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Abstract: Smarandache (F. Smarandache. Neutrosophy, neutrosophic probability, set, and logic, ProQuest Infor-
mation & Learning, Ann Arbor,Michigan, USA, 105 p., 1998) initiated neutrosophic sets which can be used as a
mathematical tool for dealing with indeterminates and inconsistent information. As a generalization of a neutrosophic
set, the notion of MBJ-neutrosophic sets is introduced, and it is applied to BCK/BCI-algebras. The concept of
MBJ-neutrosophic subalgebras in BCK/BCI-algebras is introduced, and related properties are investigated. A char-
acterization of MBJ-neutrosophic subalgebra is provided. Using an MBJ-neutrosophic subalgebra of a BCI-algebra,
a new MBJ-neutrosophic subalgebra is established. Homomorphic inverse image of MBJ-neutrosophic subalgebra is
considered. Translation of MBJ-neutrosophic subalgebra is discussed. Conditions for an MBJ-neutrosophic set to be
an MBJ-neutrosophic subalgebra are provided.
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1 Introduction
In many practical situations and in many complex systems like biologial, behavioral and chemical etc., dif-
ferent types of uncertainties are encountered. The fuzzy set was introduced by L.A. Zadeh [19] in 1965 to 
handle uncertainties in many real applications, and the intuitionistic fuzzy set on a universe X was introduced 
by K. Atanassov in 1983 as a generalization of fuzzy set. The notion of neutrosophic set is developed by 
Smarandache ([14], [15] and [16]), and is a more general platform that extends the notions of classic set, (intu-
itionistic) fuzzy set and interval valued (intuitionistic) fuzzy set. Neutrosophic set theory is applied to various 
part which is refered to the site http://fs.gallup.unm.edu/neutrosophy.htm. Neutrosophic algebraic structures 
in BCK/BCI-algebras are discussed in the papers [1], [2], [6], [7], [8], [9], [10], [12], [13], [17] and [18]. 
We know that there are many generalizations of Smarandache’s neutrosophic sets. The aim of this article is to 
consider another generalization of a neutrosophic set. In the neutrosophic set, the truth, false and indeterminate 
membership functions are fuzzy sets. In considering a generalization of neutrosophic set, we use the interval 
valued fuzzy set as the indeterminate membership function because interval valued fuzzy set is a generalization 
of a fuzzy set. We introduce the notion of MBJ-neutrosophic sets, and we apply it to BCK/BCI-algebras. We
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introduce the concept of MBJ-neutrosophic subalgebras in BCK/BCI-algebras, and investigate related prop-
erties. We provide a characterization of MBJ-neutrosophic subalgebra, and establish a new MBJ-neutrosophic
subalgebra by using an MBJ-neutrosophic subalgebra of a BCI-algebra. We consider the homomorphic in-
verse image of MBJ-neutrosophic subalgebra, and discuss translation of MBJ-neutrosophic subalgebra. We
provide conditions for an MBJ-neutrosophic set to be an MBJ-neutrosophic subalgebra.

2 Preliminaries
A BCK/BCI-algebra is an important class of logical algebras introduced by K. Is´eki (see [4] and [5]) and 
was extensively investigated by several researchers.

By a BCI-algebra, we mean a set X with a special element 0 and a binary operation ∗ that satisfies the
following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following conditions:

(∀x ∈ X) (x ∗ 0 = x) , (2.1)
(∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) , (2.2)
(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (2.3)
(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (2.4)

where x ≤ y if and only if x ∗ y = 0. Any BCI-algebra X satisfies the following conditions (see [3]):

(∀x, y ∈ X)(x ∗ (x ∗ (x ∗ y)) = x ∗ y), (2.5)
(∀x, y ∈ X)(0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)). (2.6)

A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S.
By an interval number we mean a closed subinterval ã = [a−, a+] of I, where 0 ≤ a− ≤ a+ ≤ 1. Denote

by [I] the set of all interval numbers. Let us define what is known as refined minimum (briefly, rmin) and
refined maximum (briefly, rmax) of two elements in [I]. We also define the symbols “�”, “�”, “=” in case of
two elements in [I]. Consider two interval numbers ã1 :=

[
a−1 , a

+
1

]
and ã2 :=

[
a−2 , a

+
2

]
. Then

rmin {ã1, ã2} =
[
min

{
a−1 , a

−
2

}
,min

{
a+

1 , a
+
2

}]
,

rmax {ã1, ã2} =
[
max

{
a−1 , a

−
2

}
,max

{
a+

1 , a
+
2

}]
,

ã1 � ã2 ⇔ a−1 ≥ a−2 , a
+
1 ≥ a+

2 ,
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and similarly we may have ã1 � ã2 and ã1 = ã2. To say ã1 � ã2 (resp. ã1 ≺ ã2) we mean ã1 � ã2 and
ã1 6= ã2 (resp. ã1 � ã2 and ã1 6= ã2). Let ãi ∈ [I] where i ∈ Λ. We define

rinf
i∈Λ

ãi =

[
inf
i∈Λ

a−i , inf
i∈Λ

a+
i

]
and rsup

i∈Λ
ãi =

[
sup
i∈Λ

a−i , sup
i∈Λ

a+
i

]
.

LetX be a nonempty set. A function A : X → [I] is called an interval-valued fuzzy set (briefly, an IVF set)
in X. Let [I]X stand for the set of all IVF sets in X. For every A ∈ [I]X and x ∈ X, A(x) = [A−(x), A+(x)]
is called the degree of membership of an element x to A, where A− : X → I and A+ : X → I are fuzzy sets
in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively. For simplicity, we denote
A = [A−, A+].

Let X be a non-empty set. A neutrosophic set (NS) in X (see [15]) is a structure of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an indeterminate membership
function, and AF : X → [0, 1] is a false membership function. For the sake of simplicity, we shall use the
symbol A = (AT , AI , AF ) for the neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

We refer the reader to the books [3, 11] for further information regarding BCK/BCI-algebras, and to the 
site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information regarding neutrosophic set theory.

3 MBJ-neutrosophic structures with applications in
BCK/BCI-algebras

Definition 3.1. Let X be a non-empty set. By an MBJ-neutrosophic set in X , we mean a structure of the form:

A := {〈x;MA(x), B̃A(x), JA(x)〉 | x ∈ X}

where MA and JA are fuzzy sets in X , which are called a truth membership function and a false membership
function, respectively, and B̃A is an IVF set in X which is called an indeterminate interval-valued membership
function.

For the sake of simplicity, we shall use the symbol A = (MA, B̃A, JA) for the MBJ-neutrosophic set

A := {〈x;MA(x), B̃A(x), JA(x)〉 | x ∈ X}.

In an MBJ-neutrosophic set A = (MA, B̃A, JA) in X , if we take

B̃A : X → [I], x 7→ [B−A(x), B+
A(x)]

with B−A(x) = B+
A(x), then A = (MA, B̃A, JA) is a neutrosophic set in X .
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Definition 3.2. Let X be a BCK/BCI-algebra. An MBJ-neutrosophic set A = (MA, B̃A, JA) in X is called
an MBJ-neutrosophic subalgebra of X if it satisfies:

(∀x, y ∈ X)

 MA(x ∗ y) ≥ min{MA(x),MA(y)},
B̃A(x ∗ y) � rmin{B̃A(x), B̃A(y)},
JA(x ∗ y) ≤ max{JA(x), JA(y)}.

 (3.1)

Example 3.3. Consider a set X = {0, a, b, c} with the binary operation ∗ which is given in Table 1. Then

Table 1: Cayley table for the binary operation “∗”

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

(X; ∗, 0) is a BCK-algebra (see [11]). Let A = (MA, B̃A, JA) be an MBJ-neutrosophic set in X defined by
Table 2. It is routine to verify that A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of X .

Table 2: MBJ-neutrosophic set A = (MA, B̃A, JA)

X MA(x) B̃A(x) JA(x)
0 0.7 [0.3, 0.8] 0.2
a 0.3 [0.1, 0.5] 0.6
b 0.1 [0.3, 0.8] 0.4
c 0.5 [0.1, 0.5] 0.7

Example 3.4. Consider a BCI-algebra (Z,−, 0) and letA = (MA, B̃A, JA) be an MBJ-neutrosophic set in Z
defined by

MA : Z→ [0, 1], x 7→


0.6 if x ∈ 4Z,
0.4 if x ∈ 2Z \ 4Z,
0.3 otherwise,

B̃A : Z→ [I], x 7→


[0.6, 0.8] if x ∈ 6Z,
[0.4, 0.5] if x ∈ 3Z \ 6Z,
[0.2, 0.3] otherwise,
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JA : Z→ [0, 1], x 7→


0.2 if x ∈ 8Z,
0.4 if x ∈ 4Z \ 8Z,
0.5 otherwise.

It is routine to verify that A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of (Z,−, 0).

In what follows, let X be a BCK/BCI-algebra unless otherwise specified.

Proposition 3.5. If A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of X , then MA(0) ≥ MA(x),
B̃A(0) � B̃A(x) and JA(0) ≤ JA(x) for all x ∈ X .

Proof. For any x ∈ X , we have

MA(0) = MA(x ∗ x) ≥ min{MA(x),MA(x)} = MA(x),

B̃A(0) = B̃A(x ∗ x) � rmin{B̃A(x), B̃A(x)}
= rmin{[B−A(x), B+

A(x)], [B−A(x), B+
A(x)]}

= [B−A(x), B+
A(x)] = B̃A(x),

and

JA(0) = JA(x ∗ x) ≤ max{JA(x), JA(x)} = JA(x).

This completes the proof.

Proposition 3.6. Let A = (MA, B̃A, JA) be an MBJ-neutrosophic subalgebra of X . If there exists a sequence
{xn} in X such that

lim
n→∞

MA(xn) = 1, lim
n→∞

B̃A(xn) = [1, 1] and lim
n→∞

JA(xn) = 0, (3.2)

then MA(0) = 1, B̃A(0) = [1, 1] and JA(0) = 0.

Proof. Using Proposition 3.5, we know that MA(0) ≥ MA(xn), B̃A(0) � B̃A(xn) and JA(0) ≤ JA(xn) for
every positive integer n. Note that

1 ≥MA(0) ≥ lim
n→∞

MA(xn) = 1,

[1, 1] � B̃A(0) � lim
n→∞

B̃A(xn) = [1, 1],

0 ≤ JA(0) ≤ lim
n→∞

JA(xn) = 0.

Therefore MA(0) = 1, B̃A(0) = [1, 1] and JA(0) = 0.

Theorem 3.7. Given an MBJ-neutrosophic set A = (MA, B̃A, JA) in X , if (MA, JA) is an intuitionistic fuzzy
subalgebra ofX , andB−A andB+

A are fuzzy subalgebras ofX , thenA = (MA, B̃A, JA) is an MBJ-neutrosophic
subalgebra of X .
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Proof. It is sufficient to show that B̃A satisfies the condition

(∀x, y ∈ X)(B̃A(x ∗ y) � rmin{B̃A(x), B̃A(y)}). (3.3)

For any x, y ∈ X , we get

B̃A(x ∗ y) = [B−A(x ∗ y), B+
A(x ∗ y)]

� [min{B−A(x), B−A(y)},min{B+
A(x), B+

A(y)}]
= rmin{[B−A(x), B+

A(x)], [B−A(y), B+
A(y)]

= rmin{B̃A(x), B̃A(y)}.

Therefore B̃A satisfies the condition (3.3), and so A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of
X .

If A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of X , then

[B−A(x ∗ y), B+
A(x ∗ y)] = B̃A(x ∗ y) � rmin{B̃A(x), B̃A(y)}

= rmin{[B−A(x), B+
A(x), [B−A(y), B+

A(y)]}
= [min{B−A(x), B−A(y)},min{B+

A(x), B+
A(y)}]

for all x, y ∈ X . It follows that B−A(x ∗ y) ≥ min{B−A(x), B−A(y)} and B+
A(x ∗ y) ≥ min{B+

A(x), B+
A(y)}.

Thus B−A and B+
A are fuzzy subalgebras of X . But (MA, JA) is not an intuitionistic fuzzy subalgebra of X as

seen in Example 3.3. This shows that the converse of Theorem 3.7 is not true.
Given an MBJ-neutrosophic set A = (MA, B̃A, JA) in X , we consider the following sets.

U(MA; t) := {x ∈ X |MA(x) ≥ t},
U(B̃A; [δ1, δ2]) := {x ∈ X | B̃A(x) � [δ1, δ2]},
L(JA; s) := {x ∈ X | JA(x) ≤ s}

where t, s ∈ [0, 1] and [δ1, δ2] ∈ [I].

Theorem 3.8. An MBJ-neutrosophic set A = (MA, B̃A, JA) in X is an MBJ-neutrosophic subalgebra of X if
and only if the non-empty sets U(MA; t), U(B̃A; [δ1, δ2]) and L(JA; s) are subalgebras of X for all t, s ∈ [0, 1]
and [δ1, δ2] ∈ [I].

Proof. Suppose that A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of X . Let t, s ∈ [0, 1] and
[δ1, δ2] ∈ [I] be such that U(MA; t), U(B̃A; [δ1, δ2]) and L(JA; s) are non-empty. For any x, y, a, b, u, v ∈ X ,
if x, y ∈ U(MA; t), a, b ∈ U(B̃A; [δ1, δ2]) and u, v ∈ L(JA; s), then

MA(x ∗ y) ≥ min{MA(x),MA(y)} ≥ min{t, t} = t,

B̃A(a ∗ b) � rmin{B̃A(a), B̃A(b)} � rmin{[δ1, δ2], [δ1, δ2]} = [δ1, δ2],

JA(u ∗ v) ≤ max{JA(u), JA(v)} ≤ min{s, s} = s,

and so x ∗ y ∈ U(MA; t), a ∗ b ∈ U(B̃A; [δ1, δ2]) and u ∗ v ∈ L(JA; s). Therefore U(MA; t), U(B̃A; [δ1, δ2])
and L(JA; s) are subalgebras of X .
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Conversely, assume that the non-empty sets U(MA; t), U(B̃A; [δ1, δ2]) and L(JA; s) are subalgebras of
X for all t, s ∈ [0, 1] and [δ1, δ2] ∈ [I]. If MA(a0 ∗ b0) < min{MA(a0),MA(b0)} for some a0, b0 ∈ X ,
then a0, b0 ∈ U(MA; t0) but a0 ∗ b0 /∈ U(MA; t0) for t0 := min{MA(a0),MA(b0)}. This is a contradiction,
and thus MA(a ∗ b) ≥ min{MA(a),MA(b)} for all a, b ∈ X . Similarly, we can show that JA(a ∗ b) ≤
max{JA(a), JA(b)} for all a, b ∈ X . Suppose that B̃A(a0 ∗ b0) ≺ rmin{B̃A(a0), B̃A(b0)} for some a0, b0 ∈ X .
Let B̃A(a0) = [λ1, λ2], B̃A(b0) = [λ3, λ4] and B̃A(a0 ∗ b0) = [δ1, δ2]. Then

[δ1, δ2] ≺ rmin{[λ1, λ2], [λ3, λ4]} = [min{λ1, λ3},min{λ2, λ4}],

and so δ1 < min{λ1, λ3} and δ2 < min{λ2, λ4}. Taking

[γ1, γ2] := 1
2

(
B̃A(a0 ∗ b0) + rmin{B̃A(a0), B̃A(b0)}

)
implies that

[γ1, γ2] = 1
2

([δ1, δ2] + [min{λ1, λ3},min{λ2, λ4}])
=
[

1
2
(δ1 + min{λ1, λ3}, 1

2
(δ2 + min{λ2, λ4}

]
.

It follows that

min{λ1, λ3} > γ1 = 1
2
(δ1 + min{λ1, λ3} > δ1

and

min{λ2, λ4} > γ2 = 1
2
(δ2 + min{λ2, λ4} > δ2.

Hence [min{λ1, λ3},min{λ2, λ4}] � [γ1, γ2] � [δ1, δ2] = B̃A(a0 ∗ b0), and therefore a0 ∗ b0 /∈ U(B̃A; [γ1, γ2]).
On the other hand,

B̃A(a0) = [λ1, λ2] � [min{λ1, λ3},min{λ2, λ4}] � [γ1, γ2]

and

B̃A(b0) = [λ3, λ4] � [min{λ1, λ3},min{λ2, λ4}] � [γ1, γ2],

that is, a0, b0 ∈ U(B̃A; [γ1, γ2]). This is a contradiction, and therefore B̃A(x ∗ y) � rmin{B̃A(x), B̃A(y)} for
all x, y ∈ X . Consequently A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of X .

Using Proposition 3.5 and Theorem 3.8, we have the following corollary.

Corollary 3.9. If A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of X , then the sets XMA
:= {x ∈

X | MA(x) = MA(0)}, XB̃A
:= {x ∈ X | B̃A(x) = B̃A(0)}, and XJA := {x ∈ X | JA(x) = JA(0)} are

subalgebras of X .

We say that the subalgebras U(MA; t), U(B̃A; [δ1, δ2]) and L(JA; s) are MBJ-subalgebras of A = (MA,
B̃A, JA).

Theorem 3.10. Every subalgebra of X can be realized as MBJ-subalgebras of an MBJ-neutrosophic subalge-
bra of X .
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Proof. Let K be a subalgebra of X and let A = (MA, B̃A, JA) be an MBJ-neutrosophic set in X defined by

MA(x) =

{
t if x ∈ K,
0 otherwise, B̃A(x) =

{
[γ1, γ2] if x ∈ K,
[0, 0] otherwise, JA(x) =

{
s if x ∈ K,
1 otherwise, (3.4)

where t ∈ (0, 1], s ∈ [0, 1) and γ1, γ2 ∈ (0, 1] with γ1 < γ2. It is clear that U(MA; t) = K, U(B̃A; [γ1, γ2]) =
K and L(JA; s) = K. Let x, y ∈ X . If x, y ∈ K, then x ∗ y ∈ K and so

MA(x ∗ y) = t = min{MA(x),MA(y)}
B̃A(x ∗ y) = [γ1, γ2] = rmin{[γ1, γ2], [γ1, γ2]} = rmin{B̃A(x), B̃A(y)},
JA(x ∗ y) = s = max{JA(x), JA(y)}.

If any one of x and y is contained inK, say x ∈ K, thenMA(x) = t, B̃A(x) = [γ1, γ2], JA(x) = s,MA(y) = 0,
B̃A(y) = [0, 0] and JA(y) = 1. Hence

MA(x ∗ y) ≥ 0 = min{t, 0} = min{MA(x),MA(y)}
B̃A(x ∗ y) � [0, 0] = rmin{[γ1, γ2], [0, 0]} = rmin{B̃A(x), B̃A(y)},
JA(x ∗ y) ≤ 1 = max{s, 1} = max{JA(x), JA(y)}.

If x, y /∈ K, then MA(x) = 0 = MA(y), B̃A(x) = [0, 0] = B̃A(y) and JA(x) = 1 = JA(y). It follows that

MA(x ∗ y) ≥ 0 = min{0, 0} = min{MA(x),MA(y)}
B̃A(x ∗ y) � [0, 0] = rmin{[0, 0], [0, 0]} = rmin{B̃A(x), B̃A(y)},
JA(x ∗ y) ≤ 1 = max{1, 1} = max{JA(x), JA(y)}.

Therefore A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of X .

Theorem 3.11. For any non-empty subset K of X , let A = (MA, B̃A, JA) be an MBJ-neutrosophic set in X
which is given in (3.4). IfA = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra ofX , thenK is a subalgebra
of X .

Proof. Let x, y ∈ K. Then MA(x) = t = MA(y), B̃A(x) = [γ1, γ2] = B̃A(y) and JA(x) = s = JA(y). Thus

MA(x ∗ y) ≥ min{MA(x),MA(y)} = t,

B̃A(x ∗ y) � rmin{B̃A(x), B̃A(y)} = [γ1, γ2],

JA(x ∗ y) ≤ max{JA(x), JA(y)} = s,

and therefore x ∗ y ∈ K. Hence K is a subalgebra of X .

Using an MBJ-neutrosophic subalgebra of a BCI-algera, we establish a new MBJ-neutrosophic subalge-
bra.

Theorem 3.12. Given an MBJ-neutrosophic subalgebra A = (MA, B̃A, JA) of a BCI-algebra X , let A∗ =
(M∗

A, B̃
∗
A, J

∗
A) be an MBJ-neutrosophic set in X defined by M∗

A(x) = MA(0 ∗ x), B̃∗A(x) = B̃A(0 ∗ x) and
J∗A(x) = JA(0 ∗ x) for all x ∈ X . Then A∗ = (M∗

A, B̃
∗
A, J

∗
A) is an MBJ-neutrosophic subalgebra of X .
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Proof. Note that 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y) for all x, y ∈ X . We have

M∗
A(x ∗ y) = MA(0 ∗ (x ∗ y)) = MA((0 ∗ x) ∗ (0 ∗ y))

≥ min{MA(0 ∗ x),MA(0 ∗ y)}
= min{M∗

A(x),M∗
A(y)},

B̃∗A(x ∗ y) = B̃A(0 ∗ (x ∗ y)) = B̃A((0 ∗ x) ∗ (0 ∗ y))

� rmin{B̃A(0 ∗ x), B̃A(0 ∗ y)}
= rmin{B̃∗A(x), B̃∗A(y)}

and

J∗A(x ∗ y) = JA(0 ∗ (x ∗ y)) = JA((0 ∗ x) ∗ (0 ∗ y))

≤ max{JA(0 ∗ x), JA(0 ∗ y)}
= max{J∗A(x), J∗A(y)}

for all x, y ∈ X . Therefore A∗ = (M∗
A, B̃

∗
A, J

∗
A) is an MBJ-neutrosophic subalgebra of X .

Theorem 3.13. Let f : X → Y be a homomorphism of BCK/BCI-algebras. If B = (MB, B̃B, JB) is an
MBJ-neutrosophic subalgebra of Y , then f−1(B) = (f−1(MB), f−1(B̃B), f−1(JB)) is an MBJ-neutrosophic
subalgebra of X , where f−1(MB)(x) = MB(f(x)), f−1(B̃B)(x) = B̃B(f(x)) and f−1(JB)(x) = JB(f(x))
for all x ∈ X .

Proof. Let x, y ∈ X . Then

f−1(MB)(x ∗ y) = MB(f(x ∗ y)) = MB(f(x) ∗ f(y))

≥ min{MB(f(x)),MB(f(y))}
= min{f−1(MB)(x), f−1(MB)(y)},

f−1(B̃B)(x ∗ y) = B̃B(f(x ∗ y)) = B̃B(f(x) ∗ f(y))

� rmin{B̃B(f(x)), B̃B(f(y))}
= rmin{f−1(B̃B)(x), f−1(B̃B)(y)},

and

f−1(JB)(x ∗ y) = JB(f(x ∗ y)) = JB(f(x) ∗ f(y))

≤ max{JB(f(x)), JB(f(y))}
= max{f−1(JB)(x), f−1(JB)(y)}.

Hence f−1(B) = (f−1(MB), f−1(B̃B), f−1(JB)) is an MBJ-neutrosophic subalgebra of X .
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Let A = (MA, B̃A, JA) be an MBJ-neutrosophic set in a set X . We denote

> := 1− sup{MA(x) | x ∈ X},
Π := [1, 1]− rsup {B̃A(x) | x ∈ X},
⊥ := inf{JA(x) | x ∈ X}.

For any p ∈ [0,>], ã ∈ [[0, 0],Π] and q ∈ [0,⊥], we define AT = (Mp
A, B̃

ã
A, J

q
A) by Mp

A(x) = MA(x) + p,
B̃ã

A(x) = B̃A(x) + ã and Jq
A(x) = JA(x) − q. Then AT = (Mp

A, B̃
ã
A, J

q
A) is an MBJ-neutrosophic set in X ,

which is called a (p, ã, q)-translative MBJ-neutrosophic set of A = (MA, B̃A, JA).

Theorem 3.14. If A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of X , then the (p, ã, q)-translative
MBJ-neutrosophic set of A = (MA, B̃A, JA) is also an MBJ-neutrosophic subalgebra of X .

Proof. For any x, y ∈ X , we get

Mp
A(x ∗ y) = MA(x ∗ y) + p ≥ min{MA(x),MA(y)}+ p

= min{MA(x) + p,MA(y) + p} = min{Mp
A(x),Mp

A(y)},

B̃ã
A(x ∗ y) = B̃A(x ∗ y) + ã � rmin{B̃A(x), B̃A(y)}+ ã

= rmin{B̃A(x) + ã, B̃A(y) + ã} = rmin{B̃ã
A(x), B̃ã

A(y)},

and

Jq
A(x ∗ y) = JA(x ∗ y)− q ≤ max{JA(x), JA(y)} − q

= max{JA(x)− q, JA(y)− q} = max{Jq
A(x), Jq

A(y)}.

Therefore AT = (Mp
A, B̃

ã
A, J

q
A) is an MBJ-neutrosophic subalgebra of X .

We consider the converse of Theorem 3.14.

Theorem 3.15. Let A = (MA, B̃A, JA) be an MBJ-neutrosophic set in X such that its (p, ã, q)-translative
MBJ-neutrosophic set is an MBJ-neutrosophic subalgebra of X for p ∈ [0,>], ã ∈ [[0, 0],Π] and q ∈ [0,⊥].
Then A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of X .

Proof. Assume that AT = (Mp
A, B̃

ã
A, J

q
A) is an MBJ-neutrosophic subalgebra of X for p ∈ [0,>], ã ∈

[[0, 0],Π] and q ∈ [0,⊥]. Let x, y ∈ X . Then

MA(x ∗ y) + p = Mp
A(x ∗ y) ≥ min{Mp

A(x),Mp
A(y)}

= min{MA(x) + p,MA(y) + p}
= min{MA(x),MA(y)}+ p,

B̃A(x ∗ y) + ã = B̃ã
A(x ∗ y) � rmin{B̃ã

A(x), B̃ã
A(y)}

= rmin{B̃A(x) + ã, B̃A(y) + ã}
= rmin{B̃A(x), B̃A(y)}+ ã,
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and

JA(x ∗ y)− q = Jq
A(x ∗ y) ≤ max{Jq

A(x), Jq
A(y)}

= max{JA(x)− q, JA(y)− q}
= max{JA(x), JA(y)} − q.

It follows that MA(x ∗ y) ≥ min{MA(x),MA(y)}, B̃A(x ∗ y) � rmin{B̃A(x), B̃A(y)} and JA(x ∗ y) ≤
max{JA(x), JA(y)} for all x, y ∈ X . Hence A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of
X .

Definition 3.16. Let A = (MA, B̃A, JA) and B = (MB, B̃B, JB) be MBJ-neutrosophic sets in X . Then
B = (MB, B̃B, JB) is called an MBJ-neutrosophic S-extension of A = (MA, B̃A, JA) if the following
assertions are valid.

(1) MB(x) ≥MA(x), B̃B(x) � B̃A(x) and JB(x) ≤ JA(x) for all x ∈ X ,

(2) If A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of X , then B = (MB, B̃B, JB) is an MBJ-
neutrosophic subalgebra of X .

Theorem 3.17. Given p ∈ [0,>], ã ∈ [[0, 0],Π] and q ∈ [0,⊥], the (p, ã, q)-translative MBJ-neutrosophic
set AT = (Mp

A, B̃
ã
A, J

q
A) of an MBJ-neutrosophic subalgebra A = (MA, B̃A, JA) is an MBJ-neutrosophic

S-extension of A = (MA, B̃A, JA).

Proof. Straightforward.

Given an MBJ-neutrosophic set A = (MA, B̃A, JA) in X , we consider the following sets.

Up(MA; t) := {x ∈ X |MA(x) ≥ t− p},
Uã(B̃A; [δ1, δ2]) := {x ∈ X | B̃A(x) � [δ1, δ2]− ã},
Lq(JA; s) := {x ∈ X | JA(x) ≤ s+ q}

where t, s ∈ [0, 1], [δ1, δ2] ∈ [I], p ∈ [0,>], ã ∈ [[0, 0],Π] and q ∈ [0,⊥] such that t ≥ p, [δ1, δ2] � ã and
s ≤ q.

Theorem 3.18. Let A = (MA, B̃A, JA) be an MBJ-neutrosophic set in X . Given p ∈ [0,>], ã ∈ [[0, 0],Π]
and q ∈ [0,⊥], the (p, ã, q)-translative MBJ-neutrosophic set of A = (MA, B̃A, JA) is an MBJ-neutrosophic
subalgebra of X if and only if Up(MA; t), Uã(B̃A; [δ1, δ2]) and Lq(JA; s) are subalgebras of X for all t ∈
Im(MA), [δ1, δ2] ∈ Im(B̃A) and s ∈ Im(JA) with t ≥ p, [δ1, δ2] � ã and s ≤ q.

Proof. Assume that the (p, ã, q)-translative MBJ-neutrosophic set ofA = (MA, B̃A, JA) is an MBJ-neutrosophic
subalgebra ofX . Let x, y ∈ Up(MA; t). ThenMA(x) ≥ t−p andMA(y) ≥ t−p, which imply thatMp

A(x) ≥ t
and Mp

A(y) ≥ t. It follows that

Mp
A(x ∗ y) ≥ min{Mp

A(x),Mp
A(y)} ≥ t

and so that MA(x ∗ y) ≥ t− p. Hence x ∗ y ∈ Up(MA; t). If x, y ∈ Uã(B̃A; [δ1, δ2]), then B̃A(x) � [δ1, δ2]− ã
and B̃A(y) � [δ1, δ2]− ã. Hence

B̃ã
A(x ∗ y) � rmin{B̃ã

A(x), B̃ã
A(y)} � [δ1, δ2],
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and so B̃A(x ∗ y) � [δ1, δ2]− ã. Thus x ∗ y ∈ Uã(B̃A; [δ1, δ2]). Let x, y ∈ Lq(JA; s). Then JA(x) ≤ s+ q and
JA(y) ≤ s+ q. It follows that

Jq
A(x ∗ y) ≤ max{Jq

A(x), Jq
A(y)} ≤ s,

that is, JA(x ∗ y) ≤ s + q. Thus x ∗ y ∈ Lq(JA; s). Therefore Up(MA; t), Uã(B̃A; [δ1, δ2]) and Lq(JA; s) are
subalgebras of X .

Conversely, suppose that Up(MA; t), Uã(B̃A; [δ1, δ2]) and Lq(JA; s) are subalgebras of X for all t ∈
Im(MA), [δ1, δ2] ∈ Im(B̃A) and s ∈ Im(JA) with t ≥ p, [δ1, δ2] � ã and s ≤ q. Assume that Mp

A(a ∗
b) < min{Mp

A(a),Mp
A(b)} for some a, b ∈ X . Then a, b ∈ Up(MA; t0) and a ∗ b /∈ Up(MA; t0) for

t0 = min{Mp
A(a),Mp

A(b)}. This is a contradiction, and soMp
A(x∗y) ≥ min{Mp

A(x),Mp
A(y)} for all x, y ∈ X .

If B̃ã
A(x0∗y0) ≺ rmin{B̃ã

A(x0),M ã
A(y0)} for some x0, y0 ∈ X , then there exists b̃ ∈ [I] such that B̃ã

A(x0∗y0) ≺
b̃ � rmin{B̃ã

A(x0),M ã
A(y0)}. Hence x0, y0 ∈ Uã(B̃A; b̃) but x0 ∗ y0 /∈ Uã(B̃A; b̃), which is a contradiction.

Thus B̃ã
A(x ∗ y) � rmin{B̃ã

A(x),M ã
A(y)} for all x, y ∈ X . Suppose that Jq

A(a ∗ b) > max{Jq
A(a), Jq

A(b)}
for some a, b ∈ X . Taking s0 := max{Jq

A(a), Jq
A(b)} implies that JA(a) ≤ s0 + q and JA(b) ≤ s0 + q

but JA(a ∗ b) > s0 + q. This shows that a, b ∈ Lq(JA; s0) and a ∗ b ∈ Lq(JA; s0). This is a contradic-
tion, and therefore Jq

A(x ∗ y) ≤ max{Jq
A(x), Jq

A(y)} for all x, y ∈ X . Consequently, the (p, ã, q)-translative
MBJ-neutrosophic set AT = (Mp

A, B̃
ã
A, J

q
A) of A = (MA, B̃A, JA) is an MBJ-neutrosophic subalgebra of

X .

4 Conclusion

This paper is written during the third author visit Shahid Beheshti University. In the study of Smarandache’s
neutrosophic sets, the authors of this article had a periodical research meeting three times per week, and tried
to get a generalization of Smarandache’s neutrosophic sets. In the neutrosophic set, the truth, false and inde-
terminate membership functions are fuzzy sets. In considering a generalization of neutrosophic set, we used
the interval valued fuzzy set as the indeterminate membership function because interval valued fuzzy set is a
generalization of a fuzzy set, and we called it MBJ-neutrosophic set where “MBJ” is the initial of authors’s
surname, that is, Mohseni, Borzooei and Jun, respectively. We also use MA, B̃A and JA as the truth mem-
bership function, the indeterminate membership function and the false membership function, respectively. We
know that there are many generalizations of Smarandache’s neutrosophic sets. In this article, we have made
up a generalization of neutrosophic set, called an MBJ-neutrosophic set, and have applied it to BCK/BCI-
algebras. We have introduced the concept of MBJ-neutrosophic subalgebras in BCK/BCI-algebras, and
investigated related properties. We have provided a characterization of MBJ-neutrosophic subalgebra, and es-
tablished a new MBJ-neutrosophic subalgebra by using an MBJ-neutrosophic subalgebra of a BCI-algebra.
We have considered the homomorphic inverse image of MBJ-neutrosophic subalgebra, and discussed transla-
tion of MBJ-neutrosophic subalgebra. We also have found conditions for an MBJ-neutrosophic set to be an
MBJ-neutrosophic subalgebra.
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