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Prior knowledge structures (or schemas) confer multiple behavioral benefits. First, when
we encounter information that fits with prior knowledge structures, this information
is generally better learned and remembered. Second, prior knowledge can support
prospective planning. In humans, memory enhancements related to prior knowledge
have been suggested to be supported, in part, by computations in prefrontal and
medial temporal lobe (MTL) cortex. Moreover, animal studies further implicate a
role for the hippocampus in schema-based facilitation and in the emergence of
prospective planning signals following new learning. To date, convergence across
the schema-enhanced learning and memory literature may be constrained by the
predominant use of hippocampally dependent spatial navigation paradigms in rodents,
and non-spatial list-based learning paradigms in humans. Here, we targeted this
missing link by examining the effects of prior knowledge on human navigational
learning in a hippocampally dependent virtual navigation paradigm that closely relates to
foundational studies in rodents. Outside the scanner, participants overlearned Old Paired
Associates (OPA— item-location associations) in multiple spatial environments, and they
subsequently learned New Paired Associates (NPA—new item-location associations) in
the environments while undergoing fMRI. We hypothesized that greater OPA knowledge
precision would positively affect NPA learning, and that the hippocampus would be
instrumental in translating this new learning into prospective planning of navigational
paths to NPA locations. Behavioral results revealed that OPA knowledge predicted
one-shot learning of NPA locations, and neural results indicated that one-shot learning
was predicted by the rapid emergence of performance-predictive prospective planning
signals in hippocampus. Prospective memory relationships were not significant in
parahippocampal cortex and were marginally dissociable from the primary hippocampal
effect. Collectively, these results extend understanding of how schemas impact learning
and performance, showing that the precision of prior spatial knowledge is important
for future learning in humans, and that the hippocampus is involved in translating this
knowledge into new goal-directed behaviors.
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INTRODUCTION

Prior knowledge strongly affects new learning (Bartlett, 1932;
van Kesteren et al., 2012). New information that is stored in
relation to prior knowledge structures (or schemas) is generally
better remembered (McVee et al., 2005). The updating of
knowledge networks is suggested to be mediated, in part, by
retrieval of associative knowledge during learning (Preston and
Eichenbaum, 2013), through an interplay between the medial
temporal lobe (MTL) and medial prefrontal cortex (mPFC;
van Kesteren et al., 2012; Gilboa and Marlatte, 2017). In
rodents, where memory tasks are frequently spatial in nature,
the facilitative effects of prior knowledge have often been
attributed to computations within the hippocampus (Burgess
et al., 2002; Hartley et al., 2003; Squire et al., 2004; Eichenbaum
et al., 2007) in concert with representations in the mPFC (Tse
et al., 2007, 2011; McKenzie et al., 2013, 2014; Richards et al.,
2014). By contrast, human neuroimaging studies, which use
predominantly non-spatial paradigms (though see van Buuren
et al., 2014; Liu et al., 2017; Sommer, 2017), have often
failed to observe hippocampal activity during the encoding
of new schema-related knowledge (van Kesteren et al., 2010b,
2013; Brod et al., 2015). To bring the animal and human
literatures closer together, it is of interest to examine the
effect of existing spatial knowledge (Burgess et al., 2002;
Hartley et al., 2003; McNamara et al., 2003) on new spatial
learning in humans, and how this relates specifically to
neural processing in the hippocampus and surrounding MTL
cortices.

In the human spatial navigation literature, the role of the
hippocampus in spatial processing has often been juxtaposed
with functions attributed to other memory systems in the
brain (Hartley et al., 2003; Iaria et al., 2003; Voermans et al.,
2004; Doeller et al., 2008; Brown and Stern, 2014) and,
of particular relevance to the present study, adjoining MTL
cortex (Weniger and Irle, 2006; Ekstrom and Bookheimer,
2007; Weniger et al., 2010; Howard et al., 2011, 2014;
Ekstrom et al., 2014). Across studies, the updating of spatial
knowledge of an environment has been alternately associated
with the hippocampus or parahippocampal cortex (Wolbers
and Büchel, 2005; Weniger et al., 2010), with the divergence
putatively being due to differences in allocentric vs. egocentric
reference frames. Converging with foundational work on cortical
declarative memory consolidation (McClelland et al., 1995),
functional and neuropsychological data from studies of spatial
navigation and remote spatial memory (Stefanacci et al., 2000;
Rosenbaum et al., 2004; Moscovitch et al., 2006) suggest that
long-term storage of learned spatial knowledge may rely on
posterior parahippocampal cortex and a network of connected
cortical regions, rather than the hippocampus. However, current
perspectives from functional studies emphasize that, especially
for new or recently formed memories, it is difficult to identify
clean or natural dissociations between: (a) the navigational
functions of the hippocampus and parahippocampal cortex;
and (b) allocentric and egocentric reference frames (Ekstrom
et al., 2014; Wolbers and Wiener, 2014). Reciprocal processing
in the hippocampal-MTL cortex circuitry can give rise to

both memory for navigational routes as ‘‘episodes’’ and spatial
map knowledge which may ultimately and more gradually
become ‘‘semanticized,’’ and it has been proposed that the
mechanisms that give rise to these two forms of spatial
memory may overlap with those underlying episodic memory
and semantic knowledge in non-navigation settings (Buzsáki,
2005; Buzsáki and Moser, 2013). Consistent with these views,
it may be the case that the combined, rather than selective,
functions of the hippocampus and parahippocampal cortex
may support recently learned spatial environment knowledge
and enable new navigational experiences to update that
knowledge.

Critically, both the hippocampus and parahippocampal
cortex represent spatial goals from knowledge of overlearned
virtual environments (Brown et al., 2016). Activity in both
regions during navigational decision-making is also sensitive
to the introduction of new routes/goal locations in a familiar
environment (Brown and Stern, 2014; Brown et al., 2014). Such
findings, along with evidence that new learning updates
spatial goal representations in the rodent hippocampus
(McKenzie et al., 2014), suggest that, although findings to
date in humans mainly implicate extrahippocampal regions
in the interaction between existing knowledge structures
and new learning, the hippocampus and parahippocampal
cortex may together be important for updating and accessing
spatial knowledge structures in service of goal-directed
behavior. As such, an important question is whether and
how hippocampal and parahippocampal-dependent spatial
retrieval mechanisms relate to prospective planning and
goal-directed navigation for newly learned information
that can be integrated into existing spatial knowledge
structures.

Here, we targeted this question in humans, using a spatial
navigation paradigm and fMRI to test whether: (1) as in prior
rodent studies, existing spatial knowledge benefits new learning;
and (2) whether the hippocampus and parahippocampal cortex,
known to mediate spatial memory, support prospective planning
of navigation based on new memories that relate to existing
spatial knowledge. We designed a virtual navigation experiment,
conceptually inspired by the event arena used in rodent research
(Tse et al., 2007), to test whether the precision of prior
spatial knowledge Old Paired Associate (OPA) predicts new,
one-shot learning of a New object-location Paired Associate
(NPA). Furthermore, we sought to examine the relationship
between prospective hippocampal retrieval effects and one-shot
NPA-learning facilitated by OPA knowledge. In the experiment,
participants first learned the locations of faces (OPAs) through
free navigational exploration of multiple, similar environments.
After extensive OPA learning, they learned a new location
(NPA) in each of the environments while undergoing fMRI.
We hypothesized that greater OPA-knowledge precision would
predict one-shot NPA-learning. Furthermore, we expected this
behavioral effect to be facilitated by prospective retrieval
effects in the hippocampus and parahippocampal cortex during
navigational planning, supporting a role for the MTL system
in incorporating rapidly integrated spatial experiences into
planning and spatial goal localization.
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MATERIALS AND METHODS

Participants
Twenty-two neurologically healthy, right-handed participants
with normal color perception between 18 years and 35 years
old were recruited through Stanford’s University’s Sona-systems
for subject recruitment, through flyers and through posting to a
postdoctoral email list. Four participants did not complete the
experiment due to virtual reality-induced motion sickness on the
first day (Day 1), and two additional participants did not perform
well enough to progress to the second day (Day 2)/scanning
part of the experiment (see below for details). Accordingly,
16 participants (eight males; mean age 23.13 years, SD 4.60 years,
range 18–35; 10 Caucasian, 2 American Indian/Native Alaskan,
2 Asian, 1 African American and 1 Hispanic) were scanned
and entered in the analyses. Participants self-reported to have
started to learn English on average at age 2.75 (SD 3.99)
years and had 17.44 (SD 3.63) years of education. On average,
participants self-reported to have slept 7.13 (SD 1.20) h between
Day 1 and Day 2. This study was carried out in accordance
with procedures approved by the institutional review board
at Stanford University. All subjects gave written informed
consent in accordance with the Declaration of Helsinki on
both days and received monetary compensation for their time
(maximum $90).

Procedure
OPA Training (Behavioral)
Participants were instructed to learn the spatial locations
of 36 unique faces embedded in 36 unique rooms (see
Figure 1) using a 2D virtual-reality navigation approach (Vizard
VR, WorldViz). Rooms were square, sized at 40 (w) × 40
(l) × 10 (h) arbitrary units (a.u.); faces appeared on small,
3 × 3 × 3 a.u. cubes. The rooms only differed with respect
to the wallpaper that was printed on one of the walls in full
(40 × 10 a.u.) and on the other three walls as a smaller
painting (12 × 3 a.u.). Wallpapers consisted of distinctive
colored fractal patterns (collected from the internet); faces were
colorized images of distinct Caucasian individuals (18 males,
18 females), and appeared on all four sides of a cube positioned
at a pseudo-random location in each environment (see below
under ‘‘Stimuli’’ section for specifics). On Day 1, participants
learned the 36 room-face-location associations (Old Paired-
Associates; OPA) across eight self-paced training blocks (OPA
blocks 1–8); on Day 2, participants performed ‘‘top-off’’ learning
across another four self-paced training blocks (OPA blocks
9–12).

To illustrate the procedure and learn how to navigate in
the virtual rooms, participants first received practice on Day 1,
which consisted of three trials in rooms with gray walls and
white boxes at fixed positions. They used the ‘‘up,’’ ‘‘left’’ and
‘‘right’’ arrow buttons on the keyboard to navigate; they were
not allowed to back up. Across the training trials on Days
1 and 2, participants were instructed to come up with their own
strategy to learn the associations and to incorporate all three
components (room/wallpaper, face and location) in memory.
Furthermore, they were instructed to take the most direct route

to the face when they knew its location, which allowed us to
compare their traversed path length to the optimal path length
Euclidian Distance (ED) from the starting position to the face’s
location.

Within each training block, room order was randomized.
At the beginning of each training trial within a training block,
participants were cued with one of the 36 faces that was
associated with that specific room (randomly assigned for each
participant); the face was presented on a gray background
for 1 s. They were then positioned in one of the corners of
the corresponding room, oriented towards the room’s center.
Participants were instructed to find the face, which was printed
on the sides of a white cube positioned at a specific location
in the room. In training OPA block 1, the face/cube was made
visible throughout and participants only had to move to it to
continue to the next trial. We adopted this design because it was
discovered through behavioral piloting that participants would
otherwise struggle to learn the 36 OPA locations in a reasonable
training time. Although this renders block 1 of OPA and NPA
learning (described below) incomparable, this effectively serves
to boost OPA block 2+ beyond what was observed without this
manipulation during piloting. In all subsequent training blocks
(i.e., OPA blocks 2–12), the face/cube was hidden from sight and
only appeared when participants arrived at its location (‘‘arrival’’
was coded as appearing within a circle of 7 a.u. diameter).
This meant that during the last 11 training blocks (OPA blocks
2–12), participants could find the face through memory or by
exploring the room. A trial ended after the face was found
and the participant walked into it (within a circle of <2 a.u.),
after which the viewpoint rotated to the floor and was held
in place with the ground texture and face stimulus centered
in their field of view for 2 s, accompanied by the text ‘‘You
found it, well done!.’’ After each training block of 36 trials,
participants were allowed to take a short break; participants
initiated the start of the next training block by making a button
press.

Across each set of four Day 1 training trials for a room, all four
starting positions were used once (order determined randomly
without replacement) to discourage a strictly egocentric spatial
learning strategy. For each room, the associated face, path length,
optimal path length and search time were logged, as well as the
total trajectory in x- and y-coordinates. After OPA block 4 and
after OPA block 8, participants received an association test that
directly probed their memory for the wallpaper-face associations
(see ‘‘Memory Tests’’ section below for more details). These
tests were designed to further encourage participants to form
room/wallpaper-face-location associations (rather than simply
face-location associations). The total procedure on Day 1 took
on average about 2.5 h (range 2–3 h).

Day 1 performance was assessed by computing path efficiency
(PE = traversed path length/optimal path length). Based
on behavioral pilot experiments, we required participants to
demonstrate strong knowledge of the faces’ locations at the
end of Day 1. Specifically, the average PE across the final
three Day 1 training blocks (i.e., OPA blocks 6–8) had to
be <2 (using a weighted average of PE: OPA block 6∗0.15,
block 7∗0.25, block 8∗0.6); all but two participants reached this
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FIGURE 1 | Experimental design. Participants were tested on two consecutive days, approximately 24 h apart. The paradigm was a 2D navigational paradigm in
which participants were instructed to learn face-cue locations (Old Paired Associates, OPA; in blue) in 36 rooms with differential wallpapers. On Day 1 and the
beginning of Day 2, participants learned OPA-locations on a laptop computer. During OPA block 1 they saw the OPA-location and just had to move to it, but for OPA
blocks 2–12 they had to search for the hidden OPA-location. After OPA blocks 4, 8 and 12, participants received an associative memory task in which they were
asked to pair the right face with the correct environmental/room wallpaper (in red). After finishing OPA training, participants underwent fMRI while they learned a new
(New Paired Associates, NPA; in green) location for each room, this time without a face.

level of learning and were invited to come back for Day 2
∼24 h later (mean lag of 23.97, SD 0.39 h). These criteria
were set a priori and were calculated to differentially weight
the latest block, under the assumption that it provides the
most up-to-date measure of learning, while not solely depending
on performance in the latest blocks due to concerns about
variability due to nuisance factors (e.g., possible effects of
fatigue; transient fluctuations in motivation/attention; etc). On
Day 2, participants performed the four ‘‘top-off’’ OPA training
blocks (OPA blocks 9–12), which were identical to OPA blocks
2–8 in structure, but were randomized (such that the order
of, e.g., block 2 on Day 1 was the order of block 3 on
Day 2), starting again once from all four starting positions.
Following training, participants performed another test of the
wallpaper-face associations before they proceeded to the critical
fMRI scanning session. Note that all Day 1 and the Day 2
training blocks and wallpaper-face associative memory tests were
administered in a behavioral testing room, four floors above the
MR scanning suite.

NPA Learning (fMRI)
On Day 2 and following OPA learning, participants underwent
fMRI scanning while they learned a NPA for each of the
36 rooms. All general task variables related to navigating the
rooms (i.e., the size of the rooms, the fractal wallpapers,
navigation speed, et cetera) were held constant between the OPA
training and NPA learning. During NPA learning, participants
were instructed that they would be navigating all rooms again
three times, but that the hidden faces were no longer in the
rooms. Instead, there would be a new location at which a hidden
white box was placed and they were instructed to find and learn
the location of the box. Critically, this time the white box was
not visible during the first NPA block, and thus they had to
search for it from the start. Moreover, to equate visual input at
the start of each trial, participants did not start at the corners

of the room as during OPA training, but instead always started
positioned against the middle of the wall opposite to the wall
covered in full with wallpaper. At the beginning of each trial,
participants were placed in the room facing the opposite wall
and were informed that they had to wait 8 s before they could
start searching for/navigating to the NPA; this 8-s period thus
provided an opportunity for participants to plan their navigation
(planning period). The planning period was further signaled by
a red fixation cross in the middle of the screen that disappeared
after 8 s; the response buttons were locked during this period,
ensuring the participants did not move in the environments.
At the end of each trial, corresponding to when the participant
arrived at the NPA’s location, a white square was presented in the
middle of the screen for 2 s (goal-arrival period). A 7-s inter-trial
interval (ITI), consisting of a white fixation in the middle of the
screen, separated each trial; following the ITI, the fixation cross
turned green, indicating that a new trial was about to start; onset
of the next trial was aligned with the onset of the next TR. For
each room, in addition to the associated OPA face, path length
to the NPA, optimal path length to the NPA and NPA search
time, onset times were logged for both the planning period and
the goal-arrival period.

Participants lay supine in the scanner and viewed the
screen through a mirror on top of the coil. Head movement
was minimized using padding around the head and, when
participants did not object, masking tape was placed on the
forehead and attached to the sides of the coil. This tape
provided movement feedback to the participant. To navigate
the environments, participants used a 4-key button box (fORP
932, Current Designs) under their right hand. During practice
(three trials) in the scanner, a structural scan was run. As during
OPA training, participants were shown the locations of the white
boxes within novel rooms, enabling them to practice using the
navigation buttons (the first three buttons of the button box:
left (forefinger), forward (middle finger), right (ring finger)).
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Subsequently, each NPA block consisted of one trial in each of
the 36 rooms; these trials were randomly divided into two sets
of 18 trials, which corresponded to two separate scanning runs.
Thus, participants performed six runs of 18 rooms each, allowing
each room to be repeated three times. After each run, participants
were given the possibility for a short break of a fewminutes in the
scanner. When all six runs were finished, participants completed
two 6-min localizer tasks (see below for more details). Then they
were taken out of the scanner and were given a short break.
Finally, they were taken back to the behavioral testing room to
take two more memory tests and fill out some questionnaires
(see below under ‘‘Memory Tests’’ section). In total, participants
spent between 3 h and 4 h on Day 2: ∼1 h for OPA blocks 9–12,
∼2 h for the critical NPA learning phase in the scanner, and
∼0.5 h for the final memory tests and questionnaires.

Memory Tests
All memory tests were presented using PsychToolbox 3.0.101 in
Matlab (MathWorks) on a laptop. The wallpaper-face association
tests that were interleaved throughout OPA training (i.e., after
OPA blocks 4, 8 and 12) probed associative memory for the face
cued with the wallpaper. On each test trial, a wallpaper cue was
shown on top of the computer screen (the 36 wallpaper cues
were presented in random order). Below each wallpaper cue,
all 36 faces were shown in random order in four rows of nine
faces (see Figure 1), all accompanied by a number (1–36). The
participants were instructed to type the number of the associated
face and press ‘‘Enter’’ to proceed to the next trial. Trials were
self-paced and reaction time was logged.

Following scanning onDay 2 (see ‘‘Procedure’’ section above),
participants completed two final memory tests, probing final
spatial memory for the NPA and OPA given the wallpaper or
the OPA (face cue) outside of virtual navigation. In the first test,
participants were shown a birds-eye view of the room with the
wallpaper cue printed above in random order. Participants were
instructed to click on the room where the NPA location was
located as related to the wallpaper. After clicking, they proceeded
to the next room. In the second tests, participants were shown
the same view of the room, but now with a gray wallpaper and
the associated OPA face cue, again in random order. They were
instructed to first click where the OPA was located, after which
the OPA was moved to the right location. Then, the participants
were instructed to click where the associated NPA location
was within the same room. After these final memory tests,
participants filled out questionnaires that probed: (a) general
navigating strategies Questionnaire on Spatial Representation
(QSR; Pazzaglia and De Beni, 2001); and (b) strategies specific to
this paradigm. Participants were also asked to report the number
of hours slept between Day 1 and Day 2.

Stimuli
All rooms had gray walls, a gray ceiling and a beige textured
floor. Corners were accentuated with a black line to make them
more visible. Wallpaper fractals and faces were selected based
on behavioral piloting that ensured each stimulus was easily

1http://psychtoolbox.org

identifiable and distinguishable from the others. Wallpaper-face
pairings for each environment were randomized for each
participant.

For each participant, the OPA locations were pseudo-
randomly assigned to rooms without replacement, taken from
a set of 36 predetermined locations that were calculated given
a few boundary conditions: (1) locations that were too close
to the walls were excluded, making sure participants could
walk around the box from all sides (3 a.u.); (2) a location
needed to have at least a 3-s walking distance from any
corner, which ensured that participants did not immediately
run into it when searching/navigating; and (3) OPA locations
were calculated to be approximately evenly distributed across
the environments within the aforementioned constraints (such
that, across environments and participants, the floor space
was approximately evenly tiled with OPA locations). For NPA
locations, we calculated new location coordinates using similar
boundary conditions, but the locations were positioned to have
at least a 3-s walking distance from the starting position used
for NPA learning. Critically, each participant’s NPA locations
were also constrained to be at least 7 a.u. from the same
environment’s assigned OPA location and at least 2 a.u. from all
other OPA locations used for that participant (to prevent across-
environment OPA-NPA overlap). NPA locations were not the
same, for a given environment, across participants.

Localizer
Following the NPA scanning blocks, participants performed a
functional localizer task (consisting of two 360 s fMRI runs)
to determine subject-specific face, scene (all outdoor scenes to
maximize distinction with the indoor room in our main task),
and room-cue related brain activity. Because the localizer scans
were performed to support the testing of hypotheses that are not
the focus of the present manuscript, we refrain from reporting
the details of these scans as they are not germane.

MRI Parameters
Participants were scanned at the Stanford Center for
Cognitive and Neurobiological Imaging (CNI) using a 3T
GE Discovery MR750 scanner and a 32-channel head coil
(Nova Medical). A T2∗-weighted echo planar imaging sequence
(TR = 2 s; TE = 30 ms; flip angle = 77 degrees; acquisition
matrix = 80 × 80; 42 oblique slices oriented along the AC-PC
axis; 2.9× 2.9× 2.9 mm spatial resolution) was used for both the
experimental and localizer scans. The number of scan volumes
differed across participants and across runs because of the
variable path lengths taken to the NPAs. Additionally, a 3D
T1-weighted anatomical scan was acquired for normalization
and activity localization (TR = 7.24 ms; TE = 2.78 ms; flip
angle = 12 degrees; acquisition matrix = 256 × 256; 186 sagittal
slices; 0.9 × 0.9 × 0.9 mm spatial resolution).

fMRI Preprocessing
Raw fMRI data from the spatial navigation/NPA learning
task were preprocessed using SPM122. First, the functional
data were slice time corrected to the middle slice. Second,

2http://www.fil.ion.ucl.ac.uk/spm
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motion correction was performed by using iterative rigid body
realignment to minimize the residual sum of squares between
the first and all other functional volumes. Third, rigid body
co-registration to the corresponding individual T1 structural
image was performed using mutual information optimization.
Fourth, segmentation of the T1 structural image into graymatter,
white matter and cerebrospinal fluid (CSF) was performed. Fifth,
data were spatially normalized using DARTEL (Ashburner, 2007;
Yassa and Stark, 2009), where a common template was calculated
based on the average of all individual segmented T1 structural
images (gray and white matter). Finally, data was spatially
smoothed at 8 mm FWHM. To further control for the influence
of artifacts, we utilized the Artifact Detection Tools (ART3) to
identify signal intensity and combined motion-signal intensity
outliers in conjunction with themovement parameters calculated
in SPM. Artifacts and motion parameters were included in the
single-subject first-level models (see below).

Behavioral Analyses
We first established that OPA and NPA learning rates (Figure 2)
were significant (non-zero slopes) by averaging the normalized
PEs of the 36 rooms for each block. A repeated-measures
ANOVA, with 11 measurements for OPA training (the first
block in which the location was visible was excluded) and
three measurements for NPA learning, was used to examine
learning (both PE and time to cue) of the OPA andNPA locations
over blocks using IBM SPSS Statistics 24. Pearson correlations
were used to examine the relationship between PE and time to
get to cue.

To test for a ‘‘schema’’ learning benefit of OPA knowledge on
subsequent NPA learning, two analyses were conducted:

1. First, as an initial coarse test of the hypothesis, a repeated-
measures ANOVA examined whether performance on NPA
blocks 2–3 was significantly greater than on OPA blocks 2–3.
While superior NPA vs. OPA performance could reflect the
benefits of prior knowledge of the OPA’s location within a
room during NPA learning, other accounts are also viable
(e.g., learning to learn within the task). A room-level test
(analysis #2) is needed to directly examine the hypothesis.

2. Second, we conducted a room-level test, analyzing whether
room-by-room OPA performance during training predicted
one-shot encoding success for a new spatial association
(i.e., NPA learning) in the same environments (Figure 3A).
Given that memory retrieval has been linked with mnemonic
malleability (Schlichting and Preston, 2015; van Kesteren et al.,
2016; Lee et al., 2017), we first examined the relationship
between one-shot NPA learning and prior knowledge as
a function of the precision (PE) of the most recent OPA
retrieval experience in an environment (OPA block 12;
hereafter ‘‘OPArecent’’). Second, we explored in a separate
model how trial-invariant spatial memory performance for
each environment, weighted over the last four blocks (rather
than the most recent experience; within-room average PE
for OPA blocks 9–12 — ‘‘OPAaverage’’; see below for details),
relates to one-shot NPA learning.

3http://www.nitrc.org/projects/artifact_detect/

The second set of analyses leveraged Linear Mixed Effects
(LME) modeling in R Core Team (2012) to test the predicted
behavioral relationships as fixed effects, while accounting for
random effects and mediating factors. One powerful aspect of
LME for group-level inference of this type is that we can better
characterize predicted fixed effects (e.g., group-level OPA-NPA
performance relationships) by accounting for a range of random
effects—specifically, not only random intercepts for participants,
but random slopes for participants in the tested relationship, as
well as ‘‘item effects’’ (random, undesired systematic effects of
room). When these effects are not accounted for, such random
effects can color interpretation of the fixed effects. Specifically,
examination of the data revealed a complex relationship between
‘‘luck’’ when searching the environments during the first block of
NPA learning (i.e., NPA block 1) and NPA performance during
the second block (i.e., NPA block 2; see Figure 3B). Because
such instances of ‘‘luck’’ have dramatic biasing effects on our
measure of NPA one-shot learning (i.e., NPA block 2 PE), they
complicate a test of the relationship between OPA memory and
NPA learning. Accordingly, we divided NPA block 1 PE data
into two distinct components and included them as additional
predictors in our LME models: (1) ‘‘lucky shots,’’ defined as
trajectories within 15% of the optimal path length, at which
point paths began to approximate direct routes to the goal.
This cutoff was derived from an initial computation of Frechet
distance, as implemented in the Similarity Measures R package
(Alt and Godau, 1995), which provides a measure of how far
a trajectory (participant’s true path) deviates from a reference
trajectory (optimal path). In the context of our open field
experiment, where trajectories can vary considerably in their
shape, this is an ideal measure for characterizing when a true
path was a spatially close match to the optimal trajectory.
A Frechet Lucky Shot cutoff of 3.5 units was set based on
the radius in which the hidden goal locations would become
visible, which effectively meant that the participant searched
for the NPA on a path that deviated from the optimal direct
trajectory so little that they could not miss the target. In
the standard PE metric used in the literature, this cutoff
equated to ≤ 15% PE (with one exception, a case in which a
participant accrued 31% PE by zigzagging across the optimal
path. Using this participant’s PE as cutoff, however, would be
quite liberal, resulting in many indirect paths being classified
as lucky shots); and (2) residual block 1 PEs. These block 1 PE
residual data exhibited a linear relationship with NPA block 2
performance.

Respectively, ‘‘lucky shots’’ composed 12.0% of trials and
were associated with worse NPA one-shot learning and longer
block 1 residual PEs were associated with worse one-shot
learning (evident in the overall one-shot learning∗encoding
PE relationship in Figure 3B). Although Lucky Shots were
defined by a PE threshold, it is worth noting that they did
not exhibit any relationship to the proximity of the hidden
NPA location (Lucky Shot optimal path length: 12.0–36.5 [mean
20.7 a.u.] vs. 12.1–37.6 [mean 24.2 a.u.]). This may be because
participants tended to employ distinctive search strategies in
NPA block 1 (e.g., spiraling) that could give rise to a lucky,
fairly direct trajectory towards the target. Controlling for these
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two dimensions of NPA block 1 variability when examining
the relationships between OPArecent and OPAaverage and NPA
one-shot learning allowed us to more directly test whether OPA
memory (i.e., prior knowledge of a relevant location within a
room) predicts successful one-shot NPA learning (i.e., learning
the newly relevant location within a room). The OPArecent
and OPAaverage LME analyses both treated participant and
environment/room (i.e., item effects) as random intercepts, and
models were estimated using a restricted maximum likelihood
(REML) approach. Maximal random effects (intercepts and
slopes) allowed by the data were included in each model (Barr
et al., 2013); if the maximal model could not be fit due to a
lack of observations, or would not converge (after changing
optimizers and increasing the number of iterations), the model
was pruned by iteratively removing random slopes (starting with
interaction terms). The package lmerTest (version 2.0-33) was
used for estimating p-values with Satterthwaite approximations
for degrees of freedom for one-sample t-tests from mixed effects
models.

In the OPArecent model, the OPArecent predictor of NPA
learning reflected PE for each room on the final trial of OPA
training (i.e., OPA block 12) on Day 2, prior to NPA learning in
the scanner. As noted above, we also considered the possibility
that NPA learning may differentially relate to OPArecent and
a trial-invariant index of OPA spatial knowledge; in contrast
to OPArecent, an average estimate of trial-invariant knowledge
on Day 2 may better reflect the amount of stable, consolidated
spatial knowledge for each environment prior to engaging in
NPA learning (i.e., the learned ‘‘schema’’). This distinction
was theoretically significant to us because the schema learning
literature posits that the hippocampus is less important for
retrieval of learned schemas, being instead more important for
event-related learning (van Kesteren et al., 2012). Although we
cannot quantify consolidation in the present data, our OPAaverage
measure emphasizes trial-invariant (stable) OPA performance
after a night’s consolidation. The prior schema learning
literature would therefore predict OPAaverage performance would
reduce hippocampal dependence for retrieval of even newly-
integrated knowledge of the environment—which our data
provide evidence for (see ‘‘Results’’ section below). By contrast,
OPArecent encompasses this knowledge but also reflects vagaries
of recent episodic experience (e.g., fatigue; cross-environment
mnemonic interference; continued learning; and relearning
driven by preceding errors that occurs on Day 2 leading up to this
event) that could contribute to mnemonic malleability associated
with this retrieval attempt (Schlichting and Preston, 2015; van
Kesteren et al., 2016; Lee et al., 2017) and thus further mediate
NPA learning.

This OPAaverage predictor was defined as the weighted mean
of the four OPA training trials for each room on Day 2
(i.e., OPA blocks 9–12), prior to NPA learning in the scanner
(linear weighting towards end of practice). We reasoned that
the weighted mean should downweight initial trials, because on
those trials participants had to reorient to the environments
learned the day before and they were more prone to errors.
Thus, we weighted away from the ‘‘refresher’’ state in the
beginning and towards the maximally learned schema (we note,

however, that the effect of weighting the average was ultimately
minimal, with the correlations within-subjects between weighted
and non-weighted room-by-room metrics being ∼0.96). We
removed single outlier events (if any) from each room’s mean,
using Dixon’s Q to identify spikes in PE with a 95% confidence
interval (note: with four trials per room, two or more spikes
in performance could not be considered outliers). Although the
OPArecent and OPAaverage measures are inherently correlated,
and although participants demonstrated strong OPA knowledge
through high performance on these Day 2 training blocks,
on average over 35% of the within-subject OPArecent variance
across rooms was not explained by OPAaverage performance. This
substantial variability in performance across rooms on the final
OPA training trial could, in theory, influence subsequent NPA
learning above and beyond trial-invariant OPAaverage knowledge
on Day 2, and our data (below) suggest this is the case.

fMRI Analyses
Functional data from the third and fourth NPA runs (which
correspond to NPA block 2) were combined into one model
that modeled each trial onset (planning period) as separate
regressors using a delta function. The present study’s functional
analyses (detailed below) focus on data from Block 2, because
(1) prospective retrieval signals for NPA locations would not
exist in Block 1; and (2) the relationship between Block 1 activity
and subsequent performance cannot be clearly interpreted due to
the fact that subsequent navigation in Block 1 was characterized
by wandering behavior in search of the unlearned goal location.
In our GLM, we also added a regressor for the goal-arrival
in each room, modeled as a 2-s boxcar function and the
navigation onset time, modeled with a delta function. Nuisance
regressors included: the movement and artifact regressors, a
regressor modeling scan run, and a regressor to account for
global variance.

In order to directly address our question of whether and
how prospective memory signals manifest in hippocampus
and parahippocampal cortex as a function of schema-related
learning, we extracted single-trial parameter estimates derived
from our first-level models from bilateral hippocampal and
parahippocampal cortex regions of interest (ROIs) for the
NPA block 2 planning period. Additionally, given evidence
that posterior hippocampus [and the corresponding putative
‘‘posterior medial’’ system (Ranganath and Ritchey, 2012)] may
be preferentially recruited during episodic retrieval of detailed
scene/relational information (Ranganath and Ritchey, 2012;
Poppenk et al., 2013), we further segmented the hippocampus
into head, body and tail regions. Anatomical ROIs were manually
traced in MNI space on the group averaged DARTEL template-
normalized brain using the ITK-SNAP software package4

(Yushkevich et al., 2006) using established procedures (Insausti
et al., 1998; Pruessner et al., 2000, 2002; Duvernoy, 2005; Preston
et al., 2010; Brown et al., 2014). Given recent interest in the
interplay between the MTL and mPFC in updating of knowledge
networks (van Kesteren et al., 2012; Gilboa and Marlatte, 2017),
we also conducted an exploratory analysis of mPFC recruitment

4http://www.itksnap.org
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during NPA block 2 planning. Due to variability in functional
loci across prior studies, we defined a bilateral mPFC ROI that
encompasses prior observations in the literature (van Kesteren
et al., 2012) by implementing the more ventral of two medial
prefrontal nodes (in yellow; 17-network) associated with the
default mode network, explicitly masked to the medial wall of the
PFC (Yeo et al., 2011).

The single-trial parameter estimates were entered into
separate LME models for each MTL ROI (hippocampal head,
body and tail, and parahippocampal cortex), to predict NPA
performance in the second block (i.e., a measure of one-shot
learning; see above). We employed LME modeling to render
our statistical approach involving fMRI data comparable to the
primary behavioral ‘‘schema learning benefit’’ analysis using
LME. This enabled our fMRI analyses to examine activity
as a key predictor while controlling for other factors (e.g.,
hippocampal activity predicting one-shot NPA learning while
accounting for lucky shots and NPA block 1 naïve search
performance). In these analyses, parameter estimates replaced
OPArecent and OPAaverage measures in the LMEmodels described
above, to test for the predicted relationships between prospective
(planning period) MTL activity and subsequent performance
after one-shot learning, holding ‘‘luck’’ during the one-shot
learning event constant. We also entered both OPA performance
and parameter estimates into omnibus models, aimed at
testing whether activity and OPA performance independently
predict NPA performance when the other metric is accounted
for.

Lastly, because we observed that OPA performance and
prospective hippocampal activity both predict NPA performance
after one-shot learning (see below), it was of interest to examine
the relationship between OPA performance and prospective
hippocampal activity during NPA block 2. To address this
question, we modified the two LME models used to predict NPA
performance from OPA (holding NPA luck constant) to test
whether OPA performance predicts prospective MTL activity
after one-shot learning.

RESULTS

Behavioral Results
Repeated-measures analysis revealed that both OPA learning
(blocks 2–12 PE; Greenhouse-Geisser: F(1.54,23.01) = 54.88,
p < 0.001) and NPA learning (blocks 1–3 PE) were significant
over blocks (Greenhouse-Geisser: F(1.16,17.39) = 63.51, p < 0.001).
Also time taken to find the OPA (Greenhouse-Geisser
F(1.91,28.63) = 71.33, p < 0.001) and NPA (Greenhouse-
Geisser F(1.05,15.75) = 43.23, p < 0.001) locations decreased
significantly. PE and time correlated strongly (OPA r(14) = 0.91,
p < 0.001; NPA r(14) = 0.99, p < 0.001). Associative memory
for the wallpaper-face associations also significantly increased
across OPA training: (Greenhouse-Geisser: F(1.46,21.88) = 42.74,
p < 0.001). Importantly, NPA learning (indexed by block 2 and
3 PE) was significantly faster than OPA learning (main effect
of condition (OPA vs. NPA): F(1,15) = 17.40, p = 0.001; see
Figure 2). There was a significant interaction between condition
and block (F(1,15) = 7.39, p = 0.02), indicating that the difference

between OPA and NPA performance became smaller as NPA
performance approached ceiling (see Supplementary Table S1
for full behavioral summary split by gender).

The finding of superior NPA vs. OPA learning is noteworthy
because OPA training benefitted from the OPA object/location
being visible in the initial encoding block (i.e., OPA block 1); by
contrast, the new goal location was not visible during NPA block
1. This design difference meant that: (a) both OPA and NPA
block 2 involved an attempt to retrieve a location participant
had navigated to in the immediately preceding block (the
presence/precision of a one-shot memory trace); but (b) OPA
block 2 benefited from participants having been able to encode
the OPA location in block 1 from the trial outset relative to
any reference point in the environment. Despite this, NPA
learning was substantially accelerated after the same number
of repetitions. That said, it is worth noting that this benefit
of prior OPA training on NPA learning may be accounted
for, at least in part, by: (a) a general learning-to learn benefit;
and (b) the fact that NPA trials began from the same start
position across rooms and across blocks. Without knowing
the relative impact of these respective benefits to OPA and
NPA learning, this initial coarse comparison of learning rates
should be interpreted with some caution. A room-level test is
needed to control for these alternatives and directly examine
the hypothesis that prior knowledge benefits new learning in
a continuous manner, and analyses based on this approach
(reported below) offer our primary evidence for schema-
benefitted learning.

Post-scan Memory Tests
Average performance measures for the post-scan tests were
evaluated by calculating the average ED from the correct location.
In the test where NPA-location memory was probed by cueing
the wallpaper, mean ED was 7.48 (SD 2.38). When cueing with
the OPA face, performance was significantly poorer (mean ED
8.55 (SD 3.28); t(15) = −3.11, p < 0.01). OPA performance was
better than both these values [mean ED 6.32 (SD 1.79)] and
correlated positively with both (vs. NPA-location cued memory
t(15) = 2.58, p < 0.05, r(14) = 0.66, p < 0.01; vs. OPA-face cued
memory t(15) = 3.96, p = 0.001, r(14) = 0.76, p = 0.001). OPA
memory thus did not interfere with NPA learning.

Critically, holding ‘‘luck’’ during initial NPA object search
constant [Figure 3B, note attenuated NPA learning in relation
to NPA block 1 quartile 1 as well as extended search events
(quartile 3–4)], analyses revealed that the precision of knowledge
of the previously learned goal locations (OPArecent) predicted
the degree of success of one-shot learning of new goal locations
(t(21.27) = 2.36, p = 0.03; Figure 3A). By contrast, in the
model using OPAaverage instead of OPArecent, OPAaverage did
not significantly predict one-shot NPA learning (t(13.83) = 1.69,
p = 0.11), suggesting one-shot NPA learning success is more
strongly tied to the mnemonic and cognitive state of the most
recent OPA retrieval experience.

fMRI Results
We next investigated the relationship between MTL activity
during NPA planning after one-shot learning (i.e., planning
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FIGURE 2 | Behavioral results OPA-training and NPA-learning. Average group-level behavioral results. (Upper) Normalized path length (or Path efficiency, PE, in blue)
and time needed to find the cue (in orange) for each block, both during OPA and NPA learning blocks. (Lower) Associative wallpaper-face memory was tested after
every fourth OPA block. OPA, NPA and associative performance significantly improved over blocks, revealing robust learning. Importantly, NPA learning (NPA
blocks 2 and 3) was significantly faster than OPA learning (OPA blocks 2 and 3), as supported by a significant condition × block interaction.

FIGURE 3 | Within-subject trial-level behavioral predictors of one-shot NPA learning. Quartiles reflect within-subject binning of environment-by-environment
measures into quartiles for visualization purposes only (Linear Mixed Effects, LME analyses used continuous performance differences across each environment).
(A) Performance on the most recent retrieval-practice experience with OPA items (i.e., OPA block 12) predicted NPA PE after one-shot learning (i.e., NPA
block 2 performance). (B) There was a complex, curvilinear relationship between “luck” in NPA location search in NPA block 1 and one-shot learning success
(controlled for in our statistical analyses). ∗p < 0.05.

period during NPA block 2) and subsequent NPA memory
performance (Figure 4). After one-shot NPA learning,
prospective planning activity across the hippocampus
marginally predicted subsequent NPA spatial memory accuracy
(t(12.52) = 2.01, p = 0.07; Figure 4A). Within hippocampal

subdivisions, activity in the hippocampal body significantly
predicted NPA performance (t(17.59) = 2.41, p = 0.03); this
relationship was marginal in the hippocampal tail (t(9.42) = 2.03,
p = 0.07), and nonsignificant in the hippocampal head
(t(10.30) = 1.26, p = 0.24; Figure 4C). It is important to
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FIGURE 4 | Within-subject trial-level relationship between region of interest (ROI) activity and NPA performance after one-shot learning. Quartiles reflect within-subject
binning of environment-by-environment measures into quartiles for visualization purposes only (Linear Mixed Effects, LME analyses used continuous performance
differences across each environment). (A) During NPA block 2 prospective planning (i.e., after one-shot learning), there was a marginal relationship between
hippocampal activity and navigation performance. (B) This relationship was non-significant in parahippocampal cortex. (C) Within hippocampal subdivisions,
prospective planning activity in the hippocampal body significantly predicted NPA block 2 navigation performance. Inset graphs: paralleling exploration of our
behavioral data, “Lucky Shots” (orange; controlled for in our analyses) altered the relationship between activity and one-shot NPA performance. ∗p < 0.05, ∼p < 0.1.

acknowledge, however, that this finding in the hippocampal
body would not survive correction for multiple comparisons
at traditional significance thresholds (p < 0.05), and therefore,
despite a priori motivation for examining the hippocampus on
the basis of rostro-caudal subdivisions, interpretative caution
is warranted. Whereas hippocampal activity, particularly in
the hippocampal body, exhibited prospective performance-
related signals after one-shot NPA learning, the relationship
between activity and subsequent performance in adjacent
parahippocampal cortex was nonsignificant (t(14.87) = 0.88,
p = 0.39; (Figure 4B). Indeed, despite hippocampal and
parahippocampal activity exhibiting the same qualitative
relationship with NPA performance, when we included
parahippocampal activity as a predictor in the same model,
hippocampal body activity maintained a marginally significant
relationship with subsequent NPA performance (t(18.70) = 1.90,
p = 0.07). Likewise, the hippocampal body remained a significant
predictor of subsequent NPA performance, when controlling
for activity in the hippocampal head (t(51.61) = 2.37, p = 0.02),
although this was not the case when hippocampal tail activity
was held constant (t(25.10) = 1.64, p = 0.11). Consistent with
our examination of the tail and head as individual predictors,
when the tail and head were included in the same model, neither
were significant predictors of NPA performance (p’s = 0.27 and
0.95, respectively). Note that we were restricted to examining
interactions between our different ROIs in this pairwise manner
because the models failed to converge when made more
complex. In our exploratory analysis of mPFC activity, mPFC
activity was significantly positively correlated (functionally

coupled) with the MTL ROIs (all ps < 0.001). However,
mPFC activity did not significantly predict performance on
the upcoming trial after one-shot learning (t(29.66) = 1.68,
p = 0.10).

Given that OPA performance and, to a more modest
degree, prospective hippocampal activity after one-shot learning
predicted NPA performance after one-shot learning, it was of
interest to examine the relationship between OPA performance
and hippocampal activity (Figure 5). Interestingly, there was no
evidence across MTL ROIs for a relationship with OPArecent
performance (ps > 0.70). However, within the hippocampus
there was a negative relationship between activity and OPAaverage
performance (Figure 5A) that significantly interacted with
search efficiency during NPA encoding (Figure 5B). Specifically,
when participants had better trial-invariant OPA knowledge,
if they encountered the NPA location more quickly during
NPA search, they recruited the hippocampus significantly
less when planning navigation to the NPA location on the
subsequent trial (hippocampus: t(568) = 2.63, p = 0.01; head
t(299.5) = 2.65, p = 0.01; body: t(565.6) = 2.48, p = 0.01;
tail: t(568) = 2.39, p = 0.02; PHC: t(567.9) = 1.55, p = 0.12;
mPFC: t(5) = 2.04, p = 0.10). The main effects for this
relationship did not exceed trend levels (ps > 0.08). This
finding is noteworthy because our data demonstrate that
both hippocampal activity and better OPArecent performance
positively predicted improved NPA performance after one-shot
learning.

Given the outcomes of the analysis relating OPA memory to
prospective MTL activity, we hypothesized that hippocampal
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FIGURE 5 | Within-subject relationship between OPA performance and
hippocampal activity. Quartiles reflect within-subject binning of
environment-by-environment measures into quartiles for visualization
purposes only (LME analyses used continuous performance differences
across each environment). (A) Within the hippocampus, there was a negative
relationship between planning activity and OPAaverage performance that
significantly interacted with “luck” during initial NPA encoding. (B) Controlling
for the effect of Lucky Shots, when participants had better OPAaverage

performance and encountered the NPA location quickly during NPA block 1,
they recruited the hippocampus and its subdivisions less on NPA block 2
when planning navigation to the NPA location.

activity and OPArecent performance may independently predict
NPA performance when the other metric is accounted for.
Due to the relatively large number of modeled parameters,
the results of this exploratory follow-up analysis should be
interpreted with caution, but did lend support to this idea. That
is, when both MTL activity and OPArecent performance were
entered as predictors in the same model, their independent
relationships with NPA performance demonstrated above
remained significant or marginally-significant. OPArecent
and hippocampal activity both predicted NPA performance
(hippocampus: p = 0.05, OPArecent: p = 0.05). OPArecent, but
not hippocampal head activity, marginally predicted NPA
performance (head: p = 0.28, OPArecent: 0.051). OPArecent and
hippocampal body activity significantly andmarginally predicted
NPA performance (body: p = 0.023, OPArecent: 0.052). OPArecent
and hippocampal tail marginally predicted NPA performance
(tail: p = 0.08, OPArecent: p = 0.06). OPArecent remained a
significant predictor of NPA performance when PHC activity
was held constant (PHC: 0.26, OPArecent: p = 0.05). In contrast,
when OPAaverage was instead entered in the model, neither MTL
activity nor OPAaverage knowledge were significant predictors
[holding OPAaverage constant, a marginal NPA performance
relationship with activity was observed in the hippocampus and
hippocampal body [p = 0.09 and p = 0.06]; all remaining ps for
MTL activity and OPAaverage > 0.18].

DISCUSSION

Our analyses produced several key findings: (1) a continuous
measure of the precision of OPA prior spatial knowledge predicts
one-shot NPA learning; (2) prospective hippocampal planning
activity emerges after one-shot NPA learning that predicts the
precision of memory-guided navigation; and (3) hippocampal
engagement during NPA retrieval after one-shot learning is
reduced as a function of an interaction between greater trial-
invariant OPA prior knowledge and how quickly the NPA

search during encoding was achieved. These findings extend the
sparse literature on how prior spatial knowledge affects new
navigational learning and performance in humans. We build on
this important behavioral finding to establish a link between
prospective memory signals in the hippocampus and initial
one-shot learning of new knowledge that is facilitated by prior
knowledge.

Our paradigm, while a simplified instantiation, was
designed to conceptually parallel those used in rodent
studies of the influences of prior knowledge on new learning
(Tse et al., 2007, 2011). We demonstrated clear evidence for
a continuous behavioral effect of prior spatial knowledge
on new spatial learning in humans that parallels previous
rodent (Tse et al., 2007; McKenzie et al., 2013, 2014;
Richards et al., 2014) and human (van Kesteren et al.,
2010a,b, 2013; van Buuren et al., 2014; Wagner et al., 2015;
Sommer, 2017) studies which, respectively, show memory
enhancement for newly learned information built on prior
spatial and non-spatial knowledge. As such, the present
behavioral findings not only provide a novel link between
continuous measures of spatial knowledge precision and new
spatial memory learning at a trial-by-trial, environment-
by-environment level in humans, but they also help bridge
findings from extant rodent and human research that has been
predominantly conducted in different spatial and non-spatial
domains.

The ability to flexibly plan for the future is critical
for achieving goals, and prominent theories posit that one
must access knowledge from prior experiences to construct
detailed simulations when planning for the future (Addis
et al., 2007; Buckner and Carroll, 2007; Schacter and Addis,
2009). Spatial navigation is a ubiquitous real-world example
in which prior knowledge informs prospection and planning
of future actions, and extant data in rodents and humans
support a role for the hippocampus during prospection over
spatial navigation (e.g., Johnson and Redish, 2007; Wikenheiser
and Redish, 2015; Brown et al., 2016). An open question is
how rapidly prospective navigational retrieval activity emerges
across learning, and how these signals—critical for goal-directed
behavior—relate to interactions between encoding experiences
and prior knowledge. The present findings demonstrate that
at the neural level, prospective hippocampal signals emerge
after one-shot learning and predict subsequent navigation to
new spatial goals. More specifically, greater activity in the
hippocampal body during prospective navigational planning
to the NPA location in block 2 (i.e., after one-shot NPA-
learning) predicted more precise subsequent navigation to the
NPA. By contrast, although prior literature implicates MTL
cortex in ‘‘schema learning’’ (van Kesteren et al., 2012, 2013),
this relationship was not significant in the parahippocampal
cortex and was marginally dissociable from the relationship
that we demonstrate in the hippocampal body. Prior research
has demonstrated that hippocampal computations track distance
to spatial locations (Sherrill et al., 2013; Howard et al.,
2014; Chrastil et al., 2015; Spiers et al., 2018), and represent
information about paths taken to get there (Wood et al., 2000;
Ferbinteanu and Shapiro, 2003; Lee et al., 2006; Smith and
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Mizumori, 2006; Johnson and Redish, 2007; Ito et al., 2015;
Wikenheiser and Redish, 2015; Brown et al., 2016). Our findings
are consistent with this literature and, critically, indicate that
prospective signals can emerge rapidly, after one-shot episodic
learning.

In addition to demonstrating that prior spatial knowledge
facilitates new learning, the present study explored whether
prior knowledge facilitates the rapid emergence of prospective
signals in the hippocampus that in turn supports navigational
performance after one-shot learning. Our findings revealed
a complex relationship between prior knowledge, the NPA
encoding experience, and prospective hippocampal signals.
Specifically, our estimate of trial-invariant OPA knowledge
negatively related to hippocampal activity in a manner that
was mediated by how quickly NPA locations were uncovered
during block 1. By contrast, the most recent OPA experience
(OPA block 12), while also qualitatively negatively related,
did not significantly interact with hippocampal activity; this
outcome converges with our exploratory follow-up analysis
which showed that when both hippocampal activity and
OPArecent performance were entered as predictors in the
model, they remained more robust independent predictors
of subsequent NPA performance. These outcomes suggest
that the relationship between prior knowledge and the rapid
emergence of prospective signals after one-shot learning may
be indirect. This process is potentially mediated not only by
the complexity of the encoding experience, as indicated by
our data, but also by processing in other circuitries in the
brain.

One important area for future research will be to employ
high-powered designs to explore the potential implications
of the negative and null relationships between hippocampal
activity and OPA knowledge metrics. While highly speculative,
one hypothesis to explore is a facilitative relationship in
which greater OPA (‘‘schema’’) knowledge could facilitate
more efficient hippocampal retrieval—enabling recovery of
more focal environmental information after just one learning
trial (NPA block 1). In this model, the hippocampus would
be engaged to facilitate retrieval relevant for navigational
planning after one-shot learning, as observed here, but
increased BOLD activity may be offset by a more precise
memory facilitated by an existing spatial schema. Another
speculative interpretation of our results is that they fall within
a ‘‘schema consolidation’’ perspective of memory (Morris,
2006; Tse et al., 2007; van Kesteren et al., 2012; Gilboa
and Marlatte, 2017)—when participants form more robust
knowledge of the OPA location during Day 1 training
(reflected by trial-invariant OPA performance on Day 2),
new associations may be integrated into the spatial memory
structure in a manner that decreases dependence on the
hippocampus for retrieval (van Kesteren et al., 2012). Given
recent interest in the interplay between the MTL and mPFC
in updating of knowledge networks (van Kesteren et al.,
2012; Gilboa and Marlatte, 2017), it is interesting to note
that mPFC appears to be functionally coupled with the
hippocampus during NPA retrieval after one-shot learning.
By contrast, however, mPFC was not a significant predictor

of subsequent NPA performance, nor was mPFC activity
significantly reduced in relation to greater prior knowledge.
Here, our present design did not allow us to directly address
whether mPFC activity during initial encoding provides a
mechanism for accelerated cortical learning that does not depend
on the hippocampus (e.g., SLIMM—van Kesteren et al., 2012).
However, it is possible that mPFC may modulate hippocampal
predictive signals during early learning in the presence of prior
knowledge, and this will be an interesting area for continued
research.

Together, our results suggest that recent OPA retrieval
experiences may govern effects of prior spatial knowledge on new
spatial learning, or at least significantly mediate the relationship
between trial-invariant spatial knowledge and new learning.
Trial-invariant spatial knowledge was less directly related to NPA
one-shot learning success but interacted with the behavioral
experience during initial NPA encoding to mediate hippocampal
involvement in prospective navigation after one-shot learning.
Although a mechanistic account bridging our prior knowledge
metrics and hippocampal prospective activity after one-shot
learning will require further study to address, our results
suggest that the hippocampus is involved in relating old to
new spatial knowledge, just as in rodent studies (Tse et al.,
2007; McKenzie et al., 2013, 2014; Richards et al., 2014) and
some human studies including spatial (van Buuren et al.,
2014; Sommer, 2017) and, less consistently, non-spatial learning
(Liu et al., 2017). Our findings are generative, motivating
further research into whether these hippocampal effects are
specific to schema-enhanced learning in spatial and navigational
settings, or whether they generalize to other non-spatial learning
contexts (as might be expected by integrative encoding accounts
of hippocampal memory function; Shohamy and Wagner,
2008).

Some limitations with our design should be mentioned.
Because of scanning time constraints and concerns about subject
fatigue, we could not include a non-schema condition where
participants learned a location in new rooms, (i.e., rooms without
prior knowledge). This would be an interesting addition for
future research. Also, because we wanted to equate perceptual
input over NPA trials as much as possible, and because we had
only three learning opportunities for NPA, we decided to have
participants start at the same position on every block. For this
reason, NPA learning could have been more egocentric than
OPA learning, where participants started from different corners
and were allowed to develop a more allocentrically focused
memory. This distinction would be another useful consideration
for future research.

Here, we focused on brain activity during the block 2 planning
period. This is because we could not interpret activity-behavior
relationships in block 1 as a memory-based search (as targeted
by our study). Participants typically employed a highly distinctive
search strategy (e.g., a spiral) on the first block across rooms that
had no clear relationship to OPA location. As such, behavior
and activity in block 1 would be dominated by implementing an
environment-independent search strategy rather than any trace
memory for the NPA location (which they had not encountered
yet). Moreover, we could not relate behavior in block 3 to
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one-shot learning, because there had already been two learning
possibilities prior to this block.

Interestingly, prospective NPA performance relationships
were significantly related to neural activity in the body of
the hippocampus. Prior literature has emphasized the potential
importance of the hippocampal tail for spatial memory and
successful planning towards goals (Fanselow and Dong, 2010;
Sherrill et al., 2013; Miller et al., 2017), motivating our
analysis of hippocampal function based on rostro-caudal
subdivisions. In our data, the tail was not the locus of the
most significant relationship with NPA performance, although
we note that the ability of the body to predict subsequent
NPA performance independently from the tail only approached
marginal significance (p = 0.11). Interestingly, however, activity
in the hippocampal body was a significant independent predictor
of NPA performance from the head, suggesting functional
differentiation in the anterior extent of the hippocampus.
Importantly, recent work suggests prospective goal coding is
distributed along the long-axis of the human hippocampus
(Brown et al., 2016), rather than localizing to the tail, and
although our results were somewhat unexpected they underscore
the importance of evaluating hippocampal function at the level
of rostro-caudal subdivisions. In turn, although the dissociation
between the hippocampal body and parahippocampal cortex
was only marginally significant at traditional alpha thresholds,
our data suggest the hippocampal body may also make a
distinguishable contribution to prospective navigation after
one-shot learning from the parahippocampal cortex, in which
predictive effects did not approach significance. As with
the dissociation between the body and the head, this result
should be interpreted with caution, but it is nevertheless
interesting given that parahippocampal cortex is well-established
to support spatial scene processing and is often found to
support navigational performance in other contexts (Epstein,
2008;Weniger et al., 2010; Howard et al., 2011; Brown et al., 2014,
2016; Marchette et al., 2015; Epstein et al., 2017). In particular,
remote and well-practiced spatial knowledgemay bemore reliant
on parahippocampal cortex than the hippocampus (Rosenbaum
et al., 2004; Moscovitch et al., 2006). One influential theory of
MTL memory function juxtaposes rapid memory formation in
the hippocampus with more gradual learning mechanisms that
could be supported by MTL cortex (McClelland et al., 1995;
Kumaran and McClelland, 2012). Therefore, one possibility is
that significant parahippocampal prospective memory signals
may require more repetitions to emerge than our critical
one-shot NPA learning measure indicative of schema learning
benefits. Another possibility is that the parahippocampal cortex’s
more general role in processing scene information (Epstein
et al., 1999, 2017; Epstein, 2008; Marchette et al., 2015)
contributes important information for performance on our task
that is nevertheless less directly related to trial-wise subsequent
navigation performance.

Lastly, when considering the relationship between precision
of OPA knowledge and new learning, it was notable that the most
recent measure (i.e., performance on OPA block 12) was more
predictive of NPA learning than average performance on Day 2
retrieval blocks, which may offer a more pure representation of

the level of consolidated knowledge (Dudai et al., 2015) following
Day 1 training. This is an important finding, because the world is
in constant flux, and the structure of our spatial memories may
quantifiably evolve with continued practice in an environment
(McKenzie et al., 2013). Our data suggest that the vagaries of
recent retrieval-practice experience (Hulbert and Norman, 2015;
Antony et al., 2017) with an individual environment influence
how effectively new information about that environment is
encoded and retrieved. Importantly, this OPArecent measure is
not independent from the overall level of knowledge of a given
environment (indeed, it was correlated with OPAaverage, as one
would expect). Consequently, OPArecent may relate most-closely
to one-shot NPA learning due to the fact that it carries
information about both the overall level of knowledge about an
environment going into Day 2 and participants’ current state
of retrieval success, fatigue, interference between environment
memories, and other factors that would be unique to the most
recent trial in each environment. Therefore, our data suggest that
there may be important insights to be uncovered when research
into the effects of prior knowledge on new learning measures
examines the influences of the most recent experience with
accessing that prior knowledge. One potentially fruitful future
direction will be to explore the relationship between the rapid
NPA learning and retrieval effects demonstrated by our work
and mechanisms of reconsolidation (Hupbach et al., 2007, 2008;
Tronson and Taylor, 2007; Sederberg et al., 2011). NPA learning
can be viewed as a re-experiencing of the learned environment in
the context of a new navigational goal, and it may be possible to
design variants of this task in which changes to a learned spatial
memory engram from OPA to NPA learning experiences are
quantifiable.

Alternative outcomes to what we observed might be predicted
by other theories and empirical phenomena. In particular, the
phenomenon of ‘‘blocking’’ (e.g., Hamilton and Sutherland,
1999) and, more broadly, the existence of proactive interference
(e.g., Underwood, 1949) might lead to the prediction that
environments in which the OPA was better learned would be
the ones in which it would be harder to learn the NPA. Again,
our findings demonstrated the opposite, as better OPA learning
predicts better NPA learning, consistent with the schema-
enhanced learning hypothesis (along with other evidence of the
benefits of mnemonic integration; e.g., Shohamy and Wagner,
2008; Kuhl et al., 2010).

In conclusion, our findings revealed a relationship between
the precision of prior spatial knowledge and new spatial
learning in humans. Moreover, the hippocampus prospectively
codes the precision of this new spatial learning after one-shot
learning. Finally, prior knowledge and the complexity of
encoding experiences appear to interact with prospective
hippocampal signals that support one-shot learning behavior.
These relationships could arise through several mechanisms,
and thus our findings help frame future research in this
area. The present results extend the current human schema
literature, offering important insights into the behavioral
manifestations of spatial knowledge that can give rise to
enhanced new learning, and suggesting a potential role for
the hippocampus in translating one-shot spatial learning that
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is facilitated by prior knowledge into prospective navigational
planning.
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