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ABSTRACT

Sex-biased gene expression provides a means to achieve sexual dimorphism across
a genome largely shared by both sexes. Trinidadian guppies are ideal to examine
questions of sex-bias as they exhibit sexual dimorphism in ornamental coloration with
male only expression. Here we use RNA-sequencing to quantify whole transcriptome
gene expression differences, with a focus on differential expression of color genes
between the sexes. We determine whether males express genes positively correlated with
coloration at higher levels than females. We find that all the differentially expressed
color genes were more highly expressed by males. Males also expressed all known
black melanin synthesis genes at higher levels than females, regardless of whether
the gene was significantly differentially expressed in the analysis. These differences
correlated with the visual color differences between sexes at the stage sampled, as all
males had ornamental black coloration apparent. We propose that sexual dimorphism
in ornamental coloration is caused by male-biased expression of color genes.

Subjects Evolutionary Studies, Genetics, Genomics
Keywords Transcriptome, Pigmentation, Sexual dimorphism, Color genes, Guppy

INTRODUCTION

Phenotypic divergence in morphological traits can lead to the evolution of dimorphism
within species. Dimorphism has occurred between morphs or subspecies such as freshwater
and marine stickleback (Colosimo et al., 2005), cave and surface Mexican tetra (Protas et al.,
2006), or light and dark colored mice (Hoekstra, 2006). In addition, substantial phenotypic
differences can occur between males and females of a species (Lande, 1980). This sexual
dimorphism can result from factors such as natural selection, sexual selection, or sexual
conflict. Sexual dimorphism can be caused by natural selection if traits are favored that
increase survival or reproduction in one sex (Ellegren ¢ Parsch, 2007). Sexual dimorphism
via sexual selection could occur for traits directly involved in mating success and can
include intersexual and intrasexual selection (Ellegren ¢~ Parsch, 2007). Sexual conflict may
happen when a trait is beneficial to one sex and detrimental to the other (Lande, 1980;
Pennell ¢ Morrow, 2013).
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The cause of sexual dimorphism demands an explanation because males and females
share nearly all of their genome. In one case, genes coding for or regulating the trait could
be genetically linked to a non-recombining region of the heterogametic sex chromosome
(Basolo, 20065 Kirkpatrick ¢ Hall, 2004). Alternatively, sex-biased expression can occur,
where the gene(s) for the trait are expressed exclusively or more highly by one sex (Ellegren
¢ Parsch, 2007). Sex-bias in gene expression, as opposed to sequence alterations, is the
focus of this study since gene expression differences are thought to account for a majority
of sexual dimorphism (Ellegren ¢ Parsch, 2007; Mank, 2009). For example, a study on
birds found that sexual selection had a greater impact on gene expression evolution than
sequence evolution (Harrison et al., 2015).

A link between sexual dimorphism and sex-biased expression has been found in
many species varying from highly sexually dimorphic birds to lowly sexually dimorphic
alga (Lipinska et al., 2015; Pointer et al., 2013). Sex-biased expression of color genes was
recently discovered in damselflies, although females of this species are the ones that exhibit
color polymorphism and so there are greater numbers of female-biased genes across
the transcriptome compared to male-biased genes (Chauhan, Wellenreuther ¢» Hansson,
2016). Previous studies of sex-biased expression in guppies that included caudal peduncle
tissue (located on the body) found 33 color genes with differential expression, 29 of
which were male-biased (Sharma et al., 2014). These and other analyses of variation in
sexually dimorphic traits require correlating the expression level of sex-biased genes with
sex-specific phenotypic variation.

The Trinidadian guppy (Poecilia reticulata) provides an ideal system to examine sex-
biased expression of male ornamental coloration, an evolutionarily relevant trait (Sharma
et al., 2014). By comparing males and females, it is possible to learn about the identity
and functions of genes that may be important in generating phenotypic variation. These
genes can be used as candidates for future studies examining phenotypic color variation
in other groups of guppies, such as guppies from different predator communities, which
are known to have differences in coloration (Ender, 1980). Guppies have an XY sex
determination system with males as the heterogametic sex (Winge, 1922). Both male and
female guppies have a reticulate black camouflage and light yellow color to their bodies,
but only males possess ornamental coloration (Fig. 1). The ornament gradually develops
on the body and caudal fin as the male matures (Fig. 1). Ornamental coloration in guppies
represents a trade-off between sexual and natural selection (Endler, 1980). Sexual selection
favors bright coloration, while natural selection by diurnal, visually oriented fish predators
favors duller coloration. Early studies determined that ornamental color pattern elements
have a variety of linkage patterns (Haskins ¢ Haskins, 1951; Winge, 1927). Many of these
were Y-linked, although Y linkage can vary among geographic sites. For example, high
predation fish have more Y-linked body coloration, while low predation fish have more
autosomal and X linkage (Gordon, Lopez-Sepulcre &~ Reznick, 20115 Haskins et al., 1961).
These results could be due to selection on standing genetic variation for non-Y-linked
color or increased recombination rates between X and Y chromosomes in low predation
fish (Gordon, Lopez-Sepulcre ¢ Reznick, 2011). Since female choice for male coloration is
more predominant in low predation environments, selection on gene dosage or selection
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Figure 1 Example guppies from the two iso-male lines sampled. Adult males from these lines have or-
namental coloration (A, B), while females (C, D) do not. Ten maturing caudal fins were sampled per sex
and line for RNA-seq analysis. Photographs show an example male (E, F) and female (G, H) from each
line. Scale bar 1 cm.

Full-size &4l DOI: 10.7717/peer;j.5782/fig-1

for a genetic correlation between female preference and male coloration could favor X- or
autosomal-linkage (Gordon, Lopez-Sepulcre ¢» Reznick, 2011).

Although, sex-bias of male coloration has been previously examined in guppies, tissue
from the body was used (Sharma et al., 2014). Since all guppies have camouflage body
coloration, it is hard to disentangle genes involved in ornamental color variation from
genes that create the camouflage pattern found in both males and females. To separate
expression of sex-specific ornamental versus non-sex-specific coloration, tissue from the
caudal fin is used here. The caudal fin is the only skin location where there are reliable
sex-specific differences and a lack of camouflage coloration that would otherwise prevent
the detection of sex-specific ornamental coloration. Caudal fin coloration is used in
courtship displays (Farr, 1980) and is subject to both natural and sexual selection (Hughes
et al., 2013; Olendorf et al., 2006). Although body coloration extends slightly into the base
of the caudal fin of both sexes, females largely have clear caudal fins.

The goal of this study was to characterize sex-biased expression in guppy caudal fin color
genes. Ornamental caudal fin coloration in the males includes black melanin, orange/yellow
pteridines or carotenoids, and shimmering iridescence. The color genes that we examine
regulate color in a positive way or synthesize the color. Therefore, we hypothesize that any
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sex-biased genes will have higher expression in males than females as only males express
ornamental color. Since the fish were sampled at a stage when male melanin coloration
was beginning to appear, we also specifically hypothesize that males will express melanin
synthesis genes at consistently higher levels than females.

MATERIALS AND METHODS

Sampling and RNA extractions
Guppies were collected from a high predation (HP) site in the Guanapo River in the
Northern Range Mountains of Trinidad. Crosses were performed to generate two different
iso-male lines. Each line was initiated from a single wild-caught male and female. Male
and female F1 laboratory offspring were allowed to inbreed to generate the F2 generation,
which was used for sampling. The lines had slightly different final male color patterns
(Fig. 1). However, our question addressed whether color genes were associated with the
presence of any ornamental coloration, rather than associating genes with specific patterns.
Fish were bred for two generations in the laboratory at University of California, Riverside
(UCR; TACUC AUP approval: A-20140003). Male caudal fins were sampled at a time
when their anal fins were morphing into the gonopodium, which also correlated with
early development of caudal fin coloration. This time was chosen because we found in
an earlier study that males at this stage expressed the highest number of detectable color
genes and it was simpler to obtain fish approximately the same age while their anal fins
were still in the process of morphing (Dick et al., in press). Female fins were also collected,
although females lack an independent marker of maturation. Therefore, females were taken
from the same litter as the males so were the same age and genetic background. Fish were
anaesthetized in MS-222 and 10 caudal fins from sibling males or females were removed,
combined into a single sample per sex, and frozen in liquid nitrogen. Ten tails per sample
were collected as prior research indicated 10 caudal fins were needed for successful RNA
extraction. Each tail was approximately 0.2 cm?. Due to Y-linkage of male color patterns,
all brothers within a line had nearly identical patterns. This sampling was done for each line
for a total of four samples and two biological replicates per sex. Although it is preferable
to include more replicates, funding and vivarium space were limited. The differential
expression analysis program used (see below) can accommodate two biological replicates
and maintain the false positive rate below threshold values (Robles et al., 2012). Therefore,
it is more likely that significantly differentially expressed (DE) genes would be overlooked
due to reduced power compared to mistakenly calling a truly non-DE gene as DE. After
caudal fin collection, fish were sacrificed in a lethal dose of MS-222 with no recovery in
between. Samples were stored at —80 °C until RNA extraction. The two male samples are
the same as obtained during a developmental series study (Dick ef al., in press). These two
samples were taken at an early developing color stage (called stage 2), where usually just
black melanin was present.

Caudal fins were homogenized in Trizol (Invitrogen, Carlsbad, CA, USA) using a Tissue
Tearor (BioSpec Products, Bartlesville, OK, USA). Total RNA was purified using a Qiagen
RNeasy Mini Kit (Valencia, CA, USA) and then treated with TURBO DNase (Ambion,
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Table1 Number of RNA sequencing reads obtained for each sample. Reads were mapped to the anno-
tated guppy genome (NCBI GCF_000633615.1).

Line Replicate Sex Raw reads Cleaned reads Mapped reads (%)
GH4 1 M 8,527,408 6,397,511 5,835,774 (91.2)
GH5 2 M 33,937,307 26,510,922 24,218,195 (91.5)
GH4 1 F 10,227,445 7,896,411 7,174,677 (90.9)
GH5 2 F 29,135,360 18,989,337 18,986,132 (92.3)

Carlsbad, CA, USA). RNA was quantified with a Qubit 2.0 Fluorometer (Invitrogen) and
integrity was measured with an Agilent Bioanalyzer (Santa Clara, CA, USA). All samples
had RNA Integrity values > 7.7.

lllumina sequencing

RNA-seq libraries were prepared by the University of California, San Diego Institute for
Genomic Medicine using the Illumina TruSeq unstranded RNA Library Preparation kit
v2 (San Diego, CA, USA). The manufacturer’s recommendations were followed and each
sample received a unique barcode. Samples were pooled into equimolar amounts on three
separate flowcells. The GH4 lines were sequenced on one flowcell containing nine unrelated
samples, while the two GH5 samples were sequenced on two other separate flowcells
containing four samples each from an unrelated experiment. Samples were sequenced on
an [llumina HiSeq2500 at UCR using 100 bp single-end sequencing. Each sample yielded
between 8.5-33.9 million reads (Table 1). Sequence reads have been deposited in NCBI’s
Sequence Read Archive (Accession: SRP111128).

Quality control, alignment, read counting and differential expression
RNA-seq reads were cleaned using the fastq_quality_filter tool of the FASTX-Toolkit
(Hannon Lab, Cold Spring Harbor Laboratory, NY). Reads were required to have a Phred
+33 quality score of at least 20 in 100% of bases. Residual adapter sequences were then
trimmed using Trimmomatic 0.20 (Bolger, Lohse ¢ Usadel, 2014). The first 12 bps of each
read were removed after not getting passing scores in the FASTQC report (Babraham
Institute, Cambridge, UK). Reads with a minimum length less than 50 bps were discarded.
This left 6.4-26.5 million reads per sample (Table 1).

Cleaned reads were aligned to the annotated guppy genome (Kunstner et al., 2016; NCBI
accession GCF_000633615.1) using TopHat2 (Trapnell, Pachter & Salzberg, 2009). Default
options were used except the number of threads was four and the minimum intron size was
50 bps. The output BAM files from TopHat2 were sorted by sequence name and converted
to SAM files. Read counts for each gene were obtained using ht-seqcount in the union
mode (Anders, Pyl & Huber, 2015).

Differential expression analysis was performed using DESeq2 (Anders ¢ Huber, 2010)
in R version 3.1 (R Core Team, 2014). Although there was variation in the total number of
reads mapped per sample, DESeq2 is able to handle varying read counts (Anders ¢ Huber,
2010). Briefly, DESeq2 calculates a size factor, based on sampling depth, for each library and
then scales gene counts by this coverage value. It does this prior to performing differential
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expression estimates. Samples were grouped according to sex so that the two different
lines were considered biological replicates. Genes considered for differential expression
were required to have at least one count per million mapped reads (CPM) for at least two
samples. A contrast was generated between males and females and differential expression
was tested using a false-discovery rate cutoff of 0.05 (Benjamini ¢ Hochberg, 1995). There
was no threshold in log, fold changes to call a gene significant, although all DE genes had
log, fold-change values >1.1, corresponding to over a two-fold change in expression level.

Genes known to be involved in coloration were the focus and were obtained from
multiple citations (Table S1). Special attention was also paid to genes listed by Braasch et
al. (2009) under the functions “pteridine synthesis” or “components of melanosomes”
and by Walsh et al. (2012) under the function “carotenoid related”. Although three of the
carotenoid genes have functions that may preclude expression in the caudal fin (bemol,
scarbl, and scarb2), they were retained in the analysis. Individual gene expression levels
were calculated from counts per million mapped reads.

RESULTS

Males and females had similar percentages of reads mapping to the guppy genome (Table 1).
The guppy genome contains 26,071 loci and 18,568 met the cut-off imposed for differential
expression estimates of at least one count per million in at least two samples. Almost all
of the color genes tested had annotations in the guppy genome. Since the genome was
assembled from a female guppy, these color genes must be X- or autosomal-linked. Of the
106 genes with at least one function in coloration annotated in the guppy genome, 102 met
the cut-off imposed as above.

There were 124 differentially expressed (DE) genes between males and females, with
males having higher expression of 123 of those genes. Of these genes, ten color genes were
DE between sexes, with all ten more highly expressed in males (Fig. 2, Table 52). Six of these
10 DE color genes are involved in the eventual formation of black melanin pigmentation
(Table 2), which correlates with the visual presence of black coloration at the stage sampled.
The other four genes had more general, unknown, or pteridine synthesis functions.

There are nine genes exclusively involved in melanin synthesis in the guppy genome.
Three of them were DE in the analysis, but all of them consistently had higher expression
in males (Fig. 3A), which also correlates with the presence of black in male caudal fins
only. There was less of a clear trend to whether males or females more highly expressed
orange/yellow pteridine synthesis genes and only one gene was DE (Fig. 3B). Orange/yellow
carotenoid genes usually had higher expression in males, but none were DE (Fig. 3C).

DISCUSSION

Our hypothesis that males with ornamental pigmentation would have increased expression
of color genes was supported. Specifically, males had significantly more highly expressed

color genes than females. Studies in seven Drosophila species and one bulb mite species have
also shown that the direction of sex-bias usually favors more male-biased genes (Stuglik et
al., 20145 Zhang et al., 2007). However, we found a much greater disparity in the number of

Dick et al. (2018), PeerJ, DOI 10.7717/peerj.5782 6/14


https://peerj.com
http://dx.doi.org/10.7717/peerj.5782#supp-1
http://dx.doi.org/10.7717/peerj.5782#supp-2
http://dx.doi.org/10.7717/peerj.5782

PeerJ

1.00

0.50

0.00

Normalized CPM

-0.50

-1.00

Figure 2 Expression of differentially expressed color genes by male (blue) and female (red) guppies.
Normalization of counts per million mapped reads (CPM) was performed so all genes could be

graphed on the same axis. To do so, feature scaling was applied to each sample and then the scaled

values were averaged within sex to yield a single male and single female normalized value bounded

by —1 and +1. Feature scaling for each gene was calculated as: x+ ((sampleCPM-minimumCPM)*

(y — x)/(maximumCPM-minimumCPM)), where x = —1 and y = +1. If the biological replicates within
sexes tended to agree, then one sex would have a positive value and the other sex would have a negative
value.

Full-size Gal DOI: 10.7717/peerj.5782/fig-2

Table 2 Identification, function, and final color type expressed of color genes more highly differen-

tially expressed by males.

Gene name Function Final color type expressed
gias Pattern formation Melanin/pteridines

igsfl1 Melanin pattern formation Melanin

mitf Melanophore development Melanin

mlana Melanogenesis regulation Melanin

pax7 Xanthophore development Pteridines or carotenoids
rab38 Melanosome components Melanin

sle45a2 Melanosome components Melanin

sox10 Chromatophore development Any

tyr Melanosome components Melanin

xdh Pteridine synthesis Pteridines

genes significantly more highly expressed by males. It is unclear what could cause this large
disparity, although caudal fins are important for swimming performance. Males usually
have longer caudal fins that cause altered swimming performance (Karino, Orita ¢ Sato,
2006) so may have increased expression levels of genes with functions that contribute to
swimming performance. Sexual dimorphism in ornamental coloration is at least partly
caused by male-biased expression of color genes. We predict that these differences in
color gene expression promote the formation of male ornamental color patterns and are
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Figure 3 Expression of melanin synthesis (A), pteridine synthesis (B) and carotenoid (C) genes by
male (blue) and female (red) guppies. Normalization and feature scaling was performed as in Fig. 2. As-
terisks above bars indicate genes that were differentially expressed between sexes.

Full-size & DOI: 10.7717/peerj.5782/fig-3
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advantageous during courtship of females. However, there may still be trade-offs between
predation risk and sexual selection (Endler, 1980).

There were 10 DE color genes (gja5, igsf11, mitf, mlana, pax7, rab38, slc45a2, sox10, tyr,
xdh) between males and females, with all 10 more highly expressed by males. Two of the
most male-biased color genes found in Sharma et al. (2014) (tyr, xdh) were also found
to be DE in this study. Although the gja5 gene is uncategorized by Braasch et al. (2009),
another study found that zebrafish with gjia5 mutations had a reduction of melanophores
(Watanabe et al., 2006). Igsf11 is involved in adult melanin pattern formation and zebrafish
mutant in this gene have defects in the survival and migration of melanophores (Eom et
al., 2012). Mitf is involved in melanophore development and positively regulates mlana
(Du et al., 2003), which can both regulate a melanin synthesis gene. Pax7 is expressed
in early xanthophore cells and mutants have reduced yellow pigmentation (Minchin ¢
Hughes, 2008). Rab38 targets a melanin synthesis enzyme to the melanophores (Montoliu,
Oetting ¢ Bennet, 2011). Slc45a2 and tyr have functions in producing melanin and mice
mutant in these genes have reduced or absent melanin pigmentation (Montoliu, Oetting ¢
Bennet, 2011). Sox10 is involved in differentiation from the neural crest cell and mutants
have pigmentation defects in addition to defects in the peripheral nervous system (Dutton
et al., 2001). Xdh plays an ultimate role in the synthesis of pteridines, specifically yellow
sepiapterins (Braasch, Schartl & Volff, 2007).

Most of these sex-biased DE genes have general functions in the regulation of
melanophores, xanthophores, or neural crest cells (Braasch et al., 2009). These genes
may affect more than color pattern formation, in contrast to genes whose only function
is to synthesize melanin or pteridines. Future studies could confirm the pleiotropic effects
of these genes. Since all females still have melanin camouflage body coloration, regional
and tissue-specific differences in gene regulation are clearly important in generating the
complex trait that is guppy ornamental coloration. We expect trait variation among color
polymorphic males is at least partially explained by regulatory changes in transcription
regulators and developmental genes since genes with these functions were DE.

Our hypothesis that melanin synthesis genes would be more highly expressed in males
was supported. More than half of the differentially expressed genes (6/10) had functions
related to melanin and all melanin synthesis genes, regardless of differential expression
status, were more highly expressed in males. This agrees with our hypothesis that melanin
genes would exhibit more sex-bias than pteridines or carotenoids because we sampled
the fish at a stage when the melanin was visually appearing and melanin synthesis gene
expression is known to increase (Dick et al., in press).

The differential expression of color genes that we identified could have resulted if
there was sexual conflict over the expression of these genes between male and female
guppies. A recent study in guppies examined XY divergence at high and low predation
locations in three independent drainages (Wright et al., 2017). Males in low predation
locations are known to have increased ornamental coloration compared to high predation
localities because female preference for brightly colored males is not offset by brightly
colored males being more susceptible to predation (Endler, 1980). The authors repeatedly
and independently found expansion of the non-recombining region in low predation
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locations with resulting X-Y divergence. They proposed that sexual antagonism over
aspects of coloration linked to the sex chromosomes could have generated the suppressed
recombination (Wright et al., 2017). Another study in African cichlids found sexual
antagonism over the orange-blotch pattern thought to be more beneficial to female
camouflage coloration. The orange-blotch pattern was associated with increased expression
of the gene pax7, which was in turn linked to the female sex-determining region (Roberts,
Ser & Kocher, 2009). Our study identified differential expression of pax7, although here
males had the higher expression.

All genes with male-biased expression that we identified here are candidates for future
studies of sexual conflict. For example, these genes can be used to test correlations between
gene expression level and sex-specific fitness. In addition, studies utilizing fish from low
predation locations could be used to determine the impacts of predator community on
gene expression of color genes between the sexes. This would be of interest since the fish
used in the present study are from a high predation site only.

CONCLUSIONS

We find that color gene expression positively correlates with the presence of guppy
ornamental coloration. Genes exhibiting significant differential expression were always
more highly expressed in males compared to females. This matched our hypothesis given
that the genes of interest are known to be positively associated with color. In addition, all
melanin synthesis genes had higher expression in males, regardless of differential expression
status. Additional studies examining genes in variably colored guppies at the developmental
stage sampled here are likely to find that melanin synthesis genes are important candidates.
Adding more biological replicates per sex will increase the statistical power for detecting
DE and hence may identify additional DE genes. In addition, future studies could examine
the set of differentially expressed genes across the entire transcriptome to determine the
functions of non-color genes with sex-bias.
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