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Papain-like cysteine proteases (PLCP) are prominent peptidases found in most living
organisms. In plants, PLCPs was divided into nine subgroups based on functional
and structural characterization. They are key enzymes in protein proteolysis and
involved in numerous physiological processes. In this paper, we reviewed the updated
achievements of physiological roles of plant PLCPs in germination, development,
senescence, immunity, and stress responses.
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INTRODUCTION

Proteases include diverse families (e.g., cysteine-, serine-, aspartic-, metallo-, and threonine-
proteases) and play crucial roles in protein proteolysis (van der Hoorn, 2008). Based on the
evolutionary relationships, they have been subdivided into 61 clans of 253 families (Rawlings et al.,
2016). Among them, papain-like cysteine proteases (PLCPs), featuring a nucleophilic cysteine thiol
at the active site (i.e., Cys, His, and Asn), are one of the most abundant groups of cysteine proteases
(Rawlings et al., 2010).

Papain-like cysteine proteases are found in most organisms, including virus (Rawlings et al.,
1992), bacteria (Kantyka et al., 2011), yeast (Enenkel and Wolf, 1993), protozoa, plants, and animals
(Rawlings et al., 2010; Novinec and Lenarcic, 2013). These enzymes are produced as inactive
precursors with a signal peptide for protein secretion and an auto-inhibitory prodomain to prevent
unwanted protein degradation (Figure 1; Coulombe et al., 1996). The active protease domain
contains the catalytic triad Cys-His-Asn (Figure 1).

Papain-like cysteine proteases genes belong to a large multigenic family with 31, 43, 40, 26, 40,
and 24 PLCP family members were identified in Arabidopsis, rubber, cassava, castor, poplar, and
grapevine, respectively, and they were divided into 9 subfamilies based on structural characteristics
(Figures 1, 2; Martinez and Diaz, 2008; Zou et al., 2017b). In animals, PLCPs are well known
lysosomal proteases that perform significant functions in the terminal degradation of proteins
within autolysosomes (Kroemer and Jaattela, 2005; Man and Kanneganti, 2016). In recent years,
vast majority of plant PLCPs have been characterized during many plant processes. In this review,
we summarized what is known of plant PLCPs in growth, seed germination, anther development,
senescence, immunity and stress responses (Figure 3 and Table 1).

PLCPs FUNCTION IN SEED GERMINATION

Storage, structural, metabolic, and protective proteins are stored in seeds. During germination,
these seed proteins were mobilized or degraded to nourish growing seedlings. These processes were
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FIGURE 1 | Protein structures of Arabidopsis papain-like cysteine proteases
(PLCPs) [modified from Richau et al. (2012) and Misas-Villamil et al. (2016)].
SP, N-terminal signal peptide; Pro-domain, an auto-inhibitory domain;
Protease, the catalytic domain contains the catalytic triad Cys-His-Asn;
Granulin, C-terminal granulin domain; NPIR, a vacuolar targeting signal; KDEL,
a C-terminal retrieval signal for ER localization. Common disulphide bridges
and subfamily specific disulphide bridges are indicated with red thin lines and
blue thin lines, respectively.

mainly triggered by PLCPs (Grudkowska and Zagdanska, 2004).
In germinating maize and wheat, cysteine proteinases amount
up to 90% of total proteolytic activity of prolamins (Grudkowska
and Zagdanska, 2004). During Vicia sativa seed germination, four
PLCPs (CPR1, CPR2, proteinase A, and CPR4) were identified
with CPR1 and CPR2 were involved in the mobilization of vicilin
and 7S storage globulin (Fischer et al., 2000; Schlereth et al., 2000,
2001). 27 PLCPs were identified during barley grain germination
(Zhang and Jones, 1995), and two PLCPs (EP-A and EP-B)
were purified (Poulle and Jones, 1988). Two isoforms of EP-B
(EPB1 and EPB2) were identified in the germinating seeds with
its expression was induced by gibberellin (GA) and suppressed
by abscisic acid (ABA) (Koehler and Ho, 1990; Mikkonen
et al., 1996). The homolog cysteine endopeptidase EP8 of

barley EP-A (HvEPA) in triticale was responsible for mobilizing
stored proteins during seed germination, and its activity can be
inhibited by endogenous cystatin TrcC-4 (Prabucka et al., 2013).
During seed germination, these proteases were secreted from the
scutellar epithelium and aleurone layer to the endosperm which
degrade the endosperm storage proteins to provide nitrogenous
nutrients for young seedlings (Mikkonen et al., 1996). In
addition, HvPap-1, a GA induced PLCP, was reported to play
essential functions in protein mobilization during barley grain
germination (Cambra et al., 2012). HvPap-1 was localized to the
protein bodies and vesicles in the embryo, and it could degrade
barley endosperm proteins (hordeins, albumins, and globulins).
The overexpression of HvPap-1 decreased starch amount in
seeds and increased germination rate, while silencing HvPap-1
displayed an opposite phenotype with increased starch amount
in seeds and decreased germination rate (Diaz-Mendoza et al.,
2016). These results indicate that PLCPs are important factors
in mobilizing storage proteins to promote seed germination, and
their expression and/or activity is regulated by GA, ABA, and
cystatins. Arabidopsis PLCPs genes display differential expression
in different organs, with PAP2, PAP3, and RD19A display
high expression in seed, while PAP4 and PAP5 display high
expression in leaf. These researches highlight divergent functions
of different PLCP proteins. In addition, a lot of PLCPs display
high expression in various tissues and organs, such as RD21A,
RD21B, RD19A, indicating a housekeeping role in plant growth
and development (Richau et al., 2012).

In view of the important roles of PLCP proteins in seed
germination, the regulation of PLCPs activity should play
essential function in seed germination and seedling development.
Phytocystatins (PhyCys) are a group of small proteins and can
directly inhibit PLCPs activity (Arai et al., 2002). Many PhyCys
have been identified, such as TrcC-6 (Siminska et al., 2015) and
TrcC-8 protein that exert an inhibitory effect on PLCP through
the interaction with PLCPs (Prabucka et al., 2017). The activities
of PhyCys and PLCPs need to maintain a relatively balanced
level to ensure the normal seed germination (Szewinska et al.,
2016).

The nutrients provided by plant seeds are the basis for the
growth and development of offspring. PLCPs are one of the
key factors to initiate and complete this process (Szewinska
et al., 2016). It is well known that seed germination may be
destroyed under adversity stresses, resulting in the inability to
form seedlings. Under stress conditions, the activity of PLCPs
and their regulatory factors may be destroyed, but the specific
mechanism of “destruction” and the resulting consequences need
further analysis in various plants.

PLCPs ASSOCIATED WITH
PROGRAMMED CELL DEATH

Programmed cell death (PCD) is a highly ordered and
genetically controlled process that removes unwanted or
damaged cells in both eukaryotic and prokaryotic organisms,
playing important roles in protecting against environmental
stresses and pathogen invasions. DNA fragmentation, reactive
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FIGURE 2 | Phylogenetic analysis of PLCPs in Arabidopsis, rice, maize, barley, and Brassica rapa. Sequence alignment was performed using MUSCLE and the
phylogenetic tree was constructed using bootstrap maximum likelihood tree (1000 replicates) method of MEGA6.

oxygen species (ROS) accumulation and organelle “degradation”
were general features of PCD process. PCD played essential
functions throughout the plant’s life cycle from embryogenesis to
plant death (Staal and Dixelius, 2007; Lord and Gunawardena,
2012).

Papain-like cysteine proteases are essential regulators of plant
PCD. In Arabidopsis, a lot of PLCPs were reported in the PCD
of tracheary element (TE), tapetum, suspensor, and ER-stress-
induced cell death, respectively (Zhao et al., 2000; Cai et al., 2018).
AtXCP1 and AtXCP2, two xylem-specific PLCPs, were expressed
at a high level in xylem during the PCD process. However,
no developmental differences were observed in the single xcp1,
xcp2 mutants and the double mutant xcp1/xcp2, suggesting
that they act redundantly with other regulators to regulate

TE-PCD (Zhao et al., 2000). Cathepsins are the cysteine protease
of papain-like C1A and are important regulators involved in
numerous plant biological processes, including leaf senescence
and PCD. Three Arabidopsis cathepsin B proteins (AtCathB1-
3) were identified with tandem mass spectrometry, and its triple
mutant displayed a strong reduction in the PCD induced by
abiotic stress (e.g., ultraviolet, oxidative stress) and endoplasmic
reticulum stress (Ge et al., 2016). Further research showed that
the silencing of cathepsin B reduced ROS accumulation and ER-
stress-induced PCD (ERSID), while the downregulation of PBA1
increased ERSID, demonstrating that ERSID was positively and
negatively regulated by cathepsin B and PBA1, respectively (Cai
et al., 2018). High catalytic activity of tobacco PLCP protein
NtCP14 was restricted only to the suspensor at the 8- and
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FIGURE 3 | PLCPs play important functions in multiple processes of plant growth including seed germination, PCD, abiotic stress and immunity. The genes
implicated in each process are discussed in this review.

32-celled embryo stages, which correlating with the onset of
PCD (Zhao et al., 2013). The overexpression of NtCP14 induces
premature cell death in the basal cell lineage and leads to
embryonic arrest and seed abortion, whereas the silencing of
NtCP14 leads to profound delay of suspensor PCD (Zhao et al.,
2013). These results indicate that PLCPs play key regulatory roles
in seed, TE, tapetum, suspension, and ERSID.

Tapetum plays a crucial role in pollen development
by secreting numerous nutritive proteins, enzymes, and
sporopollenin precursors for pollen maturation (Plackett et al.,
2011). Tapetum undergoes PCD during the late stages of pollen
development and disruption PCD of tapetal cells will result in
male sterility (Ku et al., 2003; Kawanabe et al., 2006; Li et al.,
2017). AtCEP1, one KDEL-tailed PLCP, is expressed in tapetum
and localized in endoplasmic reticulum (Zhang D. et al., 2014).
In cep1 mutant, tapetal PCD was delayed and pollen production
was reduced. Further transcriptomic analysis showed that
the expression of genes involved in tapetum degradation and
pollen development were changed in cep1 mutant (Zhang D.
et al., 2014). These results showed that CEP1 plays an essential
function in tapetal cell PCD and pollen development (Zhang
D. et al., 2014). Moreover, a papain-like cysteine protease
from Brassica napus, BnaC.CP20.1, is significant to tapetal
degeneration and pollen-wall formation (Song et al., 2016).
The ectopic expression of BnaC.CP20.1 prompt tapetum PCD
and lead to male sterile (Song et al., 2016). In summary, the
tapetum PCD is extremely important for pollen development,
and PLCPs play important roles in this process. Although some
PLCPs have been studied, the PLCPs which play key roles in

the tapetum PCD process have not been identified or studied in
depth.

PLCPs INVOLVED IN LEAF
SENESCENCE

Leaf senescence is a physiological process that recycling the
endogenous nutrients from the senesencing leaves to support
the growth of younger leaves and reproductive organs. Protein
breakdown is one of the most fundamentally important reactions
during leaf senescent and PLCPs play important functions in
protein proteolysis during leaf senescence (Bhalerao et al., 2003;
Roberts et al., 2012; Diaz-Mendoza et al., 2014). In Arabidopsis,
many members of PLCPs, including SAG12, RD21A, AtRD19A,
RD19C, ALP/SAG2/AALP/ALEU, CTB1, and CTB3, have been
described as participants in leaf senescence (Lohman et al., 1994;
Yamada et al., 2001; Gepstein et al., 2003; Guo and Cai, 2004; Guo
and Gan, 2014).

SAG12 exhibits a strictly senescence-associated expression
pattern in leaves and thus has been widely used as a senescence
marker gene (Lohman et al., 1994). The sag12 mutant did
not show any discernible variation in phenotype under normal
conditions, whereas, under low nitrogen (LN) conditions, the
yield was decreased in sag12 mutant, suggesting that SAG12
participate in the N remobilization that sustains seed production.
In addition, the B. napus homolog of SAG12 and RD21A
proteases were also reported in protein degradation and response
to N limitation in senescent leaves (Poret et al., 2016).
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TABLE 1 | Catalog of plant papain-like cysteine proteases (PLCPs) involved in germination, development, senescence, immunity, and stress responses.

PLCP Species Function Reference

EP-B Barley Induced expression in the germinating seeds; Koehler and Ho, 1990;

Degrade the endosperm storage proteins to provide Mikkonen et al., 1996.

nitrogenous nutrients for young seedlings.

Pap-1 Barley Involved in grain protein mobilization during germination; Cambra et al., 2012;

Silencing decreased germination rate and delayed Diaz-Mendoza et al., 2016;

senescence process. Velasco-Arroyo et al., 2016.

CathB Arabidopsis Mutants displayed reduced PCD during abiotic stress and Ge et al., 2016;

endoplasmic reticulum stress. Cai et al., 2018.

Pap-1/6/9 Barley Inhibition of cathepsins increased the stress-induced Barany et al., 2018.

microspore embryogenesis.

CP14 Tobacco Silencing delayed PCD of suspensor. Zhao et al., 2013.

CEP1 Arabidopsis Mutants delayed tapetal PCD and decreased pollen Zhang D. et al., 2014

production.

SAG12 Arabidopsis Induced during senescence; Lohman et al., 1994;

Mutants decreased yield under low nitrogen (LN) conditions. James et al., 2018.

SAG12-
H1RD21

Rubber tree Highly expressed only in senescent leaves. Zou et al., 2017a.

1A Arabidopsis Involved in dehydration stress; Koizumi et al., 1993;

Mutants enhanced susceptibility to Botrytis cinerea. Shindo et al., 2012.

RD19A Arabidopsis Involved in dehydration stress; Koizumi et al., 1993;

Mutants enhanced susceptibility to Ralstonia solanacearum. Bernoux et al., 2008.

CP

CP20.1

SPCP2

Mir1

AALP
Rcr3

Pip1
C14

XCP2

Wheat

Pepper
Brassica napus

Sweet potato

Maize

Arabidopsis
Tomato

Tomato
Nicotiana
benthamiana
Arabidopsis

Increased expression under abiotic stress and played a role in water deficit;
Silencing enhanced tolerance to salt and osmotic stress.
Ectopic expression leads to premature degradation of tapetum, involvement in
tapetum degradation and pollen wall synthesis.

Enhanced resistance to drought and salt stress when overexpressing;
Increased sensitivity to drought stress when overexpressing.
Induced expression at wounding site;
Enhanced resistance to caterpillar;
Acts as ethylene signal conferring resistance to corn leaf aphid;
Increased protein activity in senescent leaves, mutants delay leaf senescence.
Up-regulated upon pathogen attack and inhibited by pathogen-derived inhibitors;

Resistance to Phytophthora infestans, Cladosporium fulvum, and Globodera
rostochiensis.

Silencing plants susceptible to C. fulvum, Pseudomonas syringae, and P. infestans.
Silencing plants susceptible to P. infestans.

Mutants decreased susceptibility to R. solanacearum.

Zang et al., 2010;

Xiao et al., 2014.
Song et al., 2016;

Chen et al., 2010;
Chen et al., 2013;
Chang et al., 2000;
Pechan et al., 2002;
Louis et al., 2015.
Pruzinska et al., 2017.
Kruger et al., 2002;
Tian et al., 2007;
Dixon et al., 2000;
Song et al., 2009;
Lozano-Torres et al., 2012.
Ilyas et al., 2015.
Kaschani et al., 2010.

Zhang B. et al., 2014.

Based on the senescence-specific characterization of SAG12,
an autoregulatory senescence inhibition system (PSAG12-IPT)
has been explored by fusing the SAG12 promoter (PSAG12)
to a cytokinin-biosynthesizing enzyme-isopentenyl transferase
(IPT) (Gan and Amasino, 1996). This fusion activates the
expression of IPT at the onset of senescence and subsequently
increases the cytokinin levels which, in turn, delays the decay
of plant senescence (Gan and Amasino, 1996). This technology
has been successfully applied in practical applications in many
plant species and is approaching commercialization (Guo
and Gan, 2014). Various SAG12 orthologs genes with similar
functions have beed identified in a variety of plant species
including rice, B. napus, sweet potato and tobacco (Noh and
Amasino, 1999; Chen et al., 2002; Beyene et al., 2006; Gombert
et al., 2006; Liu et al., 2010). Similar to Arabidopsis SAG12,

rice PSAG39-IPT transgenic plants displayed a delayed leaf
senescence phenotype and greater number of emerged panicles,
suggesting the homologs function as Arabidopsis SAG12 (Liu
et al., 2010). Similarly, in rubber tree (Hevea brasiliensis),
there are 17 Arabidopsis SAG12 orthologs (HbSAG12H1–17)
with HbSAG12H1 displayed the same expression pattern as
senescence-associated genes, indicating that HbSAG12H1 can
also act as a molecular marker to study the leaf senescence
mechanism of Hevea (Zou et al., 2017a). Subsequently, Zou et al.
(2017b) used HbSAG12H1 as the indicator to successfully identify
six new PLCP genes, i.e., HbRD21B, HbRD21E, HbRD21F,
HbCEP1, HbXBCP3L, and HbRD19B by deep sequencing of
the senescence rubber leaf transcriptome, suggesting that these
PLCPs may play important roles in leaf senescence (Zou et al.,
2017b). In addition, the individual dark treatment of Arabidopsis
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leaves (8 weeks old) showed that the leaf senescence program
was induced to start, and the activities of many PLCPs were
increased, among which RD21A and AALP displayed the highest
induction in senescing leaves (Pruzinska et al., 2017). By
phenotypic analysis of the aalp-1 and rd21A-1/aalp-1 mutants,
fewer senescent leaves were identified and senescence was delayed
than wild type, indicating that AALP may be helpful to the
senescence process of plants (Pruzinska et al., 2017).

In summary, leaf senescence is a finely regulated process
involving the degradation of many substances. The enzymatic
reactions catalyzed by PLCPs encoded by senescence-associated
genes (SAGs) are an important pathway for protein degradation.
At present, SAG12 is the most intensively studied senescence-
associated PLCPs, whose function has been characterized in
many species. In addition to SAG12 and other PLCPs that have
been studied, there are many more PLCPs participating to leaf
senescence remain largely unknown.

PLCPs MEDIATE PLANT ABIOTIC
STRESS RESPONSE

Plants are constantly challenged by environmental abiotic stresses
(e.g., heat, drought, cold, or salinity). Plants have evolved delicate
mechanisms to cope with abiotic stresses by reprogramming the
expression of gene subsets and inducing an adaptive response.
The recycling of proteins by plant proteolysis is a primary
defense line for plant survival. Among protease families, PLCPs
are the predominantly up-regulated plant proteases, and exhibit
increased expression in response to multiple environmental
stresses (Rabbani et al., 2003; Kempema et al., 2007; Roberts et al.,
2012; Diaz-Mendoza et al., 2014).

AtRD21A and AtRD19A, two important protein markers
for dehydration stress adaptation, were highly induced by
drought and salt stresses (Koizumi et al., 1993). Under PEG,
salt and cold stresses, the expression of wheat PLCP gene
(TaCP) was upregulated (Zang et al., 2010). In addition,
transgenic Arabidopsis overexpressing TaCP showed stronger
drought tolerance under water-stressed conditions than wild-
type, indicating that TaCP plays a role in mediating dehydration
tolerance (Zang et al., 2010). Sweet potato SPCP2 gene showed
enhanced expression during senescence and was also regulated
in response to dark, ABA, JA and ethephon treatment (Chen
et al., 2010). The overexpression of SPCP2 in Arabidopsis
enhanced resistance to drought and salt stress (Chen et al.,
2010). Whereas, the overexpression of sweet potato SPCP3
in Arabidopsis conferred sensitivity to drought stress (Chen
et al., 2013). The expression of pepper (Capsicum annuum)
PLCP gene (CaCP) was induced during leaf senescence and
was also significantly unregulated by abiotic and biotic stress
treatments (Xiao et al., 2014). The suppression of CaCP in pepper
enhanced tolerance to salt and osmotic stress (Xiao et al., 2014).
HvPap-1 was induced in response to dark and nitrogen starvation
(Velasco-Arroyo et al., 2016). The overexpression of HvPap-1
in barley accelerated leaf senescence, while silencing HvPap-
1 with amiRNA delayed senescence process (Velasco-Arroyo
et al., 2016). In addition, under stress condition, the expression

of three barley cathepsin-like proteins (HvPap-1, HvPap-6, and
HvPap-19) were increased and autophagy was activated in
barley micropores, and the inhibition of cathepsins by caspase-
3 inhibitors reduced apoptosis and increased the stress-induced
microspore embryogenesis (Barany et al., 2018). In water
deficient barley leaves, cystatin HvCPI-2 and HvCPI-4 delay the
natural senescence process and increase tolerance to drought by
regulating the expression and activity of HvPap-1, HvPap-12, and
HvPap-16 C1A proteases, which may be due to the tight control
of protease activity to avoid sudden degradation of proteins
(Velasco-Arroyo et al., 2018).

Protein hydrolysis is very important for plants to response
adversity stresses. In addition to enhancing plant resistance to
stress, many PLCP proteases also accelerate plant leaf senescence
or enhance plant sensitivity to abiotic stress. In this case,
plants often regulate the gene expression or protein activity
of PLCPs through some regulators to promote plant growth
and increase crop yield. The currently deep-study regulatory
factors of PLCP are phytocystatins, and many researches have
revealed that the overexpression of phytocystatins significantly
delays plant leaf senescence and increases stress tolerance, and
the direct inhibition of protease activity may be the main reason
(Kunert et al., 2015; Subburaj et al., 2017; Tan et al., 2017a,b). In
conclusion, the differential effects of PLCPs in different species
are determined by various factors such as the spatiotemporal
pattern of protease expression and action, action substrate, and
specific growth period and growth state in which the plant
is located. Therefore, in different specific environments, the
regulation of PLCPs activity is extremely important to enhance
plant stress tolerance.

PLCPs PLAY A KEY ROLE IN PLANT
IMMUNITY

In natural environment, plants are also attacked by a diverse array
of pathogens and pests, including bacteria, fungi, oomycetes,
nematodes, insects, and microbes. Many studies have highlighted
the importance of PLCP in defense against plant pathogen.
In most cases, a lack of PLCP expression leads to alterations
of pathogen resistance because PLCP mutations are more
susceptible to pathogen infection (Misas-Villamil et al., 2016).

Maize inbred resistance 1 (Mir1), a secreted maize PLCP that
localized in vesicle, showed high accumulation at the wounding
site after larval feeding (Chang et al., 2000). Tobacco budworm
larvae feeding with Mir1-overexpressing plants caused severe
damage to caterpillar for Mir1 degraded the peritrophic matrix
of the insect gut (Pechan et al., 2000, 2002). Recent research
showed that ethylene (ET) was required for accumulation of
Mir1 and contributed to heighten resistance to corn leaf aphid
(CLA) in maize (Louis et al., 2015). In addition, PLCPs are also
key regulators of salicylic acid (SA)-dependent defense signaling.
Previous studies have shown that SA treatment can strongly
induce PLCP protein activity in maize leaves, and the activated
apoplastic PLCPs can in turn induce the expression of SA-
related immune genes (van der Linde et al., 2012). The latest
research reveals that PLCPs need to release Z. mays immune
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signaling peptide 1 (Zip1) through their protein precursors
to induce SA accumulation and activate SA defense signaling
in leaves (Ziemann et al., 2018). These results indicate that
the interaction of SA with PLCPs plays a key role in the
expression regulation of downstream defense genes under biotic
stress.

Tomato Rcr3 (Required for Cladosporium resistance-3) and
Pip1 (Phytophthora inhibited protease-1) were up-regulated
upon pathogen challenge and their activities were inhibited by
pathogen-derived inhibitors (Kruger et al., 2002; Tian et al.,
2007). Deletion of Rcr3 enhanced plants susceptibility to the
pathogen Phytophthora infestans (Song et al., 2009), Cladosporium
fulvum (Dixon et al., 2000), and nematode Globodera rostochiensis
(Lozano-Torres et al., 2012). Similar with Rcr3, the Pip1 mutant
plants were also more susceptible to C. fulvum, Pseudomonas
syringae, and P. infestans (Ilyas et al., 2015). Silencing of C14
in Nicotiana benthamiana increased plants susceptibility to
P. infestans (Kaschani et al., 2010). In addition, Arabidopsis rd19
and rd21 mutants are more susceptible to bacterial pathogen
Ralstonia solanacearum and fungal pathogen Botrytis cinerea,
respectively (Bernoux et al., 2008; Shindo et al., 2012). Whereas,
xcp2 mutant displayed decreased susceptibility to R. solanacearum
(Zhang B. et al., 2014).

Taken together, these data demonstrate that PLCPs play a
determinative role in regulating pathogen defense. However, as
can be seen from the above studies, previous studies have focused
on the reduction of plant immunity after mutation of PLCP
genes, but there is relatively little understanding of how PLCPs
participate in plant immune defenses; furthermore, PLCPs play a
key role in the plant defense hormone signaling pathways such
as ET- and SA-pathway. We have known that the coordinated
interaction among various defensive hormones of plant is crucial
for the plant immunity. Therefore, studying the role of PLCPs in
various plant hormone pathways and the mechanism of action
will be an effective way to understand how PLCPs maintain
or enhance plant immunity. On the other hand, synthetically
revealing the role of PLCPs in plant immune processes is another
important research content for the comprehensive exploration of
plant immune mechanisms.

CONCLUDING REMARKS

Over the past few years, the study of plant PLCPs has widened
considerably, and deciphering the molecular function of these
proteases is advanced. PLCPs have a broad substrate specificity,
and their protein location, activation and inactivation are tightly
regulated in a number of ways. However, the direct link
between PLCPs activation and perception in plant signaling
has not been fully explored. Functional redundancy of PLCPs
has hampered defining their biological functions. Therefore,
multiple experimental approaches including double or even
triple mutants are needed to address its biological functions.
Clearly, further investigation is required to understand how
PLCPs perceive stresses and signals and what is the downstream
players in PLCP pathways. Sensitive and novel techniques, such
as quantitative proteomics and labeling probes, were used to
uncover protease substrates and function (Demir et al., 2018;
van der Hoorn and Rivas, 2018), thereby may facilitate to
advance our mechanical understanding to the function of plant
PLCPs.
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