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ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic, multi-organ disease that predominantly affects young 
women of childbearing age. It is also a disease in which epigenetic modulation is emerging as an important 
mechanism for understanding how the environment interacts with inherited genes to produce disease. 
Much of the genetic risk for SLE identified in genome-wide association studies has been shown to lie in  
the non-coding genome, where epigenetic modifications of DNA and histone proteins regulate and 
co-ordinate transcription on a genome-wide basis. Novel methodologies, including high-throughput  
sequencing of open chromatin, RNA sequencing, protein microarrays, and gas chromatography-mass  
spectrometry, have revealed intriguing insights into the pathogenesis of SLE. We review these recent data 
and their potential contribution to more accurate diagnoses and the development of new therapeutic  
agents to improve patient outcomes.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a  
multi-system, complex disease in which the 
environment interacts with inherited genes to 
produce a broad spectrum of phenotypes with 
inter-individual variability. These gene–environment 
interactions lead to a perturbed immunologic 
state in which autoantibodies, immune complex 
deposition, and complement activation contribute 
to systemic inflammation and target tissue damage. 
The genetics of SLE have been studied extensively; 
however, risk loci and single genes identified by 
genome-wide association studies appear to account 
for ≤25% of the inherited risk for SLE, suggesting 
that environment also contributes to risk.1,2  
Moreover, most of the genetic risk for SLE lies 
within non-coding portions of the human genome,3 
demonstrating that the disease may manifest due 

to perturbations in the regulation of transcription, 
rather than changes to protein-coding genes that 
lead to nucleic acid substitutions.

The importance of the non-coding genome was 
demonstrated by recent work by our research 
group.3 Using standard computational techniques, 
we queried all the single nucleotide polymorphisms 
(SNPs) previously shown to convey risk for SLE.1,2 

Of the 46 disease-associated SNPs, 30 (65%) 
were within non-coding regions of the genome. 
By querying the Roadmap Epigenomics data,4 
we demonstrated that most of the linkage  
disequilibrium blocks containing the disease-
associated SNPs were within non-coding regions 
that were highly enriched for epigenetic signatures 
associated with functional elements, such as 
enhancers. These epigenetic signatures were 
most prominent in B cells and neutrophils and less 



 RHEUMATOLOGY  •  August 2017  •  Creative Commons Attribution-Non Commercial 4.0	 EMJ  EUROPEAN MEDICAL JOURNAL  RHEUMATOLOGY  •  August 2017  •  Creative Commons Attribution-Non Commercial 4.0	 EMJ  EUROPEAN MEDICAL JOURNAL 90 91

prominent in CD4+ T cells. These data parallel a 
recent report by Jiang et al.,5 which demonstrated 
enrichment for H3K4me1/H3K27ac marks within 
the linkage disequilibrium blocks containing SNPs 
associated with juvenile idiopathic arthritis. 

The non-coding genome contains numerous 
functional elements, often identified by specific 
epigenetic modifications to histone proteins 
that regulate and co-ordinate transcription on 
a genome-wide basis.6,7 The critical element in 
co-ordinating transcription is the regulation of 
chromatin accessibility, which is regulated by 
DNA methylation, alterations in histone proteins,  
and three-dimensional (3D) chromatin architecture 
mediated by DNA interactions with transcriptional 
regulators, such as the CCCTC-binding factor 
(also known as CTCF).8 These processes allow 
transcription to be fine-tuned to specific  

physiological circumstances.9 Functional elements 
that regulate and co-ordinate transcription are 
typically found in regions of open chromatin,6,7 
and both the ENCODE and Roadmap Epigenomics 
projects focussed considerable efforts on defining 
these regions.10 

Table 1 summarises the most frequently used 
methods of high-throughput sequencing and 
mass spectrometry and the information that 
can be generated using these methods. These 
methodologies introduce a new era of ‘omics’, 
allowing for profiling of genetics, proteins, and 
metabolites to shed light on disease aetiology and 
pathogenesis. The same techniques that can be  
used to diagnose patients can also be used to 
investigate responses to therapy and describe 
disease courses on molecular levels.

Table 1: Selected methodologies for integrative omics data.

3C: chromosome conformation capture; 3D: three-dimensional; 4C: 3C capture-on-chip; ATAC-seq:  
assays of transposase-accessible chromatin sequencing; ChiP-seq: chromatin immunoprecipitation 
sequencing ChIA-PET: chromatin interaction analysis with paired-end tag sequencing; HiC: hydrophobic 
interaction chromatography; HiChiP: highly integrated chromatin immunoprecipitation.

Methodology Information provided

Epigenome

DNAse I hypersensitivity assays Defines regions of open chromatin

Formaldehyde-assisted identification of 
regulatory elements

Defines regions of open chromatin

ChIP-seq Identifies protein-DNA interactions

ATAC-seq Defines regions of open chromatin

Chromatin architecture

3C Analyses 3D chromatin architecture by identifying any region of long-
range chromatin interaction

4C Similar to 3C but combined with microarray

HiC Identifies long-range chromatin interactions and physical loci in 3D

ChIA-PET Identifies long-range chromatin sequencing interactions defined by 
specific protein-DNA interactions

HiChIP	 A modification of the ChIA-PET approach to identify long-range 
chromatin interactions mediated by specific protein-DNA interactions

Transcriptome

Gene expression microarrays -

RNA sequencing -

Proteome

Mass spectrometry -

Protein microarrays -

Metabolome

Gas chromatography-mass spectrometry -

Nuclear magnetic resonance -
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TECHNOLOGIES AND THEIR USES

Methods used to investigate epigenetic factors that 
regulate transcription in the context of rheumatic 
diseases, initially focussed on DNA methylation, are 
either bisulfate-based (such as MethylC sequencing 
and reduced representation bisulfite sequencing) 
or enrichment-based (such as methylated DNA 
immunoprecipitation sequencing [MeDIP-seq], 
methylated DNA binding domain sequencing,  
or methylation-sensitive restriction enzyme 
digestion followed by sequencing [MRE-seq]) and, 
as noted, can be combined with sequencing.11,12 
Although grossly effective, these methods are 
not without limitations. In MeDIP-seq, methylated 
DNA fragments are non-covalently bound to 
5-methylcytosine antibodies. Thus, MeDIP-seq does 
not cover medium–low 5’—C—phosphate—G—3’ 
(CpG) density regions of the genome well and 
gives a relatively low resolution, limited by the 
size of the fragments from immunoprecipitation.12 
Moreover, MeDIP-seq requires large amounts of 

both DNA and antibodies for each assay. MRE-seq 
and other restriction enzyme-based methods allow 
interrogation of unmodified and modified areas of 
genomic DNA, but their coverage and resolution are 
limited by the specificity of the available enzymes.

Li et al.12 recently suggested that combining DNA 
methylation and sequencing methods may yield 
more sensitive results. In particular, the investigators 
combined MeDIP-seq with MRE-seq to improve the 
accuracy of detection of differentially methylated 
regions and coverage of the genome. A key advantage 
to integration of these methods is that DNA 
methylation analysis may be performed on a whole 
genome level and is not restricted to promoters or 
CpG islands. Moreover, they describe computational 
protocols to analyse the data generated from 
both methods that allow them to increase the  
sensitivity and accuracy of their results.

Traditional methods such as DNAse I hypersensitivity 
and formaldehyde-assisted identification of 
regulatory elements assays have been used to  

Table 2: Use of omics in lupus to date.

ATAC-seq: assays of transposase-accessible chromatin sequencing; ChIP-seq: chromatin 
immunoprecipitation sequencing; GC-MS: gas chromatography-mass spectrometry; NPSLE:  
neuropsychiatric lupus; SLE: systemic lupus erythematosus; Ig: immunoglobulin.

Methodology Reference Results

Epigenome

ChIP-seq Shi et al.34 Found that regions with more extensive histone modifications were 
enriched in transcription factor binding sites that may be related to 
interferon signalling in SLE monocytes

ATAC-seq Scharer et al.16 Found changes in chromatin accessibility at the loci of genes involved in 
B cell activation and differentiation in treatment-naïve adult SLE patients

Transcriptome

RNA-seq Dozmorov et al.33 Discovered cell-specific patterns of differentially-expressed 
immunoglobulin genes in SLE B cells when compared to monocytes

Proteome

Protein 
microarray

Li et al.,36 Fattal et al.37 Elevated IgG autoantibodies in patients with active SLE  
when compared to healthy controls

Protein 
microarray

Fragoso-Loyo et al.,42 
Hu et al.43

Patients with neuropsychiatric lupus have elevated levels of 
autoantibodies, but these autoantibodies are not specific for lupus

Protein 
microarray

Nicolaou et al.46 11 candidate biomarkers were identified for lupus nephritis or 
neuropsychiatric lupus that are related to cellular growth,  
development, and/or apoptosis

Metabolome

GC-MS Yan et al.47 Proteins important in amino acid turnover or protein biosynthesis and 
lipid-gut microbial metabolism is important in active SLE and can alter 
with disease activity

GC-MS Bengtsson et al.48 Metabolites associated with oxidative activity and the urea cycle were 
increased in SLE patients, while levels of tryptophan were decreased
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identify regions of open chromatin and thus, 
presumably, regions that are functional and 
biologically relevant. However, the large number of 
cells these assays require (often >1x108) to achieve 
adequate sequencing depth and signal-to-noise  
ratios have made them impractical for use in 
translational studies in SLE or other rheumatic 
diseases. More recently, Buenrostro et al.13  
developed a method for broadly surveying open 
chromatin. This technique, called ‘assays of 
transposase-accessible chromatin sequencing’ 
(ATAC-seq), allows researchers to comprehensively 
survey open chromatin in pathologically relevant  
cells. By rapidly surveying open chromatin, we may 
have a comprehensive view of where regulatory  
elements may be perturbed.14 ATAC-seq uses Tn5 
transposases linked to sequencing adapters to 
selectively insert constructs into nucleosome-free 
regions, and can be performed on as few as 50,000 
cells,15 which makes it highly suitable as a tool to  
study low-abundance leukocyte subsets. In 
fact, Scharer et al.16 have described changes in  
chromatin accessibility that occur at loci  
surrounding genes involved in B cell activation 
and differentiation from treatment-naïve adult  
SLE patients.

Similar advances are being made in techniques 
to understand how 3D chromatin architecture 
regulates gene transcription.17 These methods can 
be either untargeted (chromosome conformation 
capture [3C], 3C capture-on-chip, hydrophobic 
interaction chromatography [HiC]) or targeted 
(chromatin interaction analysis with paired-end 
tag sequencing [ChIA-PET] and highly integrated 
chromatin immunoprecipitation [HiChIP]).18-21 
Untargeted methods simply map any region of  
long-range interaction at the chromatin level, but, 
with the exception of HiC, do so at low resolutions. 
HiC was developed based on 3C.20 HiC uses 3C to 
describe not only the genomic sequence of DNA 
fragments but also where they are physically located 
in the 3D genomic structure. HiC is also compatible 
with high-throughput sequencing; this combination 
identified many long-range interactions between  
risk loci involved in autoimmune disease and  
putative target genes in T and B cells.21

Targeted methods investigating chromatin 
conformation can identify interactions mediated 
by specific proteins and provide higher resolution 
maps than untargeted methods. Targeted methods  
include that described by Li et al.,18 an adaptation 
of ChIA-PET. ChIA-PET provides high-resolution 
mapping of long-range DNA interactions mediated 

by specific proteins. Another method, which the 
authors designate HiChIP, allows these high-
resolution maps to be generated with as few as 1x106 
cells, or 1% of the number required for ChIA-PET.19

PROGRESS IN UNDERSTANDING THE 
ROLE OF THE EPIGENOME IN LUPUS

Interest in the role of the epigenome in the 
pathogenesis of SLE has led to several ground-
breaking discoveries looking at DNA methylation.22-24 
Coit et al.24 demonstrated, for example, that 
epigenetic changes in interferon (IFN) response 
genes seen in adult SLE patients are associated with 
disease severity. Investigation of DNA methylation 
in CD4+ T cells also revealed susceptibility loci that 
may contribute to the differential manifestations 
of SLE in different ethnicities, including Europeans  
and African-Americans.22

It is important to note that the epigenetic machinery 
that regulates gene expression is specific to distinct 
cell types and that cell-specific expression is a 
feature of diseases such as SLE.22-24 For example, 
B cells have essential roles in antigen presentation 
and cytokine secretion, and produce autoantibodies 
that are the key to the diagnosis and pathogenesis 
of SLE. B cell activation and differentiation also 
correlate with SLE disease activity and response 
to therapy.25-28 Studies using newer technologies, 
such as high-throughput sequencing, can also be  
misleading and/or generate conflicting results. 
For example, using RNA-seq, Rai et al.29 described 
dysregulation of specific cytokine pathways in 
adult SLE patients when stratified by autoantibody 
profile. IFN transcripts were predominantly 
dysregulated in patients with only anti-extractable 
nuclear antigen (ENA) autoantibodies when  
compared to patients with anti-double-stranded  
DNA (dsDNA) autoantibodies. Dysregulation 
of plasma cell-related transcripts were more 
pronounced in patients with only anti-dsDNA or 
anti-ENA autoantibodies, when compared with 
patients who had both sets of autoantibodies. 
These results conflict with numerous published 
studies demonstrating that IFN signatures are 
associated with both anti-ENA and anti-dsDNA 
autoantibodies,30-32 possibly because Rai et al. 
performed RNA-seq on total peripheral  
blood leukocytes.

Although both epigenetic signatures and 
transcriptomes are cell-specific, new computational 
approaches have allowed investigators to infer  
cell-specific patterns even from complex samples,  
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such as whole blood, provided there is information 
available on the ratios of the different leukocyte 
subsets. For example, using RNA-seq to 
examine transcriptomes in whole blood samples,  
Dozmorov et al.33 used a de-convolution method 
that allowed them to identify differential expression 
of immunoglobulin (Ig) genes in SLE B cells,  
while a monocyte population from the same 
patients differentially expressed genes comprising  
a ribosomal signature (Table 2). 

De-convolution methods have not been attempted 
with histone marks, and cell-specific studies  
continue to be the standard approach. For example, 
Shi et al.34 used chromatin immunoprecipitation 
sequencing (ChIP-seq) to define histone 
modifications in monocytes of adult SLE patients. 
ChIP-seq analyses protein interactions with 
DNA through the genome-wide DNA binding 
sites for transcription factors and other proteins  
(e.g. histones). Compared to healthy controls, 
regions with more extensive histone modification 
were significantly enriched in transcription factor 
binding sites that may be related to IFN signalling 
in adult SLE monocytes. Taken with the information 
from B cells as described above, these data could 
help to direct research efforts toward new avenues 
of therapy targeting different cell populations 
and intracellular signalling pathways for specific  
clinical manifestations. 

PROTEOMICS AND METABOLOMICS

The transcriptomes and epigenomes of SLE 
patients only provide a small window into disease 
pathogenesis and possible response to therapy. 
Personalised medicine is expected to benefit from 
the combination of genomic information with 
regular monitoring of physiologic states by multiple 
high-throughput methods that query a broad range 
of cellular processes. Novel approaches using mass 
spectrometry enable a closer look at the proteome 
and metabolome (the composition of all small 
molecule metabolites in human cells). 

Protein, or ‘autoantigen’, microarrays allowing for 
detection of autoantibody profiles in SLE were 
described over 10 years ago.35 These arrays carry 
thousands of proteins that can be found in many 
rheumatic diseases, including SLE. The arrays 
also allow for detection of antibody isotypes  
(IgG, IgM, IgE, and IgA). The advantages of 
microarrays over mass spectrometry for protein 
profiling are the ability to analyse low abundance 
proteins and that microarrays are not as time-

consuming or labour-intensive to perform. 
Recently, protein microarrays were used to detect 
proteomic profiles correlating with specific disease 
manifestations of SLE. Microarrays were used to 
distinguish between adults with lupus nephritis, 
neuropsychiatric lupus (NPSLE), and pulmonary 
involvement.36-39 Li et al.36 found that SLE patients 
had increased levels of IgG autoantibodies in their 
sera. Combining these findings with transcriptional 
profiling using conventional hybridisation-based 
microarrays revealed a correlation with elevated 
expression of IFN genes, indicating that IFN 
may play a role in class switching of IgM to IgG 
antibodies in SLE. Fattal et al.37 found increased 
levels of IgG autoantibodies against dsDNA,  
single-stranded DNA, Epstein–Barr virus, and 
hyaluronic acid in the sera of patients with active 
lupus nephritis when compared to healthy controls. 
Although Fattal et al. found these levels remained 
high even after the patients achieved long-
term clinical remission, indicating independence 
from disease activity, much evidence using 
traditional assays has established that anti-dsDNA 
antibody levels do fluctuate with disease activity  
and remission.38-41

Fragoso-Loyo et al.42 found elevated levels  
of autoantibodies using protein microarrays in 
the sera of patients with NPSLE. However, these 
autoantibodies could be seen in other rheumatic 
diseases; none were specific for NPSLE. Hu et al.43 
used a protein microarray with 17,000 distinct  
proteins to evaluate NPSLE sera. These experiments 
identified 137 autoantigens (including auto 
antibodies) associated with SLE. Two of these 
proteins, anti-60S acidic ribosomal protein 
P2 and anti-SSA in cerebral spinal fluid (CSF),  
were significantly correlated with those in sera of 
NPSLE patients. The findings suggest CSF proteins 
are potential biomarkers for NPSLE, but there have  
been conflicting studies.44

There remains a definite challenge in finding 
biomarkers for pulmonary diseases associated 
with SLE. Protein microarrays for a broad range 
of cytokines and chemokines were performed on 
sera from nine adults with SLE who had known  
pulmonary involvement. Data were compared 
from nine adults with SLE without pulmonary 
involvement.45 A significant increase in CC  
chemokine ligand 21 (CCL21) and IFN-gamma 
induced protein 10 (IP-10) levels were seen in  
patients with SLE and pulmonary involvement.  
The changes in CCL21 and IP-10 were associated 
with changes in diffusion capacity of those same 
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patients, indicating that these chemokines may  
serve as biomarkers for pulmonary disease in 
patients with SLE.

A systematic review of the published reports 
on proteomic biomarkers discovered by mass 
spectrometry-based methods in adult SLE patients 
found that ≤28 candidate biomarkers had been 
validated in the laboratory. Eleven candidate 
biomarkers were identified in more than one 
study.46 Many of these biomarkers are thought to 
be significant in the diagnosis of lupus nephritis 
or NPSLE. The functions of the biomarkers appear 
to be related to maintenance of cellular functions 
such as growth, division, and apoptosis. However, 
to date, these biomarkers require further study 
to assess their clinical utility and significance in  
clinical practice.

Metabolomes have been profiled from the sera of a 
cohort of 80 Chinese adult SLE patients using gas 
chromatography-mass spectrometry.47 This analysis 
revealed that proteins associated with changes 
in amino acid turnover or protein biosynthesis,  
and lipid and gut microbial metabolism, might act 
as a ‘metabolic signature’ in SLE patients. This study 
also demonstrated that metabolomes varied with 
differences in disease activity. These alterations 
predominantly involved metabolites such as 
glutamate, citrate, linoleic acid, and prophylparaben. 

Another group48 compared adult SLE patient 
metabolomes with those from patients with 
primary Sjögren’s syndrome and systemic sclerosis.  
These investigators found an increase in the 
circulating abundance of metabolites associated 
with oxidative activity and the urea cycle in SLE 
patients.41 SLE patients also had decreased levels 
of tryptophan compared to those with Sjögren’s 
syndrome or systemic sclerosis. These findings 
suggest that SLE changes the enzyme activity of a 
decarboxylase and/or activation of the kynurenine 
pathway, which may be a novel metabolic  
checkpoint in the pathogenesis of SLE.49 These data 
suggest new ways of treatment by targeting small 
molecule metabolites and biosynthesis pathways,  
in addition to the more traditional methods of 
targeting immunologic pathways.

Nuclear magnetic resonance has been touted as 
a new and emerging technique for investigating 
the metabolome; it is faster, less labour-intensive,  
and does not require as many separations to obtain 
data as gas chromatography-mass spectrometry. 
Nuclear magnetic resonance can also measure up 

to hundreds of metabolites at once. However, there  
are no studies to date using this technique in SLE.

AUTHORS’ PERSPECTIVE

The emergence of this new era of omics and 
personalised medicine in rheumatic disease is 
exciting. The newer methodologies to examine 
the epigenome, transcriptome, proteome, and 
metabolome will generate previously unimagined 
amounts of data about health and disease states. 
These new methodologies also allow for more 
innovative and comprehensive approaches to 
pathobiology, prognostication, and therapy. The  
development of the era of personalised medicine, 
where the wealth of information available from  
omics data may be applied to the treatment of 
individual patients, has the potential to dramatically 
improve patient outcomes.

Over the past decade, information from the 
genome and epigenome has allowed us to more 
accurately diagnose and treat cancer patients in a 
manner uniquely suited to each individual.50 Similar  
advances may soon be applied to rheumatic disease 
using results generated from high-throughput 
sequencing methodologies. When combined 
with clinical disease correlations, this approach 
may facilitate monitoring of disease phenotypes.  
In particular, data generated from the epigenomes 
and transcriptomes of patients with SLE, combined 
with proteomics and metabolomics, may allow 
us to predict how time and treatment alter the 
natural history of the disorder. This combination 
may also enhance diagnosis and treatment 
while improving epidemiologic data on SLE and 
other human diseases.51 A long-term goal will be 
to tailor therapies based on individual patient 
characteristics and more accurately monitor 
individual responses to individualised therapies,  
thus improving individual patient outcomes. 

However, enthusiasm for personalised medicine 
and the future of omics in rheumatic disease must 
be tempered with a word on costs. Currently, these 
methods are for laboratory and research purposes 
only, and are not available for clinical use. Each array 
or sequencing assay is for single use and typically 
costs thousands of dollars. Data generated from 
these arrays and assays may result in files that are 
hundreds of megabytes; data from several patients 
would require terabytes (1012) of storage on a 
computer with at least a 2.7 GHz microprocessor. 
Not only are the datasets large, they can be 
quite time-consuming to analyse. They require 
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interpretation first by experts in bioinformatics and 
then careful clinical correlation to specific diseases 
by subspecialists with a keen understanding 
of the underlying mechanisms of disease 
pathogenesis and progression. In addition, there  
is the added challenge of integration of data  
from different sources and platforms that requires  
the development of more sophisticated, robust 
bioinformatics tools.

Moreover, there is rising concern over privacy issues 
with the deposition of genomic data into public 
cloud computing settings.52-54 While accessing and 
integrating genomic data with clinical phenotypes 
are important for research, these processes 
must be handled carefully to avoid inadvertent 
leakage of sensitive information to unauthorised 
persons and the improper use of available data.  
When data are shared between multiple institutions, 
there is additional concern about data being used 
beyond agreed-upon research scope and potential 
processing in unsafe computational environments. 
Establishment of rules and regulations in this field 
to protect the donor as well as the user of readily 
available genomic data will greatly support and 
enhance the use of these technologies in the future.

Combinatorial omics data from SLE patients may 
give us new ways to subset SLE patients. This will 
allow for better efficacy in clinical trials requiring 
a smaller number of patients. Again, we must 
emphasise that the power of these high-throughput 
sequencing techniques in SLE appears to be in the 
provision of ways to advance therapeutics through 
analysis of earlier responses to therapy in distinct 
SLE clinical phenotypes and subsets of patients. 
As most studies are currently, and will continue 
to be, conducted on patients with long-standing 
SLE, the use of omics may reflect their disease 
course. Additionally, some patients may have 
received heavily immunosuppressive or ablative 
therapies that will affect the results from omics  
methodologies. Care must be taken to analyse 
the correct tissue types and cellular populations.  
SLE patients may experience a constant low-level 
of inflammation; omics data may lead us to discover 
new therapies that could return the genome to 
‘normal’ in specific disease remission states and  
thus improve patient outcomes by reducing the 
burden of disease. 
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