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ABSTRACT 

The performance of clustering algorithms for image segmentation are highly sensitive to the features used and types 
of objects in the image, which ultimately limits their generalization capability. This provides strong motivation to 
investigate integrating shape information into the clustering framework to improve the generality of these 
algorithms. Existing shape-based clustering techniques mainly focus on circular and elliptical clusters and so are 
unable to segment arbitrarily-shaped objects. To address this limitation, this paper presents a new shape-based 
algorithm called fuzzy clustering for image segmentation using generic shape information (FCGS), which exploits 
the B-spline representation of an object’s shape in combination with the Gustafson-Kessel clustering algorithm. 
Qualitative and quantitative results for FCGS confirm its superior segmentation performance consistently 
compared to well-established shape-based clustering techniques, for a wide range of test images comprising 
various regular and arbitrary-shaped objects.  
 
Keywords: Image Segmentation, Generic Shape, Fuzzy Clustering, B-spline 
 
 
1.0 INTRODUCTION 
 
Image segmentation is formally defined as the process of separating mutually exclusive regions (objects) of interest 
from other regions (objects) in an image [1]. While it plays a fundamental role in image analysis, understanding and 
coding with a wide diversity of applications, ranging from car assembly, airport identification, security, object 
recognition and second generation image coding, through to criminal investigative analysis and medical imaging 
[2], [3], it is also very challenging because there are an inordinate number of objects and wide variations amongst 
them which makes it difficult to estimate every object within a generic framework. Most real-world images possess 
a certain amount of ambiguity and hence the segmentation produces fuzzy regions. Fuzzy image segmentation 
techniques are much more adept at handling such uncertainty than classical techniques and in this context fuzzy 
clustering algorithms have become popular and widely applied in image segmentation [4].  
 
The effectiveness of fuzzy clustering algorithms such as [4], [5], and [6] is very dependent on the types of features 
used and objects in an image. This constrains the generalisation capability of an algorithm, raising the question of 
which feature set produces the best segmentation results for which image type. As shape is a key perceptual 
attribute and humans generally use it to detect and recognise objects, this provided the motivation to examine 
incorporating generic shape information into the image segmentation process. There are many existing shape-based 
image segmentation methods, which are all based upon fuzzy clustering principles. These include the Gustafson-
Kessel (GK) algorithm [7], and techniques that focus on separating regular geometric shapes such as fuzzy k-ring 
(FKR) [8], fuzzy circular shell (FCS) [9], fuzzy c-ellipsoidal shells (FCES) [10] and fuzzy k-ellipse (FKE) [11]. The 
FKR and FCS algorithms were originally designed to separate objects which were either ring, compact spherical or 
a combination of ring-shaped, while FCES and FKE respectively became extensions of these two clustering 
algorithms, broadening the application area of shape-based segmentation so that ring and elliptical objects (or a 
combination of them), could be detected and separated. However, a fundamental drawback is that most real world 
objects are neither ring nor elliptically shaped, so existing segmentation algorithms are limited in effectively being 
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applied to arbitrary shaped objects. The GK algorithm performs segmentation of objects in an image using a 
covariance matrix that automatically adapt to the shape of a cluster using local data distance. Even though it does 
not consider any explicit shape information, it may consider the shape based clustering due to having capability of 
adapting the shape of a cluster applying covariance matrix. Since GK does not explicitly consider shape 
information, and is unable to accurately segment arbitrary-shaped objects in an image. This paper presents a fuzzy 
clustering for image segmentation using generic shape information (FCGS) algorithm which explicitly incorporates 
generic shape information, by embedding B-spline representations of an object within the GK clustering framework. 
This integration of shape information specifically requires either manual or automatic determining of a set of 
contour points in order to create a suitable shape feature descriptor for each object. For FCGS, while in principle 
any clustering algorithm can be used for automatic initialization, the GK algorithm is adopted because of its 
inherent property of adapting to the local topological structure of a cluster.   
 
The remainder of this paper is organized as follows: Section 2 provides a review of the key properties of existing 
shape-based fuzzy clustering algorithms, while Section 3 explores the underlying theory of shape contour point 
generation techniques. The new FCGS algorithm, including its mathematical foundations is detailed in Section 4, 
with the object-based segmentation performance of FCGS fully analysed in Section 5. Some conclusions are 
provided in Section 6. 
 
 
2.0 SHAPE-BASED CLUSTERING ALGORITHMS 
 
Before detailing the new FCGS algorithm, the merits and limitations of existing shape-based techniques are 
reviewed.   While Fuzzy c-means (FCM) [4] is undoubtedly the most popular and recognised algorithm for 
clustering, its performance is very sensitive to the features used and does not consider object shape information in 
image segmentation. To address this, a number of shape-based clustering methods have been proposed, including 
the FCS, FKR, FCES and FKE algorithms mentioned in Section 1, all of which are based on the iterative 
minimisation of an FCM-type objective function.  
 
The FCS algorithm was designed to specifically detect and separate circular structures in an image as it uses the 
distance from the circular shell to the corresponding data point in its objective function. Two constraints are applied 
using the ratio between the distance of the data from the cluster shell and the data distance from the cluster centre. 
To update the cluster centre and radius of the circular shell, Newton’s iteration is employed. While FCS performs 
well for circular-type shapes, it is ineffectual in separating other shapes.  
 
FKR is another circular ring-shaped clustering algorithm based upon FCM. Membership functions, cluster centres 
and the radius of a cluster are iteratively updated based on the minimisation criteria of an objective function defined 
for circular ring shapes. It can detect and separate ring, spherical compact clusters and combinations of ring-shaped 
clusters, but again it is unsuitable for more arbitrarily-shaped objects because of its restricted mathematical model. 
 
Both the FCES and FKE algorithms are extended versions supporting more generic-shaped object segmentation. 
These can detect and separate circular, elliptical and various combinations of the two geometric shapes. FCES has 
the same constraints as FCS employing a covariance matrix to calculate the distance between each datum and 
cluster centre. The matrix adapts the data distance to the shape by taking into account the orientation and scaling of 
the shell. Newton’s iteration is again applied to update the cluster centre and radius. While FKE was originally 
proposed as an extension to FKR for elliptical shapes, both algorithms can detect and separate shapes having ring 
and elliptical features, but again fail in being able to segment arbitrary shaped objects. A clear objective for the new 
FCGS algorithm is therefore to be able to accurately segment generic shapes, with a key element of the strategy 
being to use the GK algorithm for initialization before automatically determining each object’s shape feature 
descriptor. The GK algorithm is now to be presented in greater detail. 
 
The GK algorithm is characterised by adapting automatically the local data distance metric to the shape of the 
cluster using a covariance matrix [7], [12], which is based on the iterative optimization of the following objective 
function: 
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where c and n  are the number of clusters and data respectively; μ is a set of membership values ijμ ;  V  is a 

vector containing the values of cluster centers iv ; q  is the fuzzifier ≤∝< q1  and ijD  is the distance norm 

calculated for clusters of different shapes in one data set using the following: 
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where iA  is the norm inducing matrix that allows the distance norm to adapt to the local topological structure of the 

data [12], ci ≤≤1  and nj ≤≤1 . If 0=ijD  for the case where ij vS =  or 0=iA , in this case a crisp 

decision is necessary i.e. the thj  datum must be classified into the thi  cluster. So, the membership value ijμ  is 

determined as follows: 

IF ( )0=ijD  THEN 1=ijμ  maintaining ∑
=

=
c

i
ij

1
1μ  i.e. by setting ∑

≠
=

=
c

ik
k

kj
1

0μ  
 

(5) 
 

    
ELSE 

∑
=

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

c

k

q

kj

ij

ij

D
D

1

1
2

1μ  
 

(6) 
 

             
while the cluster centre iv  is updated as: 
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A norm inducing matrix iA  is used to adapt to the local topological structure of the data: 
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where iF  is the fuzzy covariance matrix and iρ  the cluster volume which is usually set to 1. From a shape-based 
clustering perspective, while the GK algorithm does not explicitly incorporate shape information, it exhibits the 
useful property of locally adapting to the distance matrix (4), and as a consequence is employed in the new FCGS 
algorithm for initialisation purposes to generate the initial shape contour. The various steps involved in the GK 
algorithm [7] are given in Algorithm 1. 
 

Algorithm 1: The Gustafson-Kessel (GK) Algorithm. 
Input: The number of clusters c , iterationmax   and threshold ξ  
Output:  Segmented regionsℜ . 
1. Fix 2=q . 
2. Initialize ijμ . 

3. FOR iterationl max,,2,1 L=  

4. Update iv using (7). 
5. Calculate the covariance matrices by (8). 
6. Calculate the distance norms using (4)  
7. Update ijμ using (5) and (6). 

8. ξμμ ≤− −1l
ij

l
ijIF  FOR ji,∀  THEN STOP 

ENDFOR 
 
A major consideration for any clustering algorithm, especially one being applied for object-based segmentation, is 
how to determine the number of clusters (objects) c  either directly from image data or using a priori knowledge. 
There is no single unified definition of what exactly constitutes an object, as there typically exist a large number of 
objects and their definition very much depends on the user’s perception and purpose of the application. In this 
context, the number of clusters c  can either be manually provided or automatically determined from image data. In 
the latter case, the standard approach adopted is to use validity measures to determine an optimal number of 
clusters, with examples provided in [4], [9], [13], [14], [15]. There are certain situations however, particularly in 
object-based segmentation where such validity algorithms fail to generate the correct (optimal) number of clusters 
[14], [16] because they tend to focus on the homogeneous regions of interest in an image, which can contradict with 
the human perception of an object so degrading the overall performance of the clustering algorithm. Conversely, 
there are numerous applications in the manufacturing and medical imaging [3] domains whereby the number of 
objects to be segmented is known a priori, hence in this paper, for all shape based clustering algorithms, the number 
of clusters c  is provided.  
 
 
3.0 SHAPE CONTOUR POINT GENERATION TECHNIQUES  
 
In order to define the shape feature descriptor for a particular object, it is firstly necessary to compute the contour 
points, which can be obtained using a parametric curve generation technique such as Bezier curves (BC) or B-
splines [17], [18], [19], [20]. Being a member of the parametric curve family, B-spline is used to generate shape 
contour points in the FCGS algorithm, because it provides greater control flexibility as the degree of a B-spline 
polynomial is independent of the number of significant points and it is also possible to achieve a desired level of 
local control over the shape of a spline curve with shape parameters, that is unachievable using BC [18], [20]. The 
fundamentals of B-spline shape representation [17], [18] are now briefly examined. 
 
3.1 B-spline Shape Representation 
 
For a given set of significant points and knot vector, B-splines generate contour (curve) points, with the resulting 
curve always passing through the first and last significant points as illustrated in Fig. 1. The degree of the B-spline 
polynomial is independent of the number of significant points and hence it can handle efficiently a large number of 
them. The thm  order B-spline function [17], [18] comprises ( )1+m  piecewise polynomial segments of degree ( )m . 
If ( )1+L  is the number of significant points in vectorP , the positions of the significant points are defined as 



Fuzzy Clustering for Image Segmentation Using Generic Shape Information pp. 122-138 
 
 

126 
Malaysian Journal of Computer Science, Vol. 21(2), 2008 

 

( )kkk yxP ,:  where Lk ≤≤0 . The B-spline blending function of order m  is ( )tN mk ,  and the B-spline curve 

equation ( )tP  is: 
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The B-spline blending function is:  
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where [ ]L,, 10 tt  represents the knot point sequence. Fig. 1 shows an example of a 2nd order B-spline curve 
representation with 30 ≤≤ t  for 4 significant points and a uniform knot sequence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.0  INTEGRATING GENERIC SHAPE INFORMATION 

This section formally presents the fuzzy clustering for image segmentation using generic shape information (FCGS) 
algorithm. In order to embed shape information seamlessly into the image segmentation process, it is necessary to 
generate a shape feature descriptor for each identified object. The set of significant points for a shape is generated 
by scanning the boundary points of the respective initial segmented regions using the convex hull, before a B-spline 
approximation is applied to derive the requisite shape contour points. These points are used to measure the data 
distance from the shape contour adopting the same strategy employed by other shaped-based clustering algorithms 
such as FKR, FKE, FCS and FCES (Section 2.0). To calculate this distance, the point on the shape for each datum 
that is closest to the corresponding datum must be found. This point is the intersection point between the shape and 

t 
Fig. 1: B-spline approximation for 4 significant points. 

10 <≤ t

21 <≤ t  

32 <≤ t  

( )tN 2,0  

( )tN 2,0  

( )tN 2,0  

( )t0,2N  
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a line from the data point passing through the cluster centre. The technique used to find the location of this 
intersection point on the B-spline shape descriptor is elaborated further in the following section. 
 
4.1 Locating the Intersection Points 
 
In any segmentation strategy, the most important consideration is how to derive the distance ijd  of a datum for the 
objective function. For example, in FCM, ijd  is calculated from the cluster centre in order to segment objects in an 
image based on some predefined features, while for FKR and FKE, ijd  is respectively calculated from the contour 
of the circle and ellipse. Since arbitrary shapes are considered in the new FCGS algorithm, ijd is calculated from the 
respective contour (intersection) points of that particular shape. To provide an intuitive insight of this distance and 
the role of the B-spline approximation, consider the butterfly object in Fig. 2 (a) and its corresponding B-spline 
representation Fig. 2 (b), where iv  is assumed to be the centre of the initial object shape produced by a B-spline. jS  

is a datum with its corresponding intersection point '
ijS , so ijd  is the distance between jS  and '

ijS . The challenge 

now is how to calculate the intersection point '
ijS  between the initial contour and the line ( )ijl  that connects the 

datum jS  with the centre of the thi  cluster iv  (Fig. 2 (b)). In the Cartesian coordinate system, the intersection point 

can be calculated using the following heuristic approach: i) Find the two successive points on the thi  shape contour 
that are closest and lie opposite sides of the line ijl  i.e. if one closest point is in ‘+ve’ side of ijl , the other will be 

in ‘-ve’ side; ii) Determine a point that lies between these two points and also on the boundary of the curve and ijl ; 

this is intersection point '
ijS . Locating these two contour and intersection points is however, computationally 

expensive so a more efficient approach is to employ polar coordinates to compute '
ijS , where an arbitrary point is 

represented by ( )θ,r ,  with r  being the distance between the centre iv  and the respective point and θ  the angle 

between line ijl  and the horizontal line passing through the cluster centre iv  as illustrated in Fig. 2 (b). jS  and '
ijS  

are now denoted as ( )ijijr θ,  and ( )'' , ijijr θ  respectively, where it is assumed each datum jS  and its corresponding 

contour point '
ijS  do not necessarily make exactly the same angle with the cluster centre iv , though often '

ijij θθ = . 

Also, if more than one point is found for a particular angle, the closest intersection point to the data is always 
considered. The various steps involved in determining each intersection point on the shape contour are formalized in 
Algorithm 2. 
 
 

 
 

 
 
 

(a) 
 

(b) 
  

Fig. 2: (a) Original butterfly object; (b) Example of the intersection point 
between datum jS  and the B-spline shape contour of (a) along line ijl . 
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4.2 Mathematical Foundations 
 
Having obtained the intersection points (Section 4.1), ijd  is now calculated to be used in the objective function. As 

mentioned in Section 2.0, the GK algorithm is employed because of its property that the cluster adapts to the local 
topological structure of a shape, so the objective function used in the FCGS algorithm is based upon Eq. (1): 
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where '
ijr  is the Euclidean distance between datum jS  and the corresponding intersection point '

ijS  on the shape 
contour and the other parameters are defined in Section 2. If 0=ijd , the corresponding jth datum must be classified 
into the ith cluster and in this case, a crisp decision is necessary i.e., the membership value 1=ijμ  in Eq. (14), 
otherwise it will be updated according to the distance ijd  which is derived in Eq. (15) using Eq. (12).  
 

IF ( )0=ijd  THEN update ijμ  using (5)  (14) 
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Algorithm 2: Determine the intersection point between a datum and 
its corresponding cluster centre.  
Input: cluster contour points, cluster centre iv and data jS . 

Output: The final intersection point '
ijS . 

1. Convert contour points to polar form ( )'' , ijijr θ  with respect to 

corresponding cluster centre iv . 
2. Convert data points into polar form ( )ijijr θ,  with respect to 

corresponding cluster centre iv . 

3. Calculate ( )'
ikijijk θθθ −=Δ  where "

iNk ≤≤1  and "
iN  is the 

number of contour points of the thi  cluster. 
4. Intersection point '

ijS  is the point with minimum ijkθΔ . 

5. If more than one point have minimum ijkθΔ , the closest point of 

datum jS  will be the intersection point '
ijS . 

 
During the iterative process, it needs to update the cluster shape and the main goal of this proposed method is to 
preserve the original (initial) shape during iterative scaling. For example if the initial shape is a circle, then it will 
remain circle during iterative scaling. To achieve this goal, the shape i.e. every contour point is updated by the same 
amount by multiplying all the contour radii by a scaling factor ( )Ratio . To define the scaling factor ( )Ratio , the 
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average radius of a cluster shape is exploited by considering the minimization of the objective function based on a 
circular shape [21]. The average radius i.e. circular radius ir  used in this process is expressed as: 
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Now, the scaling factor ( )Ratio  is defined as in Eq. (17), i.e. the ratio of the current ( )ir  to the previous radius ( )1−ir  
of the circular shape: 
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To update the thi  cluster centre iv , the objective function in Eq. (12) is optimized together with (13) with respect to 

iv  using Lagrangian multiplier and hence can be derived as follows:  
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where xf  and yf  are the X- and Y-component of the thi  cluster centre iv  respectively and are as follows: 
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The complete FCGS algorithm is presented in Algorithm 3, where the shape contours are generated using B-spline 
based on a set of significant points (Step 1). Since the shape contours are generated using B-spline, there is a low 
probability that the initial shapes may overlap with each other that may degrade the segmentation performance i.e. 
increase the misclassification error of the new FCGS algorithm due to having overlapping pixels. To manage this 
eventuality, if an overlap of the shape contours is detected, then the initial segmented results of the GK algorithm 
are considered as the final segmentation results (Step 2). Otherwise, the average cluster radius is considered (Step 4) 
and the shape is scaled (Step 5), with the intersection points determined using Algorithm 2 in Step 6, and the 
membership values ijμ  and cluster centre iv  iteratively updated in Steps 7 and 8 respectively. 
 

Algorithm 3: Fuzzy clustering for image segmentation using 
generic shape information (FCGS). 
Input: The number of clusters c , the initial values of cluster 
centre iv , initial ijμ , the significant points P , knot vector, 
number of points m  representing the shape contour, iterationmax  
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and the threshold ξ .  
Output: Final membership values ijμ . 

1. Generate m  points on the contour of the shape using B-spline 
for significant points P  . 

2. IF NOT overlaps between contours THEN 
3. FOR  iterationl max,,3,2,1 L  =   

4. Update ir  by (16) 
5. Scale contour by Ratio using (17). 
6. Find intersection point by Algorithm 2 
7. Update ijμ  using (14) and (15). 

8. Update iv  using (18). 

9. IF ξμμ ≤− −1l
ij

l
ij  FOR ji,∀  THEN 

STOP 
                      ENDIF 
            ENDFOR 
     ENDIF 

 
 
 

5.0  EXPERIMENTAL RESULTS  
 
In evaluating the segmentation performance of the new FCGS algorithm, empirical results were both qualitatively 
and numerically compared with five other shape-based clustering algorithms, namely FKR, FKE, GK, FCS and 
FCES. While the FKE and FCES algorithms are extensions of FKR and FCS respectively, each algorithm was 
analyzed in order to rigorously assess the performance improvement achieved using FCGS. Different natural and 
synthetic gray-scale images1 as well as medical images and frames from the football video sequence were randomly 
selected for analysis. Fuzzy clustering algorithm arbitrarily divides the image into a given number of clusters when 
only pixel location is used as feature in segmentation process as image is rectangular in size that is detailed in [21] 
and the main goal of the proposed FCGS algorithm is to segment only foreground objects. For these reasons, the 
background of each image is removed so that only foreground objects are separated. This necessitated the manual 
setting of all background pixels to zero, with zero-valued foreground object pixels being replaced by 1 to avoid the 
possibility of foreground pixels merging with the background, while not impacting upon visual perception. 
 
To quantitatively appraise the performance of all the fuzzy clustering algorithms, the objective segmentation 
evaluation method, discrepancy based on the number of misclassified pixels [21] was used. The two errors, namely 
Type I, ierrorI  and Type II, ierrorII  are formally defined as follows: 
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1 Obtained from IMSI (Master Photo Collection, San Rafael, CA 94901-5506, USA.) and the Internet. 
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where the confusion matrix ijM  is a ℜ  by ℜ  square matrix and denotes the number of thj  region pixels 

classified as region i  by the segmentation process. Type I, ierrorI  is the percentage error of all thi  region pixels 
that are misclassified in other regions, while Type II, ierrorII  is the percentage error of all region pixels that are 

misclassified into the thi  region.  Representative samples of the manually segmented reference regions together 
with the original images are shown in Fig. 3 (a)-(b), Fig. 4 (a)-(b), Fig. 5 (a)-(b) and Fig. 6 (a)-(b). To afford an 
improved visual interpretation of the segmentation performance, both the reference and segmented regions are 
displayed in different colours rather than their original gray-scale intensities.  
 
Before providing the detailed results analysis, some comments upon the initialisation strategies used for each 
clustering method in the experiments are detailed in this section. GK, FCS and FCES algorithms were initialised 
using random membership values μ . FKR used a fuzzy k-means (FKM) [22] algorithm, while for the FKE 
algorithm the same initialisation approach in [11] was used, namely 10 iterations of FKM followed by 10 iterations 
of FKR. For the proposed FCGS algorithm, while any clustering algorithm can be used for initialization with B-
spline, the GK algorithm (Algorithm 1) was selected because it consistently provided the highest percentage of 
superior results for all the test images used in the experiments in comparison to FKR, FCS, FKE and FCES. Finally, 
for the reasons discussed in Section 2, during the initialisation of each experiment, the number of clusters was 
manually defined for each algorithm. Please note that if GK totally fails to segment the objects, the FCGS algorithm 
will certainly improve the segmentation performance of GK but it will also unable to segment the objects well. 
 
The first test image (Fig. 3 (a)) was selected because it comprised both a circular (sun) and arbitrary shaped (tree 
branch) object, represented by regions 1R  and 2R  respectively. The segmentation results for the various algorithms 
are shown in Fig. 3(c)-(h).  

 
(a) Original 

 
(b) Ref. Image 

 
(c) FKR 

 
(d) FKE 

 
(e) GK 

 
(f) FCS 

 
(g) FCES 

 
(h) FCGS 

Fig. 3: (a) Original sun image, (b) Manually 
segmented reference of (a). Fig. (c) – (h) the 
segmented results using FKR, FKE, GK, FCS, 
FCES, and FCGS respectively.  

 

R1 

R2
R2

R1 

R1 R1 

R2 R2 

R1 

R2 

R1 

R2 

R1 

R2 R2 

R1 



Fuzzy Clustering for Image Segmentation Using Generic Shape Information pp. 122-138 
 
 

132 
Malaysian Journal of Computer Science, Vol. 21(2), 2008 

 

If the results in Fig. 3(c)-(e) are subjectively compared with the manually segmented reference regions in Fig. 3(b), 
it is readily apparent a large number of pixels 1R  have been misclassified in 2R  by the FKR, FKE and GK 
algorithms respectively, while there are also misclassified pixels from 2R  in 1R  for the FCS and FCES algorithms 
in Fig. 3(f) and 3(g) respectively. Since 1R  is circular, both the FCS and FCES algorithms are able to completely 
segment region 1R , while being unable to segment 2R  (tree branch) as this is neither a circular nor elliptical object 
compared with 1R which possesses a distinctly circular form. The reason behind this is that the FCS and FCES 
algorithms are designed for segmenting specific shape-based objects such as circular and elliptical objects 
respectively. In contrast, the new FCGS algorithm provided ideal segmentation with no misclassified pixels (Fig. 
3(h)), validating the strategy of embedding shape information into the GK framework. The numerical results for the 
Type I and Type II errors for region 1R  for all five segmentation algorithms in Table 1 endorse this observation. 
Note that since there are only two segmented regions in this particular image, the results for 2R  will be the inverse 
of those presented for 1R  in Table 1. 

Table 1: Percentage errors for 1R  in the Fig. 3 (a) segmentation 

Algorithm Errors 
Type I Type II Mean 

FKR 21.2 0 10.6 
FKE 20.4 0 10.2 
GK 22.5 0 11.2 
FCS 0 3.8 1.9 
FCES 0 12 6 
FCGS 0 0 0 

 
The second test image in Fig. 4(a) contains three regions which are all arbitrarily shaped, namely the reptile ( )1R , 
bird ( )2R  and tree branch ( )3R , where 2R  and 3R  are connected, with the corresponding results for the FKR, FKE, 
GK, FCS, FCES and FCGS algorithms being displayed in Fig. 4(c)-(h) respectively. In FKR, as all three objects are 
arbitrarily shaped, not surprisingly there are a large number of misclassified pixels occurring between 1R , 2R  and 

3R  as shown in Fig. 4(c). The results for FKE, FCS and FCES in Fig. 4(d), (f) and (g) respectively, are again 
characterised by large numbers of misclassified pixels, though in these cases only between 2R  and 3R , i.e. the two 
connected regions, while the results for GK in Fig. 4(e) show both 1R  and 2R contain misclassified pixels. 
Conversely, the FCGS algorithm (Fig. 4(h)) successfully separated 1R  and generated significantly fewer 
misclassified pixels compared with other algorithms, especially the GK algorithm, so verifying the benefit of 
embedding generic shape information within the segmentation framework.  
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(e) GK 

 
(f) FCS 

 
(g) FCES 

 
(h) FCGS 

Fig. 4:  (a) Original bird image, (b) Manually 
segmented reference of (a). Fig. (c) – (h) the 

segmented results of (a) using FKR, FKE, GK, 
FCS, FCES, and FCGS respectively.  

 
 
The numerical results in Table 2 support the perceptual judgements of the performance of the various segmentation 
algorithms, with an overall lowest mean error of 1.7% being achieved by FCGS, contrasting with the 49.6% for 
FKR and 3.1% for GK. 

Table 2: Percentage errors for Fig. 4 (a) segmentation 

Algorithm 
Errors 

Type I Type II Mean R1 R2 R3 R1 R2 R3 
FKR 73.58 62.7 62.9 34.2 34.4 29.8 49.6 

FKE 0 47.6 46.5 0 27.1 26.6 24.6 

GK 0 7.1 4.7 1.8 2.8 1.9 3.1 
FCS 0 52.2 47.7 0 27.7 29.2 26.1 

FCES 0 47.8 57.2 0 33.3 26.8 27.5 

FCGS 0 5.2 1.4 0 0.8 2.9 1.7 

 

The third test image used to analyze the performance of the FCGS algorithm was an X-ray of the anterior-posterior 
view of the knee-joint [23] in Fig. 5(a) comprising two arbitrary shape objects, namely the femur ( )1R  and 
tibia ( )2R , with the corresponding reference regions given in Fig. 5(b). Fig. 5(c)-(h) show the segmented results for 
FKR, FKE, GK, FCS, FCES and FCGS respectively. Comparing the results with the reference image in Fig. 5 (b), it 
is clear many pixels of  2R  have been misclassified into 1R  (Fig. 5(c)-(d), (f)-(g)) because the shapes of both 1R  
and 2R  are neither circular nor elliptical, so FKR, FKE, FCS and FCES all arbitrarily segmented the objects. GK 
also generated a considerable number of misclassified pixels in both 1R  and 2R  while in comparison, the 
segmentation for both regions in FCGS was superior (Fig. 5(h)) despite the generation of an erroneous shape from 
the initialization using GK (Fig. 5(e)). This inaccurate initial shape is the reason for the Type I error results in Table 
3 for 1R  being 23.2% for GK compared to the perfect results for both FCS and FCES.  The FCGS algorithm 
subsequently reduced this Type I error to just 0.26% and also produced considerable lower Type II errors than either 
FCS or FCES, thereby providing overall superior segmented results with a minimum average error of 2.8% 
compared to 43.3% and 4.2% for FKR and FCES respectively. 
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(a) Original 

 
(b) Ref. Image 

 
(c) FKR 

 
(d) FKE 

 
(e) GK 

 
(f) FCS 

 
(g) FCES 

 
(h) FCGS 

Fig. 5:  (a) Original X-ray image, (b) Manually 
segmented reference of (a). Fig. (c) – (h) the 

segmented results of (a) using FKR, FKE, GK, 
FCS, FCES, and FCGS respectively.  

Table 3: Percentage errors for 1R  in Fig. 5 (a) segmentation  

Algorithm Error 
Type I Type II Mean 

FKR 42 44.6 43.3 
FKE 6.4 19.6 13 
GK 23.2 24.4 23.8 
FCS 0 12.7 6.4 
FCES 0 8.4 4.2 
FCGS 0.26 5.5 2.8 
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 (a) Original 

 
(b) Ref. Image 

 
(c) FKR 

 
(d) FKE 

 
(e) GK 

 
(f) FCS 

 
(g) FCES 

 
(h) FCGS 

Fig. 6:  (a) Original football image, (b) Manually segmented 
reference of (a). Fig. (c) – (h) the segmented results of (a) 

using FKR, FKE, GK, FCS, FCES, and FCGS respectively.  

 
The final image analysed was a frame (Fig. 6(a)) taken from the popular football video test sequence used by 
researchers in the field of motion estimation and video coding. This frame contains three arbitrary-shaped objects 

1R  (left player), 2R  (player on the ground) and  3R  (right player), each having a different shape and orientation, 
with some occlusion between 2R  and 3R . The results for the FKR, FKE, GK, FCS, FCES and FCGS algorithms are 
respectively shown in Fig. 6(c)-(h). If the results of FKR and FCS shown in Fig. 6 (c) and (f) are visually compared 
with the reference image in Fig. 6(b), it can be seen that there is considerable pixel misclassification between all 
three regions, with the main reasons being over scaling during iterations, improper initialization and the absence of 
any circularly shaped object in the image. A similar pixel misclassification trend is observed for both FKE and 
FCES in Fig. 6(d) and Fig. 6(g) respectively. The GK algorithm misclassified a number of pixels from 2R  into 3R  
as well as from 3R  into 2R  due to the occlusion and also from 1R  into 2R  as shown in Fig. 6(e). FCGS in contrast 
generated significantly lower numbers of misclassified pixels (Fig. 6 (h)), so vindicating the strategy of 
incorporating shape feature information into the segmentation process, with Table 4 showing the average error for 
the proposed FCGS algorithm (1.6%) is consistently the lowest. This particular example also highlights the potential 
of the FCGS algorithm to be extended into multimedia applications such as video object segmentation, with for 
instance, it being applied to segment video object planes (VOP) for object-based MPEG-4 coding [24]. 
 
 
 
 

Table 4: Percentage errors for Fig. 6  (a) segmentation. 
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Algorithm 
Errors 

Type I Type II Mean R1 R2 R3 R1 R2 R3 
FKR 71.2 58 44.4 6.4 44 35.8 43.3 
FKE 0 19.4 9 1.9 3.8 7.2 6.9 
GK 3 5.8 6.6 0 4.5 2.6 3.8 
FCS 63.7 53.6 53.3 22.6 34.6 28.4 42.7 
FCES 0 5.2 15.1 2.7 6.4 0 4.9 
FCGS 0 2.6 3.8 0.4 1.6 0.8 1.6 

 
To assess the generalization capability of the proposed FCGS algorithm, experiments were conducted upon 185 
randomly selected images containing multiple objects having circular, elliptic and arbitrary shapes with different 
orientations. While the shape descriptor was generated from the GK initialization (Section 2), the FCGS algorithm 
produced best segmentation performance for 81 images while FKR, FKE, GK, FCS and FCES respectively yielded 
better segmentation results for only 3, 17, 12, 11, and 18 (see Fig. 7).  
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Fig. 7: The best segmentation results for six different fuzzy 

clustering algorithms when the arbitrary shape contour is determined 
 
 
In addition, FCGS provided similar results for 35 and 19 images respectively compared to GK and the other four 
algorithms considered, while FKR, FKE, FCS and FCES exhibited similar results for only 3, 9, 9, and 9 images 
respectively. As these four algorithms were designed specifically for regularly shaped geometric objects (ring and 
elliptic) they as expected, generated either comparable or better results compared with FCGS for such objects, so 
accounting for improved segmentation performance in 3, 17, 11, and 18 images respectively. As highlighted in 
Section 4.1, while FCGS adopts the same principle used in the FKR, FCS, FKE and FCES algorithms [8]-[11], it 
considers shape information based upon a contour, and not the region of an object. As a consequence, for 12 
images, the FCGS algorithm is unable to improve further upon the initialization produced by GK. To recap, as 
previous shape-based clustering algorithms have focused upon only objects with specific geometric clusters, the 
proposed FCGS algorithm’s performance in handling arbitrary shaped objects and providing consistently superior 
segmentation results for most images, justifies the strategy of seamlessly integrating generic shape information into 
the clustering framework.   
 
6.0 CONCLUSIONS 
 
This paper has presented a new shape-based image segmentation algorithm called fuzzy clustering for image 
segmentation using generic shape information (FCGS) which seamlessly integrates generic shape information into 
the Gustafson-Kessel (GK) clustering framework. Both qualitative and quantitative analysis were  conducted to 
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compare the performance against existing shape-based algorithms including fuzzy k-ring (FKR),  fuzzy circular shell 
(FCS),  fuzzy c-ellipsoidal shells (FCES) and fuzzy k-ellipse (FKE), as well as the original GK algorithm, for many 
images consisting of multiple objects having different shapes and orientations. With the initialization automatically 
performed using a GK algorithm and B-spline combination, FCGS provided superior segmentation performance for 
many differently shaped objects, so broadening the application base of this innovative clustering framework into 
domain areas such as medical imaging, security systems, and any image processing application where arbitrary 
shaped object segmentation is required. 
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