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Abstract: Disparity estimation is one of the most important research topics in computer vision. Numerous local-
based approaches have been proposed to solve this problem. Among them, most state-of-the-art methods mainly 
focus on color information when initializing the cost volume. However, color signals are less robust and more 
easily affected by image noise, illumination variation and radiometric differences. In this paper, we develop a 
high quality disparity estimation system based on an integrated matching cost initialization algorithm. During 
the cost initialization step, three individual cost terms are utilized to construct the cost volume: Gradient-based 
Census Transform (GCT), Absolute Color Differences (ACD), and Gabor Pattern Differences (GPD). The 
proposed method produces impressive performance and ranks excellently in the Middlebury benchmark. 
Furthermore, we present that the proposed scheme is also capable for real-world outdoor scenes which contain 
many challenges. Both quantitative and qualitative evaluations demonstrate that our approach is currently one of 
the most accurate local-based stereo matching algorithms. Copyright © 2013 IFSA. 
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1. Introduction 

 
Disparity estimation from a stereo image pair has 

attracted much interest over the past few decades and 
it is still one of the most fundamental tasks in the 
research area of computer vision [1]. It is highly 
important in fields such as entertainment, information 
transfer, robotics, virtual reality systems, etc. 
Disparity estimation aims at estimating a dense 
disparity map from two original images of the same 
scene taken from different viewpoints. Generally, the 
disparity map describes the horizontal displacement 
between corresponding pixels located at different 
views. The main challenge of this task is how to 
accurately estimate the disparity from an image pair 
under different conditions including smooth surfaces, 

sharp boundaries, ambiguous areas and  
occluded regions.  

A large number of studies have been explored to 
address this issue in the last few years. A detailed 
overview on these stereo matching algorithms and the 
state-of-the-art methods can be found in [2-4]. An 
integrated evaluation platform, namely Middlebury 
website [5], also provides a review of the latest 
methods. In general, these methods can be divided 
into two categories: global and local approaches. 
According to the literatures, the global methods such 
as Graph-Cut [6] and Belief-Propagation [7], which 
seek a disparity assignment through minimizing a 
global cost function that combines data and 
smoothness terms, usually produce more precise 
results. However, a drawback is that such global 
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approaches are often quite time consuming and do 
not work well for high-resolution images or large 
disparity spaces. By contrast, local-based methods 
are much faster and more suitable for a practical 
implementation, even capable for real-time task [8].  

Plenty of local methods have been proposed in the 
literature, among these approaches, adaptive support 
weight algorithms like AdaptWeight [9] and 
CostFilter [10] currently represent the state-of-the-art 
local-based approaches. Results of these algorithms 
are comparable to those generated by global methods. 
The main reason of their success is to exploit the 
locally adaptive support weights for computing the 
probability that the center pixel and a neighbor pixel 
might have the same disparity value.  

A local-based algorithm generally consists of four 
steps:  

1) Matching cost initialization. For each pixel, a 
cost value is assigned to all possible disparities.  

2) Cost aggregation. An aggregated cost is then 
calculated by an adaptive summation of the initial 
per-pixel cost.  

3) Disparity optimization by using Winner-Takes-
All strategy and  

4) Disparity refinement, which aims at correcting 
inaccurate disparity values and handling  
occlusion areas.  

Although matching cost initialization is the 
fundamental component that determines the final 
precision of estimated disparity map, relatively less 
work has been studied on this topic. Common cost 
initialization methods like sum of absolute or squared 
differences (SAD/SSD), sampling-insensitive 
absolute difference of Birchfield and Tomasi (BT), 
and truncated versions, usually calculate the intensity 
difference between a pixel and its corresponding one 
in another viewpoint. Due to they only utilize the 
information of color channel, these approaches are 
generally highly sensitive to illumination changes, 
image noises, radiometric differences, etc. Non-
parametric matching methods such as Rank and 
Census [11] were introduced for being robust against 
outliers that occur in brightness variation areas. 
However, since non-parametric methods depend on 

the relative ordering of pixel values, they could also 
produce matching ambiguities in image regions with 
similar or repetitive local structures [12].  

In this paper, we explore to develop a novel and 
robust cost initialization strategy which can integrate 
the advantages of various cost computation schemes. 
We propose a Gradient-based Census Transform 
(GCT) cost term for keeping the illumination 
invariability. Meanwhile, Absolute Color Differences 
(ACD) is adopted to reduce the matching ambiguities 
in repetitive areas. To further improve the accuracy 
of the initial cost, we also present an effective cost 
term, namely, Gabor Pattern Differences (GPD), 
which is particularly appropriate for texture 
representation and discrimination. Experimental 
results demonstrate that the proposed system 
outperforms most existed local-based algorithms.  

The remainder of this paper is structured as 
follows. Section 2 presents the detailed explanation 
of the proposed scheme. After that, Section 3 
illustrates the experimental results tested on both 
Middlebury platform and the real-world outdoor 
scenes. Finally, conclusions and future work are 
discussed in Section 4.  

 
 

2. Technical Details 
 
The flowchart of the proposed algorithm is 

illustrated in Fig. 1.  
The whole system consists of four steps: cost 

computation, cost aggregation, disparity selection and 
disparity refinement. In the following sections, we 
will go through each individual step in detail. 

 
 

2.1. Cost Computation 
 
Cost computation (i.e. cost initialization) is not 

only the groundwork for the whole progress but also 
vital to the final accuracy of stereo matching. 
Therefore, in this paper, an integrated and robust cost 
function composed of three special cost terms is 
explored for cost initialization.  

 
 

 
 

Fig. 1. Flowchart of the proposed algorithm. 
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The first cost term is Gradient-based Census 
Transform (GCT). Census [11] is a non-parametric 
method, it encodes local structures with a bit-string 
calculated by the comparison of pixel intensities, 
rather than the intensities themselves. Consequently, 
it is robust to illumination variation and image noise. 
Unlike the conventional approaches which calculate 
census on the original images, in this paper, instead, 
we implement the transformation on the gradient 
images of the horizontal direction.  

To be specific, for a pixel p , we define 

( ( ))H I p∇  as its intensity of horizontal gradient 

image, and specify pN  as the set of neighbor pixels 
in a square window of radius r  surrounding p , the 
transforms ( , )p qξ  is depended on the comparison 
between the intensities of two pixels:  

 

( ),

1 ( ( )) ( ( ))
( , )

0H p

H H

p I q N

if I p I q
p q

otherwise
ξ
∈∇ ∈

∇ < ∇⎧
= ⎨
⎩

 (1) 

 
The census transform can then be presented as a 

binary vector:  
 

( ) ( , )S p p qξ= ⊗ , (2) 
 

where ⊗  denotes the act of concatenation. After that, the 
cost value GCTC  at pixel p  with disparity d  is defined 
as the Hamming distance of two bit strings: 
 

1
( , ) ( )[ ] ( )[ ]

N

GCT left right
i

C p d S p i S p d i
=

= ⊕ −∑ , (3) 

 
where leftS  and rightS  depict the bit string in the left 

and right image respectively. N  is the length of the 
string, and ⊕  indicates XOR operation.  

The reasons we utilize GCT instead of the 
original Census method are as follows:  

1) GCT is less sensitive to radiometric differences 
caused by exposure differences, varying lighting, 
vignetting, etc.  

2) For image regions with repetitive structures, 
GCT could alleviate the matching ambiguities  
more effectively.  

3) GCT is more sensitive to object edges due to 
the feature of gradient, this characteristic can 
guarantee a better edge-preserving result. 

The second cost term we employed is the Absolute 
Color Differences (ACD). ACD is adopted due to the 
assumption that the neighboring pixels with 
homogeneous color share the similar disparity. 
Accordingly, this cost term is defined as the average 
value of absolute color differences in all three channels: 

 

, ,

1( , ) ( ) ( )
3

Left Right
ACD i i

i R G B

C p d I p I p d
=

= − −∑ (4)

The third cost term we proposed is the Gabor 
Pattern Differences (GPD). As a matter of fact, 
Gabor feature [13] has several intrinsic advantages 
for the application of stereo matching:  

1) It is robust to illumination changes and image 
noise.  

2) It is particularly appropriate for texture 
discrimination and representation.  

3) Gabor filter is a linear filter which can be 
operated sufficiently fast.  

4) The orientation of Gabor filter can be easily 
controlled. (For the rectified images whose motion is 
purely along the x-axis, it is only necessary to utilize 
the information extracted from the horizontal 
direction.) These superiorities make it become a kind 
of potential and ideal stereo matching cost indicator. 

Generally, the kernel of Gabor filter can be 
written as: 

 
2 2 2

2( , , , , , , ) exp cos 2
2

x y xG x y γλ θ ψ σ γ π ψ
σ λ

′ ′ ′⎛ ⎞+ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(5) 
 

cos sin
sin cos

x
y x y

x y
θ
θ θ

θ
′
′ = − +
= +⎧

⎨
⎩

 (6) 

 
In Eq. (5) and Eq. (6), λ  depicts the wavelength 

of the sinusoidal factor, θ  represents the orientation 
of the normal to the parallel stripes of a Gabor 
function, ψ  is the phase offset, σ is the sigma of the 
Gaussian envelope and γ   is the spatial aspect ratio. 

In order to construct the GPD term, we first apply 
this Gabor filter to extract the feature ( )HG I from 

original image I in the horizontal direction, then the 
cost of GPD term ( ),GPDC p d for pixel p at 

disparity d can be specifically expressed as: 
 

( , ) ( ( )) ( ( ))GPD H left H rightC p d G I p G I p d= − − (7)
 
Finally, the whole matching cost function allC  is 

summarized by merging three different cost terms: 
 

, ,
( , ) min( ( ( , ), ), )all i i i

i GCT ACD GPD
C p d C p d Tρ λ

=

= ∑ , (8)

 
where iT  is the truncation parameter, ( , )Cρ λ  is the 

robust function of variableC : 
 

( , ) 1 exp( )Ccρ λ
λ

= − −  (9) 

 
The value of each cost term is normalized to the 

range of [0, 1] by parameter λ , this strategy can 
guarantee that each term appropriately contributes to 
the whole cost function. The result of cost 
initialization is shown in Fig. 2 (b). 
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(a) (b) (c) (d) (e) 
 

Fig. 2. Results generated in each step. 
(a) The original color image; (b) Result of matching cost computation (disparity=1);  

(c) Result of cost aggregation (disparity=1); (d) Disparity map (before refinement); (e) Disparity map (after refinement). 
 

 
2.2. Cost Aggregation 
 

This step aggregates the initial cost value of each 
pixel over a support region to preserve the borders of 
objects and reduce the matching ambiguity for further 
disparity selection. Fig. 3 depicts the whole process 
of cost aggregation. 

Inspired by the previous work [10], in our 
proposed scheme, we utilize the guided filter [14] to 
implement cost aggregation. The main reason we 
choose guided filter is that it is a non-approximate 
linear-time algorithm whose computational 
complexity is independent of the filtering kernel size. 
This advantage implies that it can be performed 
sufficiently fast, even is capable of real-time task. To 
be more precise, the result of aggregation ( )allC p′  at 
pixel p can be calculated by the initial cost map 

( )allC p  and the value of guidance image I : 
 

:

1( ) ( ( ) )
k

all k k
k p

C p a I p b
ωω ∈

′ = +∑  (10) 

 
1 1( U) ( ( ) ( ) ( ))

k

k k all k all
p

a I p C p C k
ω

µ
ω

−

∈

= Σ + −∑ε , (11)

 
T( )k all k kb C k a µ= − , (12) 

 

where I  depicts the reference image in stereo 
matching operation, ω  is the pixel number of I  in a 

window kω  centered at pixel k , kΣ is the  

3×3 covariance matrix of I  in kω , ε  is a threshold 

for smoothing, U is an 3×3 identity matrix, while kµ  

and ( )allC k  present the mean of I  in kω  and the 

mean of allC  in kω , respectively. The result of cost 
aggregation is illustrated in Fig. 2 (c). 
 
 
2.3. Disparity Selection 
 

To select the best candidate for estimating 

disparity value ·exp( ( ))pq pq
pq

c s

c s
W k

γ γ
∆ ∆

= − +  at 

each pixel p , the Winner-Takes-All (WTA) strategy 
is adopted:  
 

( ) arg min ( , )
d

all
d S

D p C p d
∈

′= , (13) 

 
where min max{ , , }dS d d=  is the set of all 
possible disparity values. The disparity selection 
result can be seen in Fig. 2 (d). 

 
 
 

 
 

Fig. 3. The process of cost aggregation. 
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2.4. Disparity Refinement 
 

In the previous step, WTA selects a minimum 
cost value for each pixel, however, the disparity maps 
obtained usually contain numerous errors in the 
occluded regions. To handle this problem, we 
implement the left-right consistency checking. That is 
to say, for each pixel p in the left image, we also 
calculate the disparity value of its matching point 'p  
in the right view. If ( ) ( ) 1left rightD p D p′− > , pixel 

p is defined as an invalid pixel. This consistency 
check can effectively detect the occluded pixels as 
well as the mismatched ones.  

For each invalid pixel p , as illustrated in Fig. 4, 

the disparity values of its left nearest valid pixel lp  

and right nearest valid pixel rp are computed and 
denoted as ( )lD p and ( )rD p , respectively. Then the 
invalid pixel p is filled by the lower value of ( )lD p  
and ( )rD p , namely, ( ) ( ) ( )( ),l rD p min D p D p= . 

 
 

 
 

Fig. 4. Demonstration for dealing with invalid pixels. 
 
 
Selecting the lower disparity is motivated by the fact 
that the occluded pixels primarily belong to the 
background objects.  

Finally, a weighted median filter is utilized on the 
locations of invalid pixels to eliminate the horizontal 
artifacts. In order to preserve the object boundaries 
and generate the sharp disparity map, the bilateral 
filter is selected, and the weight is defined as:  
 

·exp( ( ))pq pq
pq

c s

c s
W k

γ γ
∆ ∆

= − + , (14) 

 

where k  is a normalization factor, pqc∆  and pqs∆  
depict the color difference and the spatial distance 
between pixel p  and q , respectively. cγ  and sγ  
control the color and spatial similarity, respectively. 
In our experiment, we set 0.16cγ = , 7sγ = , and the 
window size = (17 × 17).  

Note that all the pixels which have survived in the 
left-right consistency checking are not affected by the 
whole refinement process, this helps to rebuild the 
object boundaries and construct the sharp disparity 
map without substantial increase in computation 
overheads. The final refined disparity map is 
demonstrated in Fig. 2 (e). 

 

3. Experiments and Analysis 
 

3.1. Evaluation on Middlebury Platform 
 

In order to assess the performance of our 
algorithm, we compare our scheme with some classic 
local-based algorithms. For fair comparison, all 
algorithms are tested on the Middlebury website [5], 
which is a popular standard evaluation platform for 
various stereo matching approaches. This platform 
provides 4 stereo pairs as well as their ground truth 
disparity maps. Note that these test images are 
challenging due to their complex object boundaries 
and low textured regions. For our approach, the 
parameters are set as follows: 
{ λ ,θ ,ψ ,σ , γ , GCTλ , ACDλ , GPDλ , GCTT , ACDT ,

GPDT ,ε }={3, 3 / 2π , 0, 1.5, 1, 32, 40, 0.18, 0.008, 
0.025, 0.018, 20.01 }. These parameters have been 
found empirically. 

The subjective evaluation results are illustrated in 
Fig. 5. The original four color images (left view) are 
shown in Fig. 5 (a). The disparity maps generated by 
our approach are illustrated in Fig. 5 (b). We can see 
that the proposed algorithm could obtain smooth 
disparities on the surface of objects while preserving 
the discontinuity property at the boundaries. 

Furthermore, we also present the error maps of 
our method in Fig. 5 (c). These error maps are 
calculated according to the ground truth maps, pixels 
whose disparity error greater than one are displayed 
in black. Compared with other classic local-based 
methods (shown in Fig. 5 (d) and Fig. 5 (e)), the 
proposed method can generate much clearer object 
boundaries as well as less error regions. Moreover, 
the bad pixels in our results are eliminated well both 
in low texture areas and occluded regions. 

To further verify the effect of the proposed 
scheme, some close-up disparity results on Teddy 
and Cones image pair are presented in Fig. 6 and 
Fig. 7. It is apparent that the proposed approach is 
adaptive for both textureless areas (e.g., wall of the 
Teddy data set) and object boundaries (e.g., arms of 
the teddy bear). Meanwhile, for the repetitive regions 
(e.g., background of the cup), the proposed method is 
also qualified.  

For the objective evaluation, all of the disparity 
results are compared with the ground truth maps 
pixel by pixel. The assessment results are shown in 
Table.1. The performance of each method is mainly 
evaluated by the error rate of the whole image. 
Consequently, according to the report of Middlebury 
website, our approach obtains satisfactory results 
ranking 18th out of over 150 (global and local) 
competitive algorithms, even better than  
CostFilter [15], which is one of the best local-based 
methods so far.  
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(a)  
Left images 

(b)  
Disp. (Ours) 

(c)  
Error (Ours) 

(d)  
Error (CostFilter [15]) 

(e)  
Error (RBF [16]) 

 
Fig. 5. Subjective evaluation of different local-based methods. 

(a) Left images; (b) Disparity maps generated by proposed approach;  
(c)-(e) Error maps of different schemes, (Error pixels larger than one are shown in black in the error maps;  

while gray pixels correspond to errors in occluded areas). 
 
 
 

 

     
 
(a) Color image (b) ours (c) CostFilter [15] (d) VSW [17] (e) AdaptWeight [9] 

 
Fig. 6. Close-up disparity results on Teddy image pair. Our method performs well for both textureless regions  

and object boundaries. (Invalid pixels are shown in black.) 
 
 
 

     
 

(a) Color image (b) ours (c) CostFilter [15] (d) VSW [17] (e) AdaptWeight [9] 
 

Fig. 7. Close-up disparity results on Cones image pair. Our method produces  
better disparity result at repetitive structures. 
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Table 1. Ranks of local-based algorithms on Middlebury. 
 

Error (All) Algorithm Rank 
Tsukuba Venus Teddy Cones 

Av.E 

Ours 1 1.83 0.36 10.3 7.85 5.12 
CostFilter [15] 2 1.85 0.39 11.8 8.24 5.55 
RecursiveBF [16] 3 2.51 0.88 12.1 8.91 5.68 
VSW [17] 4 1.88 0.81 13.3 8.85 6.29 
AdaptWeight [9] 5 1.85 1.19 13.3 9.79 6.67 
DCBGrid [18] 6 7.26 1.91 17.2 11.9 10.9 
SSD+MF [2] 7 7.07 5.16 24.8 19.8 15.7 

 
 
Note that, the error rate of our method is much 
smaller than others for all the four test cases. 
Additionally, the Average percent of Error pixels 
(Av.E), which is calculated based on all test areas 
(including occluded regions, non-occluded regions 
and whole image), can be effectively reduced to 5.12 
by utilizing our algorithm, that also outperforms 
other competitors. 
 
 
3.2. Outdoor Results 
 

To test the outdoor performance and the 
robustness of our algorithm, we implement our 
scheme on the images captured from two complex 
outdoor scenes with a consumer stereo cellphone 
(HTC EVO 3D). The original images and 
corresponding disparity maps calculated by our 
method are presented in Fig. 8. The results show that 
our approach performs very well and calculates a 
sharp disparity map, although the input images are 
without any rectification before stereo matching, and 
contain many challenges including complicated 
patterns (e.g., leaves), ambiguous regions (e.g., 

shadows), specular surfaces (e.g., fitness equipments) 
as well as illumination changes.  

 
 

4. Conclusions and Future Work 
 

In this paper, we proposed a high quality local-
based algorithm for stereo matching. Unlike the 
existed methods which only use the color and 
gradient information, we introduced a novel and 
robust cost function using three special cost terms 
(namely, Gradient-based Census Transform (GCT), 
Absolute Color Differences (ACD) and Gabor 
Pattern Differences (GPD)) into the cost initialization 
process. Experimental results tested on both 
Middlebury platform and the outdoor scenes 
demonstrate that our approach outperforms most 
existed local-based methods. 

For the future research, we would like to 
accelerate our algorithm with graphics hardware, this 
implementation may lead to real-time performance 
and will be useful for more applications.  

 
 
 

 

 
 

Fig. 8. Outdoor Results. Left images captured with a consumer stereo cellphone and the corresponding  
disparity maps generated by our approach. 
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