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Cardiovascular disease is the leading cause of death in the world. The stem/progenitor
cell-based therapy has emerged as a promising approach for the treatment of a
variety of cardiovascular diseases including myocardial infarction, stroke, peripheral
arterial disease, and diabetes. An increasing number of evidence has shown that
stem/progenitor cell transplantation could replenish damaged cells, improve cardiac and
vascular functions, and repair injured tissues in many pre-clinical studies and clinical
trials. In this review, we have outlined the major types of stem/progenitor cells, and
summarized the studies in applying these cells, especially endothelial stem/progenitor
cells and their derivatives, in the treatment of cardiovascular disease. Here the strategies
used to improve the stem/progenitor cell-based therapies in cardiovascular disease and
the challenges with these therapies in clinical applications are also reviewed.

Keywords: stem cells, progenitor cells, endothelial progenitor cells, cardiovascular disease, cell therapy

INTRODUCTION

According to the recent study, cardiovascular diseases (CVDs) are highly prevalent globally and
produce immense health and economic burdens in the United States and the world (Writing
Group Members et al., 2016). The pathophysiological and physiological changes accompanied with
vascular aging lead to compromised cardiovascular functions and elevated risks of CVDs including
atherosclerosis, hypertension, and diabetes in elder population (El Assar et al., 2012). Peripheral
arterial disease (PAD) and coronary heart disease including myocardial infarction (MI) account for
most of all CVDs (Writing Group Members et al., 2016). Except for genetic defects, most CVDs can
be attributed to unhealthy lifestyle factors such as high fat diet, high salt diet, and smoking (Writing
Group Members et al., 2016).

With the advances in our understanding of the underlying mechanisms of CVDs, breakthrough
has been achieved in diagnosis and intervention, such as percutaneous coronary intervention (PCI),
coronary artery bypass grafting (CABG), and heart transplantation. However, to some degree, these
approaches can only delay the heart failure (Trevelyan et al., 2005). This burden of disease has
driven the investigation of stem/progenitor cell-based therapy for the CVDs. Experimental studies
suggested that administration of endogenous stem/progenitor cells may contribute to functional
regeneration of infarcted myocardium and repair damaged/injured endothelial cells (Xu, 2006).
Over the past decades, stem or progenitor cell-based therapy has emerged as a promising approach
for the treatment of various CVDs, such as MI, heart failure, and PAD (Wollert and Drexler,
2010). The efficacy of various stem/progenitor cells including endothelial progenitor cells (EPCs)
(Leistner et al., 2011), hematopoietic stem cells (HSCs) (Perin et al., 2012), cardiac stem cells
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(CSCs) (Makkar et al., 2012), and bone-marrow derived
mononuclear cells (MNCs) (Wollert et al., 2017) in treating
CVDs has already been evaluated in clinical trials. The
potential therapeutic applications of stem/progenitor cells, such
as embryonic stem cells (ESCs) (Shiba et al., 2012) and
mesenchymal stem cells (MSCs) (Min et al., 2002), have
been investigated in experimental and preclinical studies. As
endothelial dysfunction is one of the major problems for CVDs,
there is an increasing interest and ongoing efforts to study
EPCs and other stem/progenitor cell-derived endothelial cells as
potential sources for cell therapy (Reed et al., 2013). Here we
summarize the studies using endothelial stem/progenitor cells
and their derivatives, or sometimes oversimplified as “EPCs,” in
the treatment of CVDs.

CELL SPECTRUM OF
STEM/PROGENITOR CELL DERIVED
ENDOTHELIAL CELLS

MSCs
Mesenchymal stem cells were originally identified and
characterized by Friedenstein et al. (1976) in the 1970s.
MSCs have been found in multiple organs throughout the body
including bone marrow (BM), umbilical cord, placenta, dental
pulp, and adipose tissue and their characteristics have been
reviewed recently (Karantalis and Hare, 2015). MSCs derived
from BM, adipose tissue, and umbilical cord have been widely
used in preclinical and clinical trials. It has been reported
that adipose-derived stromal/stem cells (ASCs) possess strong
angiogenic potential and paracrine activities (Bura et al., 2014).
Early phase clinical trials have shown that ASC transplantation
has improved rest pain, ulcer surface, walking distance, pain-free
walking time, and transcutaneous oxygen pressure in PAD
patients (Lee et al., 2012). MSCs possess several advantages as
one of the promising candidates for stem/progenitor cell-based
therapy: First, MSCs are easy to isolate and expand; Second,
MSCs can secrete growth factors or directly differentiate into
vascular cells or myocytes to contribute to arteriogenesis and
angiogenesis (Wingate et al., 2014); Third, MSCs hold an
immunoregulatory capacity and immunosuppressive effect
indicating their potential of autotransplantation (De Miguel
et al., 2012). These advantages enable MSCs to improve the
neovascularization and blood flow in PAD and MI related
ischemic tissues (Iwase et al., 2005; Gnecchi et al., 2006).
Though with limitations such as the low retention and survival
of transplanted MSCs (Muller-Ehmsen et al., 2006), the cell
pretreatment and genetic engineering approaches will provide a
promising future for MSC based therapy (Li et al., 2007).

iPSCs
Induced pluripotent stem cells (iPSCs), which exhibit pluripotent
differentiation and self-renewal potential that are similar to that
of ESCs, was originally reported by Takahashi et al. (2007). By
introducing four essential transcription factors (Oct3/4, Sox2,
c-Myc, and Klf4) into fibroblasts, Yamanaka and colleagues

have reprogrammed the cells into pluripotent stem cells. Using
this technique, they and others have shown that iPSCs can be
differentiated into endothelial cells (Sivarapatna et al., 2015).
Studies have shown that iPSC derived endothelial cells are
capable of angiogenesis and reendothelialization to form vascular
networks in vitro (Suzuki et al., 2012). Preclinical studies
also showed the promising therapeutic potential of iPSCs (Gu
et al., 2012). Although teratoma formation (Seminatore et al.,
2010) and the potential of tumorigenicity of transplanted cells
(Yamanaka, 2012) are challenges in the clinical applications
of iPSCs, iPSCs generated via non-genetic based techniques
(Rhee et al., 2011) will improve the safety to overcome those
disadvantage. Because iPSCs can be derived from mature
somatic cells, the cell source is easy to obtain. Furthermore,
the source of iPSCs can be autologous, so there is no need for
immunosuppression when delivery. These features make iPSCs
an attractive cell source for regenerative medicine.

AFSCs
Amniotic fluid derived stem cells (AFSCs) have been documented
to be a special type of stem cells that possess a comprehensive
multi-differentiation potential (Romani et al., 2015). Preclinical
studies have shown that AFSCs can differentiate into vascular
cell lineages to improve blood supply (Maraldi et al., 2013) or
promote the regeneration of myocytes through their paracrine
effects (Bollini et al., 2011). Besides, AFSCs also possess several
advantages which make them a potential therapeutic approach.
First, ASFCs are easy to be obtained from amniocentesis
specimens which are used for prenatal genetic diagnosis. Second,
the obtained ASFCs, which are c-Kit positive, can be readily
expanded ex vivo with a doubling time of 36 h. Third, ASFCs
can be differentiated into cell types including adipogenic,
osteogenic, myogenic, endothelial, neuronal, and hepatic lineages
(Romani et al., 2015). More importantly, it has been recently
reported that AFCSs can induce immunosuppressive activities
of regulatory T cells (Tregs) to promote allograft survival in
animal models of allogeneic transplantation (Romani et al.,
2015). With more extensive studies being conducted, detailed
molecular mechanisms have been proposed. A most recent study
has demonstrated that several properties of AFSCs including
immunoregulatory functions, cell differentiation toward multiple
lineages, and migratory potency are regulated by sphingosine-1-
phosphate (S1P) (Romani et al., 2018).

MNCs
Mononuclear cells, which can be isolated from BM and
peripheral blood, are extensively studied in tissue engineering
and regenerative medicine. They can be harvested from BM
and peripheral blood by density gradient centrifugation with no
need for ex vivo expansion. Moreover, MNCs are heterogenic
which contain several types of stem/progenitor cells such as
MSCs and EPCs. These cells are capable of differentiating into
vascular and/or myocytes, or secrete growth factors improving
the regeneration of injured tissues (Karantalis et al., 2012). These
features allow quick autologous application after harvest, so
MNCs are widely used as therapeutic cells in CVDs (Goumans
et al., 2014). However, recent systemic review and meta-analysis
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of the clinical efficacy of MNC transplantation only reveal modest
clinical benefit. For PAD, improvements could be achieved
in wound healing, amputation-free survival, pain-free walking,
resting pain, and ulcer healing, but administration of MNCs
could not improve the primary end-point of limb amputation
compared with placebo (Rigato et al., 2017; Qadura et al., 2018).
Another recent meta-analysis consisting of 2037 patients with
acute MI has shown that MNC therapy only modestly improved
left ventricular ejection fraction (LVEF) and infarct size (de Jong
et al., 2014). Despite the publication bias and possible lack of
statistical power, several aspects during MNC administration
could be improved to achieve better clinical results, for instance,
refinement of cell delivery strategy to enhance cell survival and
function. Recent progress made in the decelluarized scaffolds,
which create the scaffolds enriched in structural extracellular
matrix components that support cell attachment and infiltration
in vitro and in vivo (Crapo et al., 2011), stimulates great
interest. Moreover, current genomic sequencing and proteomic
techniques could also be utilized to identify essential pathways to
improve the survival and function of transplanted cells.

CPCs
After the introduction of cardiac progenitor cells (CPCs),
researchers began to determine the possibility of the experimental
and clinical usage of CPCs as a potential therapeutic agent. CPCs
are a group of heterogeneous cells residing in the cardiac tissue
(Senyo et al., 2013). After the identification of CPCs, researchers
have discovered different cardiac resident cellular pools in human
or murine heart, showing a variety of stem cell markers, including
c-Kit+, stem cell antigen-1+ (Sca-1+), Islet 1+ (Isl-1+), stage-
specific embryonic antigen-1+ (SSEA-11+), cardiospheres (CS),
cardiospheres-derived (CD), and side population (SP), which
has recently been reviewed extensively by Bianconi et al. (2017,
2018). CPCs can self-renew, and they can also differentiate
into three different cardiac cell types including cardiomyocytes,
smooth muscle cells and endothelial cells (Sturzu and Wu, 2011;
Bianconi et al., 2018). It has been reported that embryonic heart
tubes derived CPCs can differentiate into pacemaker-like cells
through endothelin-1 factor involved signaling (Zhang et al.,
2012). Recently, engineered cardiac pacemakers containing both
CPC-derived pacemaker-like cells and EPCs have demonstrated
the promising potential to ameliorate sinus node malfunction
(Zhang et al., 2017). Meanwhile, accumulating studies have
shown that CPCs promote cardiac tissue restoration after
CVD by releasing anti-apoptotic and angiogenic signals in a
paracrine manner (Ibrahim et al., 2014). It has been shown that
CPC-derived exosomes promoted angiogenesis, cardiomyocyte
survival and proliferation, and reduced cell apoptosis (Marban,
2014). Analysis of CPC-based clinical trials has revealed that
patients suffering from heart-related diseases benefit from CPC-
based therapy (Bianconi et al., 2018).

EPCs
Asahara et al. (1997) initially isolated angioblasts with
endothelial lineage potential from human peripheral blood
and named them “EPCs.” They also found that these EPCs can
differentiate into endothelial-like cells in vitro and participate

in neovascularization in animal models of ischemia. Later,
EPCs have been shown to migrate to peripheral blood from
BM to participate in repairing dysfunctional endothelia and
decreasing cardiovascular risk factor related endothelial injury
by directly infusing into and forming new vessels or secreting
pro-angiogenic growth factors or cytokines (Asahara et al.,
2011). Although an increasing number of reports have been
documented to identify EPCs, there is still a lack of unambiguous
and consistent definition of EPCs. Generally, EPCs are a
group of cells which are characterized by positively expressing
VEGFR2/Flk1, CD133/AC133, and CD34 at early stages; while
at late stages when they gradually differentiate into endothelial
cells, EPCs start to express endothelial markers including
VE-cadherin, vWF, and endothelial nitric oxide synthase (eNOS)
(Ambasta et al., 2017). Accumulating studies indicates that early
EPCs promotes angiogenesis in a paracrine manner, and the late
stage EPCs directly participate in endothelial neovascularization
(Ambasta et al., 2017).

EPC BASED CELL THERAPY IN CVDs

It is well-known that the integrity and functional activity
of the endothelial monolayer are maintained by replication
and migration of neighboring mature endothelial cells under
physiological conditions. However, a series of clinical and pre-
clinical studies have provided the evidence that in conditions
of endothelial injury, regeneration of endothelial monolayer
is assisted by EPCs homing to the artery wall. A critical
early event in CVDs is endothelial dysfunction, which is
perpetuated during the exposure of cardiovascular risk factors
including hypercholesterolemia, metabolic syndrome, diabetes,
hypertension, dyslipidemia, aging, and smoking. It has been
reported that the number of circulating EPCs is inversely
correlated with the presence of cardiovascular risk factors
(Mannarino and Pirro, 2008; Pirro et al., 2015). Over the last
two decades, extensive investigations in clinical and preclinical
studies indicate that EPCs are a promising option to treat
CVDs such as MI. The findings of EPC cell therapy for MI in
animal studies have been summarized in Table 1. Accumulating
clinical trials have evaluated the safety and efficacy of EPCs
for CVDs treatment, as summarized in Table 2. As revealed
in Table 2, the clinical outcomes of the stem/progenitor cell-
based therapy only achieved modest benefits, so more strategies
should be employed to improve the stem/progenitor cell-based
therapy.

EPC BASED THERAPY FOR ISCHEMIC
VASCULAR DISEASES

The therapeutic efficacy of EPCs was not only documented
in the studies of CVDs but also in the peripheral artery
diseases (PAD). PAD is commonly referred to as the ischemia
of limbs associated with atherosclerotic occlusion (Ouriel, 2001).
Peripheral arteries supply oxygenated blood and nutrients to
the legs and feet and narrowing of these arteries results
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TABLE 1 | Stem cell/EPC therapy in animal models of MI.

Animal model Transplanted cell type Delivery strategy Outcomes Reference

Mouse MI Mouse BM-EPCs Intravenous injection EPC incorporated into neovascularization
foci at infarct border

Asahara et al., 1999

Mouse MI Bone marrow derived mouse
Lin- c-kit+

Intramyocardial injection Newly formed myocardium occupied 68%
of the infarcted portion of the ventricle were
observed

Orlic et al., 2003

Rat MI Human peripheral blood EPCs Intravenous injection EPCs incorporated into foci of
neovascularization, smaller ventricular
dimensions and ventricular scarring;
increased fractional shortening, capillary
density

Kawamoto et al., 2001

Rat MI Human peripheral blood
CD34+ cells

Tail vein injection Decreased apoptosis of hypertrophied
myocytes in the peri-infarct region, reduced
collagen deposition, increased myocardium
survival and cardiac function

Kocher et al., 2001

Pig MI Pig MNCs Trans-endocardial injection Increased systolic function, regional blood
flow, collateral vessel formation, and
decreased ischemic area

Kamihata et al., 2002

Pig MI Pig MSCs Intramyocardial injection Decreased degree of contractile
dysfunction and wall thinning

Shake et al., 2002

Rat MI Rat MSCs transduced Akt1 Intramyocardial injection Inhibited the process of cardiac remodeling,
restored myocardial volume

Mangi et al., 2003

Rat MI Human peripheral blood
CD34+ angioblasts (EPCs)

Tail vein injection Dose-dependent neovascularization with
development of larger-sized capillaries;
improve cardiac function through inhibiting
apoptosis and promoting proliferation of
cardiomyocytes

Schuster et al., 2004

Rat MI Rat ASCs Sheet technology (monolayered
cell graft placed on the surface
of the anterior scar)

ASCs reversed wall thinning in scar area
and improve cardiac function. ASCs
triggers angiogenesis and differentiate into
vessels and cardiomyocytes

Miyahara et al., 2006

Rat MI Rat umbilical cord blood
CD133+ cells

Intravenous infusion Scar thinning and LV systolic dilatation were
prevented

Leor et al., 2006

Pig MI Pig CD34+ Intracoronary injection Improved cardiac repair and collateral
vessel formation

Zhang et al., 2007

Rat MI Human EPCs accompanied
with SDF-1

Intramyocardial injection Improved fractional shorting, left ventricular
developing pressure, coronary flow rates,
and neovascularization. Reduced the
number of inflammatory cells and the rate
of apoptotic cells

Schuh et al., 2008

Mouse MI Human myoendothelial cells Intramyocardial injection Improved left ventricular function. Increased
angiogenesis. Stimulated proliferation and
survival cardiomyocytes. Reduced scar
tissue

Okada et al., 2008

Rat MI ECM scaffold supplemented
with EPCs primed with SDF-1

Sutured to the anterolateral left
ventricular wall

Increased VEGF level, vessel density,
microvascular perfusion, vasculogenic
response, and decreased scar formation

Frederick et al., 2010

Rat MI Rat peripheral blood EPCs
transduced with IGF-1

Intramyocardial injection Increased cardiac function, cardiomyocyte
proliferation, and capillary density,
decreased cardiac apoptosis

Sen et al., 2010

Pig MI Human embryonic stem cells Fibrin-cell path applied to the
LV anterior wall of the MI area

Improved left ventricular function and
neovascularization

Xiong et al., 2011

in PAD. The most common symptom of PAD is the pain
with walking which is also known as intermittent claudication
(Ouriel, 2001). Critical limb ischemia (CLI) is the most
severe clinical manifestation of PAD affecting a limb, if
not interrupted, CLI could lead to ischemic ulcerations or
even gangrene (Ouriel, 2001). In preclinical studies, the most
adopted animal model is the hindlimb ischemia model (HLI)

(Niiyama et al., 2009). In the HLI model, the femoral artery is
ligated to reduce the blood supply to the lower leg which induces
the angiogenesis to compensate for the reduced blood flow
(Limbourg et al., 2009). The therapeutic efficacy of EPCs have
been evaluated by this model by many groups, and Table 3
summarizes the preclinical animal studies of EPC cell therapy
for PAD.
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TABLE 2 | Stem/progenitor cell/EPC therapy in clinical studies of CVDs.

Trial design Disease Cell type Delivery strategy Outcomes Reference

22 Bilateral ischemia
patients, 25 unilateral
ischemia patients,
within-patient controls

CLI MNCs derived from BM
or peripheral blood (PB)

Intramuscular injection Improved transcutaneous
oxygen pressure (TcPO2),
rest pain, pain-free walking
time, and ankle-brachial
index (ABI)

Tateishi-Yuyama
et al., 2002

7 Patients, no controls CLI BM derived MNCs Intramuscular injection Improved ABI, TcPO2,
pain-free walking time, and
leg blood flow

Higashi et al., 2004

6 Patients, no controls Acute myocardial
infarction (AMI)

PB CD34+ cells Intracoronary injection Improved wall motion score
index

Blocklet et al., 2006

44 Cell-injected
patients, 22 control

AMI BM-MNCs Intracoronary injection Increased LVEF and peak
systolic velocities the
infarcted wall longitudinal
contraction

Meluzin et al., 2006

41 Cell-injected
patients, 45 control

ST-segment elevation
MI

BM-MNCs Intracoronary injection Increased LVEF, no
improvement of myocardial
viability of infarcted area

Cao et al., 2009

7 Patients,
non-randomized
control

Anterior MI PB CD34+ cells Transcoronary,
intracoronary infusion

Decreased end-systolic
volume

Dedobbeleer et al.,
2009

7 Patients, no controls AMI PB CD34+ cells Intracardiac infusion Increased LVEF,
vascularization, and the
regeneration of myocardial
structure

Pasquet et al.,
2009

28 Patients, no controls CLI CD34+ CD133+ EPCs Intramuscular injection Improved limb salvage rate
and attenuated pain scale

Lara-Hernandez
et al., 2010

25 Cell-injected
patients, 25
placebo-injected
patients; Randomized
double-blinded trial

Chronic myocardial
ischemia

BM-MNCs Intramyocardial infusion Improved E/e’ and E/A
ratios, increased LVEF

van Ramshorst
et al., 2011

112 Cell-injected
patients, 56
placebo-injected
patients; Phase II,
prospective,
double-blinded,
randomized trial

Refractory angina CD34+ cells Intramyocardial infusion Improved exercise
tolerance

Losordo et al.,
2011

71 Cell-injected
patients, 71
placebo-injected
patients; Phase III,
randomized,
double-blinded trial

MI CD133+ cells Intramyocardial infusion Patients received CD133+

cell injection had higher
LVEF

Donndorf et al.,
2012

17 Patients, no control,
Phase I/II clinical trial

CLI Granulocyte-colony
stimulating factor
(GCSF) mobilized
CD34+ cells

Intramuscular injection Improved toe brachial
pressure index and TcPO2,
pain scale, ulcer size, and
exercise tolerance

Kinoshita et al.,
2012

25 Patients, no control CLI GCSF mobilized PB
CD34+ cells

Intramuscular injection Improved pain-free walking
time, ABI, TcPO2, and
decreased pain score

Dong et al., 2013

11 Patients, no control;
Phase II clinical trial

CLI GCSF mobilized PB
CD34+ cells

Intramuscular injection Increased pain scale, skin
perfusion pressure, TcPO2,
total walking distance, toe
brachial pressure index,
and CLI-free ratio

Fujita et al., 2014

49 Patients, no control CLI BM-MNCs Intramuscular and
intraarterial injection

Limb amputations were
delayed; Improved ABI, rest
pain, and ulcer healing

Franz et al., 2015
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TABLE 3 | Stem cell/EPC therapy in animal studies of PAD.

Animal model Transplanted cell type Delivery strategy Outcomes Reference

Mouse and
rabbit HLI

Human CD34+; mouse Flk-1+ Tail vein injection EPC incorporated into sites of active
angiogenesis

Asahara et al., 1997

Mouse HLI Human EPC Intracardiac injection Ischemic hindlimb blood flow increased,
capillary density increased, limb loss rate
decreased

Kalka et al., 2000

Rat HLI Human CD34+ NMC (EPCs) Intramuscular injection Neovascularization and blood flow
increased in ischemic hindlimb

Murohara et al., 2000

Mouse HLI Human CD34+ cells Intramuscular injection Blood flow restored in diabetic mice but not
in non-diabetic mice

Schatteman et al., 2000

Rabbit HLI Rabbit BM-MNCs Intramuscular injection More angiographically detectable collateral
vessel, improved blood perfusion

Shintani et al., 2001

Mouse HLI VEGF gene transduced Human
EPCs

Tail vein injection Neovascularization and blood flow recovery
improved, and limb necrosis was reduced

Iwaguro et al., 2002

Mouse HLI Human EPCs accompanied
with SDF-1

Intramuscular SDF-1 and
intravenous EPC injection

Improved local accumulation of EPCs in
ischemic muscle, ischemic tissue perfusion,
and capillary density

Yamaguchi et al., 2003

Mouse HLI Human cord blood CD34+

KDR+ or CD34+ KDR-cells
Intramuscular injection CD34+ KDR+ cells significantly improved

limb salvage and neovascularization,
reduced endothelial cell apoptosis and
interstitial fibrosis compared with CD34+

KDR-cells

Madeddu et al., 2004

Mouse HLI Human umbilical cord blood
CD133+ EPCs

Tail vein injection Increased neovascularization and improved
ischemic limb salvage

Yang et al., 2004

Rat HLI Human peripheral blood
CD133+ progenitor cells

Intramuscular injection Increased arteriole and capillary density Suuronen et al., 2006

Mouse HLI Human EPCs and smooth
muscle progenitor cells

Intravenous injection Vessel density and foot perfusion increased Foubert et al., 2008

Mouse HLI Mouse MNCs Intramuscular injection Increased blood flow ratio and capillary
density; improved ankle-brachial index
value, walking distance, pain scale, and
TcPO2

Zhang et al., 2008

Mouse HLI Human iPSC-ECS Intramuscular injection Increased capillary density and blood
perfusion ratio

Rufaihah et al., 2011

Mouse HLI Human HUVECs and umbilical
cord MSCs

Intramuscular injection Blood perfusion recovered, increased
vessel formation

Chen et al., 2013

Mouse HLI Human MNCs, ESC, and iPSC Intramuscular injection Increased neovascularization and
decreased hindlimb ischemia

Lai et al., 2013

Mouse HLI Human AFSCs Intramuscular injection Increased limb salvage, limb blood
perfusion, and capillary and arteriole density

Liu et al., 2013

APPROACHES FOR ENHANCING EPC
THERAPY IN DISEASES

Although EPCs possess exciting therapeutic potency, their
limited plasticity and amount in patients with ischemic cardiac
or ischemic vascular disease have become the obstacle to the
success in EPC therapy. It has been reported that compromised
EPC availability and repair potential to regenerate the injured
endothelial monolayer mainly resulted from the influence of
cardiovascular risk factors such as aging, smoking, diabetes,
hypertension, and hypercholesterolemia (Pirro et al., 2008,
2012). As summarized, the clinical outcome of EPC based
therapy was modest, and large-scale clinical trials have not been
conducted. One of the reasons is that there is a lack of suitable
transplantation models. Studies in animal models suggested
that BM-MNCs or EPCs could home to ischemic tissues and
restore the blood supply, however, during atherosclerosis acute

surgical resection has little resemblance to chronic occlusion
(Qadura et al., 2018). Moreover, because of the heterogeneity
between patients, in clinical trials, the selection of patient
population for stem/progenitor cell-based therapy may not
be optimized. These problems should be addressed before
the clinical transfer of EPC based cell therapy. Therefore, an
increasing number of studies have been focusing on the strategies
to enhance the therapeutic efficacy of EPCs (Penn and Mangi,
2008). Various modifiers including chemokine receptors, growth
factors, signaling molecules or factors, medicines, and physical
exercise have been demonstrated to enhance the therapeutic
effects of EPCs.

The key factors shown to enhance the cell-based therapeutics
in CVDs include but not limited to: chemokine receptors such as
CXCR2 (Hou et al., 2015), CXCR4 (Jujo et al., 2013), CX3CR1
(Herlea-Pana et al., 2015), CXCR7 (Zhang et al., 2014), and
CCR5 (Zhang et al., 2015); growth factors and their receptors
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such as VEGF1/2/3 (Shintani et al., 2006; Smadja et al., 2007),
PDGF (Rosell et al., 2013), FGF-1/2 (Rosell et al., 2013; Chien
et al., 2016), and so on. Signaling molecules and factors such
as eNOS/nitric oxide (Kaur et al., 2009; Cui et al., 2011), AMP-
activated protein kinase (AMPK) (Wang X.R. et al., 2011), heme-
oxygenase-1 (HO-1) (Sambuceti et al., 2009), and manganese
superoxide dismutase (MnSOD) (Marrotte et al., 2010), have
also been shown to play important roles in EPC biology.
Additionally, several transcription factors signaling including
Homeobox A9 (HOXA9), Akt/Forkhead box-containing protein
O subfamily (Akt-FOXO), and peroxisome proliferator-activated
regulator-gamma (PPARγ) have been suggested to be involved
in regulating the function of EPCs (Pirro et al., 2008).
Moreover, many medications used for prevention of CVDs
have also been shown to increase the level of EPCs such
as statins (Pirro et al., 2009; Wang W. et al., 2011) and
angiotensin II receptor antagonists (Pelliccia et al., 2010),
etc. Wang W. et al. (2011) demonstrated that statins could
improve the mobilization, derivation, and colonial growth of
late outgrowth EPCs. They have also shown that pravastatin
increased the capillary density in chronic myocardial ischemia
by 46% in an animal model. More interestingly, it has been
reported that exercise could improve the function of EPCs
(Guo et al., 2017). The underlying mechanism between exercise
and EPCs has mainly been linked to CXCR4 signaling, VEGF
release, and nitric oxide (NO) bioavailability. VEGF has been
shown to be important in angiogenesis. Studies have shown
that after exercise training, the expression level of VEGF
and its receptors in mice were significantly increased in
post-MI. Meanwhile, the mice preconditioned with exercise
expressed higher level of VEGF and its receptors compared
with mice without exercise preconditioning (Wu et al., 2009).
In an animal model of hypertension, exercise significantly
increased EPC levels and also resulted in vascular repair in
a VEGF/eNOS dependent manner (Fernandes et al., 2012).
Studies also demonstrated that exercise training increased the
expression level of CXCR4 and phosphorylation level of Janus
kinase-2 (JAK-2) of EPCs, improved the endothelial function
in vitro and reendothelialization capacity of EPCs in vivo
(Xia et al., 2012).

Studies have been performed to identify the key regulators
to rescue the defective functions of EPCs from patients
exposed to cardiovascular risk factors such as diabetes and
aging. For instance, EPC transduced with Akt/HO-1 displayed
increased MI recovery in nude mice (Brunt et al., 2012).
The importance of eNOS in EPC angiogenesis has also been
evaluated by different groups. In a rat balloon injury model,
the neointimal hyperplasia was inhibited, and vascular function
was restored by transplanting eNOS overexpressed EPCs (Cui
et al., 2011). Also, it has been shown that overexpressing eNOS in
EPCs isolated from coronary artery disease displayed increased
functions such as proliferation, differentiation, migration, and
integration into tube-like structures in vitro (Kaur et al.,
2009). Accumulating studies have demonstrated the importance
of chemokine receptors and their cognate ligands in EPC
survival and function. CXCR4 has been shown to play a
critical role in EPC mobilization and angiogenesis in vivo

(Jujo et al., 2013). Recently, we have shown that CXCR2
macromolecular signaling complex is essential in mediating EPC
homing and angiogenesis in vitro and in vivo (Hou et al.,
2015). Therefore, approaches such as genetic modification of
EPCs to modify the expression of the chemokine receptors
and growth factor receptors, or pretreatment of cells with
chemokines or growth factors to improve the angiogenic
signaling activities, rejuvenate the cells, or enhance the survival
of EPCs could be investigated to address the limitations of
EPC transplantation. Moreover, the findings of the positive
effects of medications and physical exercise provide additional
options to enhance the efficacy of EPC therapy in cost-efficient
manner.

CONCLUSION

Although clinical trials and preclinical studies have shown
that EPCs and other stem cell and progenitor cells based
therapy possess great therapeutic potential to improve cardiac
function and blood perfusion in MI and PAD, obstacles still
exist to be overcome before widespread application of EPCs
in the treatment of CVD (Roediger, 1980). Cell isolation,
characterization, modification, and processing strategies must
be further studied and refined to achieve enhanced therapeutic
efficacy. For instance, there is still lack of consistent definition
of EPCs, so further study is needed to standardize methods
to define EPCs, through both lineage tracing and functional
analysis (Masuda et al., 2011). Meanwhile, upregulation
of certain circulating progenitor cells such as circulating
osteoprogenitor cells may result in vascular calcification
which is a cardiovascular risk factor (Pirro et al., 2013).
Moreover, the cell infusion approach, dosing regimens, as
well as the cell survival after delivery are also needed to be
improved to achieve optimal outcomes (Freyman et al., 2006).
Due to the possibility of occurrence of teratoma formation
and tumorigenesis, especially during the transplantation of
iPSCs, the safety of the stem/progenitor cell-based therapies
should also be monitored (Yamanaka, 2012). In summary,
previous clinical trials and preclinical studies have shed
light on the EPC based therapy for treating CVDs. With
more efforts to understand the biology of stem/progenitor
cells and continued commitment to preclinical and clinical
studies, stem/progenitor cell-based therapy may present an
integral part of routine regenerative therapy for CVDs in the
future.
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