff and Qon takes negative values; hence,
DAOD is undefined. This can actually happen as the cali-
brated signal Qon,off is computed from the raw signal that
corresponds to a photon count (positive quantity) from which
the estimated background energy has been subtracted. When-
ever one of the calibrated signals is negative, the correspond-
ing couple (QoffQon) must be discarded. And as the lowest
calibrated signals are systematically discarded from the aver-
aging set, the average measurement is biased. This bias can
be corrected by considering Eqs. (11) and (13) with Xon,off
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as a left-truncated normal distribution with a mean value of
zero, a variance of one and a left-truncation at −SNRon,off

(Johnson et al., 1994). When done so, it becomes

E

[
ln
(

1+
Xon,off

SNRon,off

)]
=

1
√

2π
[
1−8

(
−SNRon,off)]

+∞∫
−SNRon,off

ln
(

1+
x

SNRon,off

)
· e−

x2
2 dx, (16)

where8 is the standard normal cumulative distribution func-
tion.

To correct the bias due to the non-linearity of the IPDA
lidar equation, the SNR must be estimated. Once done, the
bias correction scheme would either need to estimate the bias
directly from the approximate Taylor expansion formula of
Eq. (15) or estimate the bias using Eq. (13) and a numer-
ical computation of Eq. (16). Typically, for MERLIN ob-
servations, the error made by using the Taylor expansion of
Eq. (15) instead of Eq. (16) is lower than 1 ppb on the XCH4

for a surface reflectivity value greater than 0.1 (SNRoff
≈ 16

and SNRon
≈ 7) as shown on Fig. 4. Table 2 shows the error

made by using the Taylor expansion instead of computing the
truncated normal integral. For values of reflectivity smaller
than 0.1, it would be preferable to use the exact formula for
the bias presented in Eqs. (13) and (16). Further study (not
presented here) shows that for very low reflectivity, the esti-
mation of the noise induced bias is really sensitive to an er-
ror on the SNR, and this correction is no longer applicable in
practice. The way statistical bias on the DAOD is translated
to bias on XCH4 will be treated in Sect. 3.5.

3.3.2 Statistical bias on AVS

The third averaging scheme defined on Table 1, AVS, av-
erages online and offline calibrated signals separately. The
corresponding estimator of the average DAOD is written

δ̂avs
=

1
2
· ln
(
〈Qoff
〉

〈Qon〉

)
. (17)

Consistently with Sect. 3.3.1, we consider the individual cal-
ibrated signals to be normal random variables of meanµon,off

i

and standard deviation σ on,off
i . The parameters of the dis-

tributions depend on shot i since each shot is considered
as the realization of a different distribution, depending on
the geophysical parameters of the scene (reflectivity, atmo-
spheric transmission, surface pressure). The successive mea-
surements are considered independent and, as the sum of
independent normal random variables, is a normal random
variable. We introduce Son,off, the average random variable:

Son,off
= 〈Qon,off

〉 ∼N

(
mon,off,

(
εon,off

)2
)
, (18)

Figure 4. Statistical bias induced by measurement noise. The on-
line and offline SNRs drive the value of the statistical bias. The blue
line is derived from the integration of the truncated normal distri-
bution (Eqs. 16 and 13). The orange line is the Taylor development
(Eq. 15), only valid when reflectivity is high enough (i.e. high SNR).
The expected bias computed from a simple Monte Carlo simulation
(yellow dots) shows that the integration approach is the most ac-
curate. For reflectivity values of 0.1 (vegetation cover), integration
(blue) and Taylor development (orange), it differs by about 1 ppb
(cf. Table 2 for some values).

where the mean and variance of Son,off are

mon,off
= 〈µon,off

〉, (19)(
εon,off

)2
=

1
N2

∑N

i=1

(
σ

on,off
i

)2
. (20)

The empirical estimate of the SNR of the equivalent mea-
surement Son,off on the whole averaging window can be writ-
ten

SNRon,off
eq =

mon,off

εon,off =
(∑N

i=1
µ

on,off
i

)
∑N

i=1

(
µ

on,off
i

SNRon,off
i

)2
−

1
2

. (21)

Given these definitions, we can write the bias due to shot
random variations as in Eq. (13):

Biasstat

(
δ̂avs

)
= E

[
δ̂avs

]
−

1
2
· ln
(
moff

mon

)
=

1
2
·E[

ln

(
1+

Xoff

SNRoff
eq

)]
−

1
2
·E

[
ln

(
1+

Xon

SNRon
eq

)]
, (22)

Provided an estimation of the shot-by-shot SNR, we can es-
timate the bias of Eq. (22) with the same methods as in
Sect. 3.3.1, either considering the simplified Taylor expan-
sion approximation (Eq. 15) or the more accurate integral of
truncated normal distribution (Eqs. 13 and 16). Compared to
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Table 2. Error on the statistical bias estimation by using the Taylor expansion instead of using a truncated normal distribution (cf. Fig. 4).

Reflectivity value 0.093 0.077 0.062 0.53 0.025
Offline SNR 15.1 13.1 10.9 9.5 4.8
Online SNR 6.1 5.2 4.2 3.6 1.8
Error made by −1 ppb −2 ppb −5 ppb −10 ppb +50 ppb
Taylor expansion (Eq. 15)

AVX and AVD schemes, the equivalent SNRs, when aver-
aged horizontally on 150 shot pairs, are considerably larger
and as a consequence, the bias is considerably smaller. The
Taylor expansion approximation holds really well and an er-
ror on the estimation of SNR has a negligible impact on the
bias estimation.

3.4 Geophysical bias

3.4.1 Geophysical bias of type 1 on AVX

Considering an arithmetic averaging for both AVX and AVD
schemes yields different results, since the former scheme
averages concentrations and the latter averages quantities
that are proportional to number of molecules of methane.
Whereas the AVX scheme computes the arithmetic mean of
XCH4 (Eq. 23), the AVD scheme computes average XCH4

weighted by the IWF (Eq. 24):

XCH4
avx
= 〈

δ

IWF
〉 = 〈XCH4〉 (23)

and

XCH4
avd
=
〈δ〉

〈IWF〉
= 〈XCH4〉w[IWF], (24)

where

wi[IWF] =
IWFi∑Ns
k=1IWFk

. (25)

For the AVX scheme, the quantity that is averaged is the col-
umn concentration which is an intensive property. If a uni-
form weighting is considered, there is the same contribution
from columns with many molecules as from ones with less
molecules. For this scheme, a variation of IWF from shot to
shot (i.e. variation of altitude and/or surface pressure) leads
to an overestimation of the methane content of columns that
contain fewer molecules in the average XCH4 . This bias will
be called geophysical bias of type 1 and is simply corrected
by introducing the weighted average by the IWF. This has to
be taken into account when computing the statistical bias for
this scheme, as will be introduced in Sect. 3.5.

On the contrary, the AVD scheme averages the extensive
properties of DAOD and IWF separately. Thus, when the
DAODs are averaged, the molecule amount is preserved such
that the AVD scheme is not affected by a type 1 geophysical
bias.

3.4.2 Geophysical bias of type 2 and 3 on AVS

Once the bias induced by the random nature of the measure-
ment has been subtracted, the resulting estimator is still bi-
ased by the effects of horizontal variations of geophysical
quantities. Indeed, using Eq. (22), we are left with

δavs = δ̂avs
−Biasstat

(
δ̂avs

)
=

1
2
· ln
(
moff

mon

)
, (26)

where moff and mon, as defined by Eq. (19), are the average
of signal expected values. Successive shot pairs are not mea-
suring the same column of atmosphere, such that altitude,
reflectivity and CH4 concentration vary horizontally. Unlike
for the AVX and AVC schemes where the ratio is computed
separately, for the AVS scheme, the changing reflectivity or
atmospheric transmission does not cancel out directly when
computing the ratio of signals. Although measurement ran-
dom noise is significantly reduced, a geophysical noise ap-
pears. We can rewrite Eq. (26) as

δavs =−
1
2
· ln

(∑Ns

i=1

µoff
i∑N

k=1µ
off
k

· exp(−2 · δi)

)
=

−
1
2
· ln
(∑Ns

i=1
wi

[
µoff

]
· τ 2
i

)
. (27)

Using a Taylor expansion of Eq. (27), it is possible to show
that δavs approximately equals the mean of the single-shot
DAODs weighted by the wi[µoff

]:

δavs =
∑Ns

i=1
wi

[
µoff

]
· δi +Rres, (28)

where Rres is the residual error of the linear approximations
when averaging DAODs instead of transmissions. This term
will be called type 2 geophysical bias. Equations (27) and
(28) lead to

Rres =−
1
2
· ln
(∑Ns

i=1
wi

[
µoff

]
· exp(−2 · δi)

)
−

∑N

i=1
wi

[
µoff

]
· δi . (29)

Note that when the DAOD is constant all along the averaging
scene, Rres is exactly zero. Furthermore, when µoff is hori-
zontally constant, Rres is approximately the variance of the
DAOD. In fact, the term Rres is twofold: on the one hand,
it is linked to DAOD fluctuations and, on the other hand, to
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the correlation between DAOD and reflectivity fluctuations.
These correlations might occur, for instance, if there are co-
variations between topography (and thus DAOD) and surface
type (e.g. snow on mountain tops and vegetation in valleys).
In the general case, Rres is not zero and can be estimated us-
ing δavs from Eq. (26), corrected for the statistical bias only,
to compute a first-order estimate for XCH4 :

X
(1)
CH4
=

δavs

〈IWF〉w[Qoff]
. (30)

Using Qoff instead of µoff which is unknown, we can esti-
mate Rres as

R(1)res ≈−
1
2
· ln
(∑Ns

i=1
wi

[
Qoff

]
· exp

(
−2 ·X(1)CH4

·IWFi))− δavs. (31)

This process could be turned into an iterative correction.
However, the first-order estimate is sufficiently accurate in
all cases (not shown).

According to Eq. (28), we notice that the AVS scheme,
corrected for type 2 geophysical bias, computes an average
DAOD weighted by the off-signal strength. Since the main
cause of variation of the offline received power is the vari-
ation of surface or hard-target reflectivity, the transmissions
associated to brighter scenes count more in the average than
the transmissions of darker scenes. The AVS scheme aver-
ages the measurements in such a way that a greater weight
is given to high SNR signals. Consequently, this DAOD esti-
mate is more precise (lower standard deviation) but also bi-
ased. This bias is called type 3 geophysical bias and will be
defined in Sect. 3.5.

3.5 From biases on DAOD to biases on XCH4

In Sect. 3.3 and 3.4, the statistical and geophysical biases on
DAOD have been derived. Here we are interested in trans-
lating biases on DAOD to biases on XCH4 that we want to
estimate. As shown by Eq. (3), XCH4 is obtained by dividing
the DAOD by the IWF. This needs the IWF to be averaged
horizontally, consistent with the DAOD averaging scheme.
Not only is the computation of the average IWF with consis-
tent weights important to computeXCH4 , but it is also needed
by the data users for the assimilation to transport models.

For the AVD scheme, the DAODs are arithmetically av-
eraged with a uniform weight. Hence, the IWF must be av-
eraged in the same fashion. A shot-by-shot DAOD bias ac-
cording to Eq. (13) translates into a statistical bias on XCH4

as follows:

Biasstat

(
XCH4

avd
)
=

〈Biasstat

(
δ̂
)
〉

〈IWF〉
. (32)

For the AVX scheme, XCH4 is computed for every shot.
The statistical bias on every shot is the quotient of the bias on

the shot DAOD over the shot IWF. However, when horizon-
tally averaging the statistical bias on XCH4 , the type 1 geo-
physical bias must be taken into account (Sect. 3.4.1). The
average bias should be weighted by the shot-by-shot IWF as
in Eq. (24):

Biasstat

(
XCH4

avx
)
= 〈

Biasstat

(
δ̂
)

IWF
〉w[IWF]. (33)

For the AVS scheme, the IWF must be weighted consistent
with the averaging scheme. Equation (28) shows that the av-
erage DAOD is weighted by the offline signal strength. As
presented in the third line of Table 1, in order to keep the
mixing ratio of methane consistent, the averaging of the IWF
must also be weighted by wi

[
Qoff]. Consistently, the trans-

lation of bias on the DAOD to bias on theXCH4 considers the
same weighting for IWF. The statistical bias translates from
Eq. (22) to

Biasstat

(
XCH4

avs
)
=

Biasstat

(
δ̂avs

)
〈IWF〉w[Qoff]

. (34)

Concerning geophysical biases, a type 2 geophysical bias
(due to the linearization of DAOD variations and the corre-
lation of signal and transmission fluctuations) described by
Eq. (31) becomes

Biasgeo2

(
XCH4

avs
)
=

R
(1)
res

〈IWF〉w[Qoff]
. (35)

The geophysical bias of type 3, caused by the higher sensi-
tivity to the spots with higher reflectivity, could be written
as

Biasgeo3

(
XCH4

avs
)
=
〈δtrue
〉w[Qoff]

〈IWF〉w[Qoff]
−
〈δtrue
〉

〈IWF〉
. (36)

Indeed, the AVS scheme does not measure the true con-
centration of CH4 on the 50 km window. The weighting by
wi
[
Qoff] implies that greater weight is granted to shots mea-

suring brighter targets. This could be detrimental to the mea-
surement if there were a strong correlation between reflec-
tivity and CH4 concentration on a global scale, which should
not be the case. For assimilation or inverse modelling to mod-
els with a higher resolution than 50 km, the weighting could
also be taken into account in the forward model for theXCH4 .

4 Methodology to test averaging algorithms and their
bias corrections

4.1 Data sets (latitude, longitude, altitude, surface
pressure, and relative reflectivity)

The three averaging schemes and their associated biases will
be tested on scenes modelled from real satellite data in terms
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of geophysical properties. For this purpose, we are inter-
ested in simulating the calibrated signals Qon,off

i and the in-
tegrated weighting function IWFi , both on a 50 km scale.
To be computed, the signals require the weighting functions
for every shot (WFi,j ), the volume mixing ratio of methane
(vmrCH4,i,j ), both defined on the pressure grid (Pi,j ), and the
target reflectivity (ρi) for every shot. The integrated weight-
ing function is computed from WFi,j (and Pi,j ). The data
sets are built from satellite data provided by the SPOT-5
satellite for latitude, longitude and relative reflectivity; the
Shuttle Radar Topography Mission (SRTM) digital eleva-
tion map data for topography; and the European Centre for
Medium-Range Weather Forecasts (ECMWF) analyses for
surface pressure, from which we deduce the pressure grid on
150 shots and 19 levels.

SPOT-5 was a CNES satellite launched in 2002 and op-
erated until 2015 (Gleyzes et al., 2003). Amongst the five
spectral bands of the High Resolution Geometric (HRG) in-
strument, it has a spectral band in the short-wave infrared do-
main (1.55 to 1.7 µm) with a spatial resolution of 20 m. This
band includes the MERLIN laser wavelength and, as we ex-
pect spectral variations of surface albedo to have rather low
spectral variations, we use the Spot SYSTEM SCENE level
1A product (images using radiometric corrections, equiva-
lent radiance in W m−2 Sr−1 µm−1) as a proxy of surface re-
flectivity. Indeed, as we were careful to select images with no
clouds, we neglect the effect of atmospheric extinction on the
SPOT-5 measurements. Note that we are interested here in a
description of the reflectivity variations in the 50 km averag-
ing window, not by the absolute value of reflectivity. This is
why we consider this SPOT-5 product suitable, and we will
scale it to any prescribed value of surface reflectivity in the
simulations described hereafter anyway. The topography is
taken from the SRTM digital elevation model (Jarvis et al.,
2008), which has a spatial resolution of about 90 m. Surface
pressure is taken from ECMWF 4D variational analyses from
the long window daily archive and interpolated at SRTM
grid points. A correction from difference between ECMWF
Integrated Forecasting System (IFS) model topography and
SRTM altitude is applied. In order to make both SRTM and
SPOT-5 data consistent, the three selected SPOT-5 images
are first processed by a low pass convolution to obtain a 90 m
spatial resolution and then projected into the SRTM geome-
try. Note that the spatial resolution thus obtained is also close
to MERLIN single shot footprint. Table 3 summarizes the
data sets’ content and resolutions.

Three sites have been selected to be representative of to-
pographic variability; they are located in the neighbourhood
of three French cities: Toulouse, Millau and Chamonix. The
different characteristics of the three samples are described in
Table 4. Figures 5 and 6 show the variation of surface pres-
sure and relative variations of reflectivity along the averaging
scheme. Toulouse presents a medium variation of geophys-
ical parameters (altitude and thus surface pressure), Millau
presents a high variation and Chamonix a very high variation.

Figure 5. Surface pressure of the three scenes from the data sets.
Toulouse, Millau and Chamonix present medium, high and very
high variability, respectively (cf. Table 4).

Figure 6. Relative variations of reflectivity of the three scenes from
the data set. Toulouse, Millau and Chamonix present medium, high
and high) variability, respectively (cf. Table 4).

Figure 7 shows the global cumulative distribution of standard
deviations of altitude of SRTM database worldwide. We no-
tice that 67 % and 97 % of the scenes present a lower altitude
standard deviation than the one considered on the Millau and
Chamonix data, respectively.

For sensitivity study purposes, the reflectivity relative vari-
ations from the SPOT-5 data set are multiplied by a refer-
ence mean reflectivity that can be chosen to obtain the usable
scene reflectivity. Four mean reflectivity values will be con-
sidered: 0.1 (vegetation), 0.05 (mixed water and vegetation),
0.025 (sea and ocean) and 0.016 (ice and snow).

The pressure grid Pi,j and the pressure thickness grid
1Pi,j are obtained from surface pressure P surf

i from the
ECMWF analyses data set using a hybrid sigma coordinate
system.

The methane volume mixing ratio, vmrCH4,i,j , is arbitrar-
ily set to values assumed to be realistic. For every shot i and
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Table 3. Data sets’ resolution characteristics.

Geophysical parameter Origin Original grid resolution Interpolated grid resolution

Coordinates (lat, long) SPOT-5 20 m

Relative reflectivity 90 m (surface pressure is corrected to take into account
SRTM small-scale variations of topography)

Altitude SRTM 90 m
Surface pressure ECMWF ∼ 10 km

Table 4. Characteristics of the data used for the simulation.

Toulouse Millau Chamonix

Latitude range 43.56–43.93◦ N 43.56–43.93◦ N 45.75–46.12◦ N
Longitude 1.62◦ E 3.06◦ E 7.22◦ E
Altitude range (m) 108–321 359–902 473–2967
Altitude mean (m) 223.1 697.4 1753.7
Altitude standard deviation (m) 57.5 141.8 711.1
Surface pressure range (hPa) 980.2–1000.9 922.7–973.9 748.2–965.0
Surface pressure mean (hPa) 988.7 940.9 837.3
Surface pressure standard deviation (hPa) 5.7 12.2 64.5
Relative reflectivity range 0.68–1.65 0.49–1.50 0.35–1.61
Relative reflectivity standard deviation 0.16 0.24 0.27

Figure 7. Global cumulative distribution of the standard deviation
of altitude obtained on SRTM. A total of 46 %, 67 % and 97 % of
SRTM boxes present a lower standard deviation than the Toulouse
scene, Millau scene and Chamonix scene, respectively. The three
scenes are representative of medium, high and very high variations
of altitude.

layer j{
vmrCH4,i,j = 1780ppb if Pi,j < (max

(
psurf
i

)
−min

(
psurf
i

)
)/2

vmrCH4,i,j = 1880ppb otherwise . (37)

This replicates the possible correlation between methane
concentration and altitude (more methane in valleys and less
over mountain tops).

Finally, the weighting functions are calculated, as de-
scribed in Eq. (4), from methane absorption cross sec-
tions and meteorological data (1Pi,j , temperature, humid-
ity). They are computed using CH4 absorption cross sec-
tions from the 4A radiative transfer model (Scott and Chédin,

1981; Chéruy et al., 1995) on a reference winter mid-latitude
atmosphere from the Thermodynamic Initial Guess Retrieval
(TIGR) data set (Chevallier et al., 2000). The sensitivity to
the thermodynamic condition of the atmosphere has been
tested and is negligible here (not shown).

4.2 Overall test framework

The aim of the simulation is to compare the biases of the es-
timated XCH4 for several averaging schemes and to evaluate
the accuracy of the bias correction. A global description of
the simulation is presented on Fig. 8. Each simulation case
considers a typical number of Ns = 150 double shots per
averaging window, approximately corresponding to 50 km
along the satellite ground track. It relies on a description of
the geophysical scene in terms of surface pressure P surf

i , re-
flectivity ρi , an arbitrary CH4 concentration field vmrCH4,i,j

and weighting functions WFi,j (cf. Sect. 4.1). Then, the on-
line and offline calibrated signals are computed from surface
reflectivity and a random noise simulation, and the weight-
ing functions are integrated (cf. Sect. 4.3). Next, we proceed
to the computation of the average XCH4 on 50 km resolution
with the different averaging schemes (AVQ not simulated)
and the correction algorithms, presented in Sect. 4.4 and Ta-
ble 5.

In order to estimate the bias, the computation of an av-
erage column-integrated methane concentration XCH4 from
the shot-by-shot volume mixing ratio profiles, vmrCH4,i(p),
is needed and will be computed as XCH4

T
in Eq. (9).
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Table 5. Computational details about averaging schemes and bias evaluation.

AVX scheme AVD scheme AVS scheme

Averaging scheme – Discard negative signals
– Table 1, line 1

– Discard negative signals
– Table 1, line 2

– Table 1, line 3

Statistical bias evaluation – Discard negative signals
– SNR estimation
– Bias evaluation:
Option 1 Eqs. (33)
and (15)
Option 2 Eqs. (33), (16) and
(13)

– Discard negative signals
– SNR estimation
– Bias evaluation:
Option 1 Eqs. (32)
and (15)
Option 2 Eqs. (32), (16) and
(13)

– SNR estimation
– Equivalent window SNR
by Eq. (21)
– Bias evaluation:
Option 1 Eqs. (34)
and (15)
Option 2 Eqs. (34), (16) and
(13)

Geophysical bias evaluation – None (Type 1 geophys-
ical bias built-in w[IWF]
weights of Table 1, line 1
and Eq. 33)

– None – Type 2 geophysical bias
of Eq. (35)
– Type 3 geophysical bias
of Eq. (36) not estimated

Figure 8. Global description of the simulation. Data sets (blue) are
described in Sect. 4.1. Signals and the IWF computation (orange)
are described in Sect. 4.3. Averaging strategies performed and their
related bias corrections (green) are described in Sect. 4.4 and Ta-
ble 4. Target XCH4 computation (red) is described in Sect. 3.1. 1X
is the scheme bias which is the difference between scheme and tar-
get XCH4 , and Biasres is the residual bias when evaluated biases
have been subtracted from the scheme bias.

In order to assess the performance of averaging schemes
and bias correction algorithms, the standard deviation and
mean of the difference 1X between the XCH4

scheme
esti-

mated from one of the studied averaging schemes and the
target value XCH4

T
must be computed over a set of M simu-

lations. The number of simulation M has to be high enough
to compute the residual bias (empirical mean of 1X) with
sufficient accuracy. Let us denote σ the standard deviation of

the distribution of the variable 1X, SM = 〈1X〉 the empiri-
cal mean over M samples (i.e. the empirical estimate of the
bias of the averaging scheme). To get an estimate of the ex-
pected value of 1X with an accuracy of 0.1 ppb with 90 %
confidence, it requires approximately M = 300000 samples
according to the central limit theorem.

The typical standard deviation can also be evaluated from
the sample and is approximately 22 ppb for the typical case
(mean reflectivity of 0.1).

4.3 Simulation of online and offline lidar calibrated
signals and IWF

Once the scene parameters are defined on the 50 km aver-
aging window and the atmosphere is modelled, the online
and offline calibrated signals must be simulated. We first
have to compute the deterministic values of the calibrated
signals without noise and simulate the random noise that af-
fects them. The values of the signals are determined by the
scene reflectivity (for both online and offline signals) and by
the atmospheric transmission (online signals only). From the
weighting functions, the methane field and the pressure field,
we compute the reference DAOD, denoted δtrue

i , as the nu-
merator of Eq. (5). Then we compare the transmission for
each double shot according to

(
τ true
i

)2
= exp

(
−2 · δtrue

i

)
. (38)

From them, considering the reflectivity, we are able to deter-
mine the relative value of the online and offline mean cali-
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Figure 9. Online and offline SNR computed from reflectivity ac-
cording to instrument characteristics.

brated signals:

µoff
i = ρi, (39)

µon
i = ρi ·

(
τ true
i

)2
, (40)

where i is the shot index, τi is the transmission and ρi is the
reflectivity. Note that any constant affecting both online and
offline signals can be disregarded here.

Then, Gaussian random noise has to be added to the val-
ues of the signals. It is computed from the SNR that depends
on the number of photons reaching the detector (i.e. µon,off

i ).
Figure 9 shows the theoretical dependence of the SNR to the
reflectivity according to instrument characteristics and Ap-
pendix A presents the noise model used.

The IWFi are simply computed by integrating the WFi,j
on all pressure layers as the denominator of Eq. (5).

4.4 Tested averaging algorithms and bias corrections

The simulation tested the three averaging schemes described
in Sect. 3.2: AVX (Table 1, line 1), AVD (Table 1, line 2)
and AVS (Table 1, line 3). Table 5 details the computational
steps used for averaging, statistical bias evaluation and geo-
physical bias evaluation for the three schemes. For the AVX
and AVD schemes, as explained in Sect. 3.3.1, signal couples
with at least one negative calibrated signal must be discarded
to compute the shot DAOD. However, since signals are av-
eraged first for the AVS scheme, the probability that one of
the averaged signals is negative is extremely small. Thus, no
negative calibrated signal discarding is needed for the AVS
scheme.

Concerning statistical bias evaluation, an SNR estimation
is needed. It is directly estimated from instrument parame-
ters and online and offline calibrated signal strength. Once

the SNR is estimated, as described in Sect. 3.3, there are two
options to evaluate the statistical bias either using the Tay-
lor expansion approximation or the numerical integral of a
truncated normal distribution. Contrary to AVS, where Tay-
lor expansion and the numerical integral make a negligible
difference, for AVX and AVD, it is better to use the numer-
ical integral as it is more accurate, and this is what is done
here.

Type 1 geophysical bias, that affects the AVX scheme, is
already compensated by weighting the average XCH4 and the
average statistical bias by the IWF. The AVD scheme is not
affected by geophysical biases. However, type 2 and type 3
geophysical biases affect the AVS scheme. Type 2 geophys-
ical bias is evaluated by Eq. (35) using the first-order XCH4

of Eq. (30). The type 3 geophysical bias is not evaluated and
will not be corrected because a correlation between reflec-
tivity and CH4 concentration is unlikely to occur. Indeed, on
a smaller than 50 km scale the typical atmospheric transport
should smear out the CH4 concentration very effectively over
areas larger than the small-scale reflectivity jumps even if this
is not true for narrow valleys.

5 Results

5.1 Comparison of averaging schemes

5.1.1 Bias of averaging schemes without bias correction

The first results presented here are the respective biases of
each averaging scheme without any bias correction. Fig-
ure 10 shows the bias on the average XCH4 on the three
scenes (Toulouse, Millau and Chamonix) for the three aver-
aging schemes that have been studied (AVS, AVD and AVX)
without any correction. The bias due to measurement noise
and due to geophysical variation appears on the results, as it
is not yet subtracted. For the AVS scheme we compare the
results with the uniformly weighted average IWF and the av-
erage of the IWF weighted by the offline calibrated signal
strength: wi

[
Qoff]. For the AVD scheme, a uniform weight

is considered. And, for the AVX scheme, we compare the
uniformly weighted average XCH4 (Eq. 23) and the average
XCH4 weighted by the IWF: wi [IWF] (Eq. 24). The mean
reflectivity is set to the typical value of 0.1.

For the AVS scheme on Toulouse and Millau scenes,
where there are medium to high variations of geophysical
quantities, the bias is contained in the ±1 ppb range. How-
ever, it is higher on the Chamonix scene, where there are
very high variations of geophysical parameters. As expected,
the bias for the AVS scheme is mainly impacted by the varia-
tions of the geophysical parameters over the scene. Note that
on the Chamonix scene, the weighting of the average IWF by
the offline calibrated signal strength reduces this bias.

On the contrary, the bias of the AVD and AVX schemes
is not affected by the geophysical variations but is mainly
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Table 6. Resulting bias (in ppb) for the AVD scheme after noise induced bias correction.

Taylor bias correction (not usable) Integral bias correction

Reflectivity 0.1 0.05 0.025 0.016 0.1 0.05 0.025 0.016
Offline SNR 16.1 9.0 4.8 3.2 16.1 9.0 4.8 3.2
Online SNR 6.5 3.4 1.8 1.1 6.5 3.4 1.8 1.1
Toulouse (ppb) −6.70× 10−1

−9.02× 104
−9.70× 1010

−5.11× 109
−1.79 −4.28 207 416

Millau (ppb) −1.52× 102
−8.94× 105

−6.27× 107
−4.62× 108

−2.43 9.69 204 442
Chamonix (ppb) −1.19× 101

−1.59× 106
−4.35× 109

−2.44× 108
−2.05 8.24 197 498

Uncertainty (ppb) ±6.7× 101
±8.8× 105

±5.5× 1010
±2.0× 109

±0.10 ±0.24 ±0.61 ±0.89

Table 7. Resulting bias (in ppb) for the AVS scheme after noise induced bias correction and geophysical induced bias correction.

Taylor bias correction Integral bias correction

Reflectivity 0.1 0.05 0.025 0.016 0.1 0.05 0.025 0.016
Offline SNR 16.1 9.0 4.8 3.2 16.1 9.0 4.8 3.2
Online SNR 6.5 3.4 1.8 1.1 6.5 3.4 1.8 1.1
Toulouse (ppb) −0.01 −0.02 −0.03 −0.05 −0.03 −0.07 −0.03 −0.08
Millau (ppb) −0.03 −0.03 −0.03 −0.05 −0.04 −0.08 −0.04 −0.08
Chamonix (ppb) −0.51 −0.51 −0.50 −0.48 −0.53 −0.57 −0.50 −0.49
Uncertainty (ppb) ±0.09 ±0.17 ±0.33 ±0.51 ±0.09 ±0.17 ±0.33 ±0.51

Figure 10. Bias before correction for the three studied averaging
schemes (red dotted lines: targeted bias ±1 ppb).

driven by the measurement noise, which essentially depends
on the scene’s mean reflectivity. As shown in Sect. 3.4.1, the
AVD scheme with uniform weighting and the AVX scheme
weighted by the integrated weighting function (wi[IWF]
weights) show the same bias. Although the comparison be-
tween the AVX scheme weighted uniformly (light red on
Fig. 10) and the AVD scheme (green on Fig. 10) shows
that their biases are close when variations of surface pres-
sure (main cause of variations of IWF) are low (Toulouse,
Millau), they become significant when variations are higher
(Chamonix).

Without any correction and for the typical reflectivity, the
AVS scheme is less biased than the AVD and AVX schemes.
However, as we have seen in previous sections, there are
ways to estimate the biases and to correct them. The follow-
ing section will show the results after estimation and correc-
tion of the bias induced by the measurement noise.

5.1.2 After correction of statistical bias

As explained in Sect. 3.4, the random nature of the measure-
ment associated with the non-linearity of the measurement
equation implies that the estimation of the XCH4 is biased.
The statistical bias corrections for AVS, AVD and AVX are
based on an estimation of the online and offline SNRs for
the measured calibrated signals (cf. Sect. 4.4 and Table 5).
Figure 11 shows the residual biases, after subtraction of esti-
mated statistical bias, for the three averaging schemes, with
and without relevant weightings, on the three studied scenes
and for the typical reflectivity of 0.1. The chosen estimation
of the bias is done by numerically computing the integral of
the truncated Gaussian distribution (Sect. 3.3).

We see that the biases of the AVD and AVX schemes
are significantly reduced (absolute value decrease by 85 %
to 90 %) on every scene. The residual bias is caused by the
fact that the SNRs are estimated from the noisy calibrated
signals so that the estimation of the bias is not perfectly ac-
curate. This implies that the calibrated signal outcomes from
the lower part of the distribution lead to a high error on the
estimated bias. This effect could be slightly compensated if,
instead of discarding all the negative or null calibrated sig-
nals (extremely rare for a reflectivity value of 0.1 over 150),
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Figure 11. Residual bias after statistical bias correction for the three
studied averaging schemes (red dotted lines: targeted bias ±1 ppb).

we discarded calibrated signals higher than a strictly positive
threshold (e.g. 0.01, not shown). This would lead to a better
correction and thus a lower bias, but at the cost of discarding
more single-shot observations.

For the AVS scheme, as the signals are averaged first, the
equivalent SNR is very high (SNRoff

eq ≈ 190 and SNRon
eq ≈

90) on the scenes with a mean reflectivity of 0.1. Conse-
quently, the bias due to the equivalent measurement noise is
really low (about 0.1 ppb), and this bias correction has only
a small effect on the residual bias.

Taking into account the correction of the bias induced by
the measurement noise, the AVS scheme still presents a lower
bias on Toulouse and Millau scenes than the bias of the AVX
and AVD schemes. However, on the Chamonix scene, where
the geophysical variations are very high, the AVX and AVD
schemes are less biased than AVS.

5.1.3 After correction of geophysical biases

The biases induced by the variation of the geophysical pa-
rameters (cf. Sect. 3.4) does not affect the AVD scheme, as
the additive properties of DAOD and IWF are averaged sep-
arately. The variation of the IWF affects the bias of the AVX
scheme and has already been corrected by introducing the
wi [IWF] weights when directly averaging mixing ratios. The
AVS scheme is the one most affected by the variations of the
geophysical variations, as seen in Sect. 5.1.1.

Figure 12 shows the residual bias after the corrections of
the statistical bias induced by the measurement noise and the
variations of geophysical parameters (cf. Sect. 4.4 and Ta-
ble 5). We notice that the residual bias for the AVS scheme is
considerably reduced when the average weighting function
is weighted by the offline calibrated signal strength. Further-
more, the iterative estimation of the bias converges at the first
iteration of Eqs. (26) to (31).

Once geophysical biases are subtracted, the three scenes
present a low bias. The mean residual bias on the three

Figure 12. Residual bias after noise induced bias and geophysical
variation induced bias corrections for the three studied averaging
schemes (red dotted lines: targeted bias ±1 ppb).

scenes for the AVD and AVX schemes is approximately
−2.1± 0.1 ppb, whereas for the AVS scheme, it is approx-
imately −0.09± 0.09 ppb. After all corrections, even on
highly structured scenes, AVS is the least biased scheme of
the three studied schemes. When the average IWF is consis-
tently weighted with the wi

[
Qoff] weights, the geophysical

induced bias is almost completely removed.

5.2 Impact of the mean reflectivity on the residual bias

All results presented above are computed for scenes with a
mean reflectivity of 0.1, which roughly corresponds to veg-
etation cover. For the purpose of choosing the least biased
algorithm to compute average XCH4 , it is interesting to test
the robustness to reflectivity. Indeed, reflectivity is the main
driver for the expected value of SNR; low reflectivity scenes
lead to lower SNR and consequently higher bias. Tables 6
and 7 show the residual bias comparing four different re-
flectivity values: 0.1 (vegetation), 0.05 (mixed sea and veg-
etation), 0.025 (sea and ocean) and 0.016 (ice and snow).
Table 6 gives the residual bias for the AVD scheme (the
AVX scheme presents similar results), and Table 7 shows the
residual bias for the AVS scheme, where the average IWF is
weighted by the offline calibrated signal strength (wi

[
Qoff]

weights) and corrected of the bias due to geophysical varia-
tions from shot to shot. For both tables, the Taylor expansion
bias correction (Eq. 15) and numerical computation of the
expectation (so-called integral truncated normal distribution
Eqs. 16 and 13) are compared.

First, as seen in Table 6 (AVD scheme), the Taylor bias
correction does not succeed in quantifying the bias on any
of the four mean reflectivity values. The uncertainties are too
high and prevent quantitative analysis of the results. This is
due to the fact that there are some calibrated signals that are
really close to zero and for which the SNR is underestimated;
thus the bias (and standard deviation) is overestimated. This
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Table 8. Bias (in ppb) of several averaging biases before any bias correction schemes are applied on the three scenes for four reflectivity
values.

AVX AVD AVS AVQ (on–off) AVQ (off–on)

Toulouse (ρ = 0.1) 17.09 17.09 0.15 −5.25 40.71
Millau (ρ = 0.1) 18.50 18.54 −0.14 −6.40 46.53
Chamonix (ρ = 0.1) 16.65 17.36 −17.00 −14.74 53.41
Toulouse (ρ = 0.05) 71.30 71.30 0.42 −17.18 219.92
Millau (ρ = 0.05) 72.63 72.67 0.10 −23.60 268.72
Chamonix (ρ = 0.05) 65.77 67.28 −16.80 −31.93 259.48
Toulouse (ρ = 0.025) 173.34 173.34 1.46 −122.17 1055.46
Millau (ρ = 0.025) 173.31 173.29 1.05 −115.22 1022.00
Chamonix (ρ = 0.025) 189.46 189.83 −16.03 −92.89 1025.43
Toulouse (ρ = 0.016) 144.79 144.77 3.44 −273.53 1418.72
Millau (ρ = 0.016) 184.98 184.84 2.87 −232.10 1457.83
Chamonix (ρ = 0.016) 274.46 269.75 −14.56 −155.45 1596.10

could be mitigated by the choice of a higher threshold of the
usable calibrated signal before the computation of the DAOD
(not shown). The results when using the integral bias correc-
tion on AVD are more physical. However, they also show an
over estimation of the bias, especially for low reflectivity val-
ues. In every case for the AVD scheme, the bias threshold is
exceeded.

Table 7 gives the results of the robustness of the AVS
scheme to decreasing reflectivity. Unlike the AVD scheme,
the AVS scheme, when all corrections are made, presents sat-
isfying results for all reflectivity values, and in every scene
the biases remain contained into the threshold interval of
±1 ppb. The effect of the decreasing reflectivity has a very
small impact on the residual bias.

To summarize, the best algorithm to limit the bias for
MERLIN processing algorithms is clearly the AVS scheme,
with an average IWF weighted by the offline calibrated sig-
nal strength and both corrections of the geophysical bias and
the bias induced by the measurement noise (either Taylor or
integral bias correction). On every scene and for all expected
reflectivity values, this algorithm is compliant with the aver-
aging bias specifications of the MERLIN mission. Note that
this conclusion holds in the case where all the 150 shots are
considered; in the case of a partially cloudy window where
only a subsample of clear sky shots are averaged, the AVS
will still be the best averaging scheme, but the performance
will be decreased.

6 Conclusions

The French–German space-borne IPDA lidar mission MER-
LIN will measure the average integrated column dry-air mix-
ing ratio of methane (XCH4) on a 50 km scale. The processing
algorithms must limit both the relative random error (RRE)
and the relative systematic error (RSE) on the XCH4 . As the
IPDA technique relates the signal measurements to the XCH4

by a non-linear equation, a simple and naive averaging can
lead to high biases.

Three averaging schemes have been studied: averaging of
XCH4 (AVX), averaging of DAOD (AVD) and averaging of
signals (AVS). For these averaging schemes, possible sources
of bias can either be due to the measurement noise, the varia-
tion of the geophysical parameters on the averaging scene or
both.

The three schemes are sensitive to the bias induced by the
measurement noise even if AVS is far less impacted for the
typical reflectivity. This bias can be corrected by a formula
introducing the estimated SNR on the measured signals if
the SNR is high enough. The bias due to the variation of
geophysical parameters does not affect the AVD scheme be-
cause it directly averages the desired additive quantities. On
the contrary, the AVX scheme must average the concentra-
tion weighted by the integrated weighting function (IWF)
in order to average a molecule number instead of averaging
concentrations. The third scheme AVS measures the average
XCH4 weighted by the offline signal strength, which means
that more weight to the measurements with a high SNR is
given when averaging. The bias of this scheme is sensitive to
the variation of geophysical parameters (surface pressure and
surface reflectivity). This bias is corrected using an iterative
process with the uncorrected XCH4 as first guess.

These averaging schemes and their bias corrections have
been tested on scenes modelled from real satellite data in
terms of altitude, surface pressure, weighting functions and
relative variations of reflectivity. The three scenes present in-
teresting characteristics, as they show different geophysical
variations that could impact averaging biases. Besides, the
signals and random noise are simulated from geophysical pa-
rameters and instrument parameters.

The simulation shows that the lowest biases are obtained
for the AVS scheme using appropriate bias corrections and
averaging weights. Furthermore, this scheme is robust to low
reflectivity values unlike the AVX and AVD schemes, which
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are highly sensitive to the accuracy of the SNR estimation.
The best scheme, AVS, is compliant with the allocated aver-
aging bias requirements (RSE) of 0.06 % (1 ppb for a XCH4

of 1780 ppb) for the whole range of expected reflectivity val-
ues (from 0.1 down to 0.016).

A continuation of this study could evaluate the sensitivity
of a poor (unprecise or biased) estimation of the SNR on the
estimation of the bias due to measurement noise for low re-
flectivity values. Furthermore, the use of the lidar simulator
and processor suites, currently in development at the LMD,
could be beneficial to the evaluation of the biases, and more
specifically of the averaging biases, on a wider scale (many
scenes, atmosphere types, etc.).

Data availability. SPOT-5 data can be accessed at https://earth.esa.
int/web/guest/data-access (last access: 22 October 2018). SRTM
data can be accessed at http://srtm.csi.cgiar.org/ (last access: 22 Oc-
tober 2018). ECMWF data can be accessed at https://www.ecmwf.
int/en/forecasts/datasets (last access: 22 October 2018).
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Appendix A: Signal generation and noise model

The simulation of calibrated signals requires a noise model.
The signal distribution is considered to be Gaussian first, be-
cause the number of photons that reaches the photodetector
is high enough for the Poisson distribution to be considered
as Gaussian. Secondly, the system is limited by the detector
noise that is mainly thermal noise, which is normally dis-
tributed.

The calibrated signals are produced using a pseudorandom
number generator. The expected values of the calibrated sig-
nal distributions, µon,off, depend on the atmospheric trans-
mission and the surface reflectivity as presented in Eqs. (39)
and (40). Then the standard deviation σ on,off is deduced from
the SNR, which is defined as

SNRon,off
=
µon,off

σ on,off . (A1)

And the SNR model is described by

SNRon,off
=

(
N2

a+ b ·N + c ·N2

) 1
2

, (A2)

where N is the number of photoelectrons, and a, b and c are
parameters computed from the MERLIN system parameters.
This is illustrated on Fig. 9.

The number of photons is computed from the reflectivity
and the atmospheric transmission. In the standard case (re-
flectivity of 0.1 sr−1), its values are approximately 3000 for
the offline pulse and 1000 for the online pulse.

The first term of the denominator corresponds to the de-
tector noise, the second to the shot noise and the third to the
speckle. Note that the speckle term has been neglected in this
article, whereas both detector noise and shot noise have been
considered, as they are dominant compared to speckle noise.

Appendix B: Averaging of quotients

The averaging of quotients estimates the average of the shot-
by-shot two-way transmissions τ 2

i . Due to the measurement
noise, we will suppose that, for the shot i, the online and of-
fline measured calibrated signals,Qon

i andQoff
i , respectively,

are outcomes of normal distributions with mean values de-
noted µon

i and µoff
i , respectively, and standard deviations de-

noted σ on
i and σ off

i , respectively. The XCH4 computed from
averaging quotients can be defined as

XCH4
avq
=
−

1
2 · ln〈τ

2
〉

〈IWF〉
, (B1)

with the transmission defined as

〈τ 2
〉 =

1
N

∑N

i=1

Qon
i

Qoff
i

. (B2)

If we define the standardized signals corresponding to Qon
i

and Qoff
i as Xon

i and Xoff
i , the average transmission can be

written as

〈τ 2
〉 =

1
N

∑N

i=1

µon
i + σ

on
i ·X

on
i

µoff
i + σ

off
i ·X

off
i

. (B3)

Then we can further separate the random part due to mea-
surement noise and the deterministic part due to varying geo-
physical parameters as follows:

〈τ 2
〉 =

1
N

∑N

i=1

[
µon
i

µoff
i

(
1+

σ on
i

µon
i

Xon
i

)
(

1+
σ off
i

µoff
i

Xoff
i

)−1
 , (B4)

〈τ 2
〉 = e−2〈δtrue

〉
·

1
N

∑N

i=1

[
e−21δi

(
1+

σ on
i

µon
i

Xon
i

)
(

1+
σ off
i

µoff
i

Xoff
i

)−1
 , (B5)

where 〈δtrue
〉 is the average DAOD computed from noise-

less mean signals, and 1δi the difference compared to the
shot-by-shot DAOD. Then we can deduce the error of AVQ
scheme as follows:

XCH4
avq
=Xtrue

CH4
−

1
2〈IWF〉

· ln
(

1
N

∑N

i=1

[
e−21δi

(
1+

σ on
i

µon
i

Xon
i

)(
1+

σ off
i

µoff
i

Xoff
i

)−1
 . (B6)

The corresponding bias is the expected value of the error
term:

Bias
(
XCH4

avq
)
=−

1
2〈IWF〉

·E

[
ln
(

1
N

∑N

i=1e−21δi
(

1+
σ on
i

µon
i

Xon
i

)(
1+

σ off
i

µoff
i

Xoff
i

)−1
 . (B7)

In Eq. (B5), the empirical average transmission is decom-
posed into two factors. The first is the transmission corre-
sponding to the average DAOD from noiseless signals. The
second factor is the average of multiplicative errors that is the
deterministic error from geophysical variations on the aver-
aging scene and the random factors due to the presence of
measurement noise. As shown in Eq. (B7), the error sources
are mixed into the non-linear function, which makes them
difficult to evaluate. It is possible to derive a suitable bias
correction based on Eq. (B7) for AVQ, but in the end it is not
expected to be better than the other ones. Table 8 presents the
biases for every averaging scheme presented before any bias
correction is applied.
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