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Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) is an emerging

superbug with implicit drug resistance to vancomycin. Detecting hVISA can guide

the correct administration of antibiotics. However, hVISA cannot be detected in most

clinical microbiology laboratories because the required diagnostic tools are either

expensive, time consuming, or labor intensive. By contrast, matrix-assisted laser

desorption ionization time-of-flight (MALDI-TOF) is a cost-effective and rapid tool that

has potential for providing antibiotics resistance information. To analyze complex MALDI-

TOF mass spectra, machine learning (ML) algorithms can be used to generate robust

hVISA detection models. In this study, MALDI-TOF mass spectra were obtained from

35 hVISA/vancomycin-intermediate S. aureus (VISA) and 90 vancomycin-susceptible

S. aureus isolates. The vancomycin susceptibility of the isolates was determined using

an Etest and modified population analysis profile–area under the curve. ML algorithms,

namely a decision tree, k-nearest neighbors, random forest, and a support vector

machine (SVM), were trained and validated using nested cross-validation to provide

unbiased validation results. The area under the curve of the models ranged from 0.67

to 0.79, and the SVM-derived model outperformed those of the other algorithms.

The peaks at m/z 1132, 2895, 3176, and 6591 were noted as informative peaks

for detecting hVISA/VISA. We demonstrated that hVISA/VISA could be detected by
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analyzing MALDI-TOF mass spectra using ML. Moreover, the results are particularly

robust due to a strict validation method. The ML models in this study can provide rapid

and accurate reports regarding hVISA/VISA and thus guide the correct administration of

antibiotics in treatment of S. aureus infection.

Keywords: heterogeneous vancomycin-intermediate Staphylococcus aureus, matrix-assisted laser desorption

ionization (MALDI) mass spectrometry, vancomycin intermediate S. aureus (VISA), machine learning, rapid

detection

INTRODUCTION

Methicillin-resistant Staphylococcus aureus (MRSA)
infection remains an intractable clinical problem (Liu et al.,
2011). Although vancomycin was formerly the drug of choice
against MRSA, the unprecedented increase in the number and
spread of organisms with reduced susceptibility to this drug,
including two major phenotypes—vancomycin-intermediate
S. aureus (VISA) and heterogeneous VISA (hVISA)—has
brought this conventional treatment into question (Zhang et al.,
2015). The prevalence of hVISA and VISA was reported in a
systematic review to have increased worldwide from 4.68 and
2.05% (2006) to 7.01 and 7.93% (2014), respectively (Zhang et al.,
2015). In Taiwan, the prevalence of hVISA also increased from
0.7% (2003) to 10.0% (2013) and that of VISA from 0.2% (2003)
to 2.7% (2013) (Huang et al., 2016). Despite adequate doses
of vancomycin, patients with severe hVISA or VISA infection
persistently suffer from bacteremia (Howden et al., 2010). In
particular, hVISA infection is associated with increased risk of
treatment failure (van Hal and Paterson, 2011; Hu et al., 2015).
Longer bacteremia and culture-positive periods lead to longer
hospital stays and durations of vancomycin therapy, establishing
a vicious circle in the growth of staphylococcal resistance to
vancomycin (Sakoulas et al., 2006; Fong et al., 2009). Therefore,
early and accurate detection of potentially non-susceptible
staphylococcal strains is essential for hampering misuse of
vancomycin and directing appropriate antibiotic therapy.

The Clinical and Laboratory Standards Institute defines VISA
as an isolate with a minimal inhibitory concentration (MIC)
of vancomycin between 4 and 8 µg per mL. The MIC of
hVISA is within the susceptible range (≤2 µg per mL), but
a subpopulation of the isolate’s cells belong to a vancomycin-
intermediate range (Rybak and Akins, 2001). Clinical physicians
rely largely on antibiotics susceptibility tests (ASTs) to guide
correct administration of antibiotics against S. aureus infection.
However, MIC determination for S. aureus takes around 10 h,
agar diffusion necessitates an incubation time of 18–20 h. The
long turnaround time of ASTs inevitably delays accurate clinical
decision-making regarding suitable antibiotics. Moreover, hVISA
infection cannot be detected by routine AST methods because
of its low-level vancomycin resistance and a small resistant
fraction of the inoculum. hVISA can be detected by satellite
colonies in the vancomycin inhibition zone and the ETest zone;
it can‘t be reliably detected with automated MIC determination
methods. The screening tests for hVISA are Etest glycopeptide
resistance detection, the Etest macromethod, and brain heart
infusion screening agar plates. These three screening tests

vary in sensitivity and specificity, and single use of any one
test results in poor accuracy (Satola et al., 2011). Population
analysis profile–area under the curve is the gold standard
of determining hVISA, but the process is cumbersome, time
consuming, not commonly used in most clinical microbiology
laboratories, and thus impractical for laboratory diagnosis
(Chang et al., 2015).

Various proteins contribute to the resistance of S. aureus
against vancomycin (Lin et al., 2018). The proteomic pattern
of isolates can be analyzed in a rapid, comprehensive, and
cost-effective manner using matrix-assisted laser desorption
ionization time-of-flight (MALDI-TOF)mass spectrometry (MS)
in clinical microbiology laboratories (Hrabák et al., 2013;
Idelevich et al., 2017). MALDI-TOF MS produces large sets of
complex data. Manual interpretation of MALDI-TOF MS data
is unreliable; therefore, an informatics approach is necessary
for effective and accurate interpretation. Machine learning (ML)
can help automatic diagnosis and make the process less time
consuming (Swan et al., 2013). The application ofML to detecting
vancomycin-susceptible S. aureus (VSSA) in hVISA/VISA has
not been widely discussed or validated (Rishishwar et al., 2014;
Mather et al., 2016), although several studies have demonstrated
successful application of ML in clinical practice (Wang et al.,
2016; Lin et al., 2018). In the present study, we used a
data processing method that facilitated the application of an
ML algorithm in analysis of MALDI-TOF MS data (Wang
et al., 2018). Its performance in distinguishing VSSA from
hVISA/VISA was validated using nested cross-validation for a
minimally biased estimation of performance (Varma and Simon,
2006; Filzmoser et al., 2009; Krstajic et al., 2014). By using
the proposed ML models, we can rapidly detect hVISA/VISA
and guide the use of glycopeptide for patients with MRSA
infection.

MATERIALS AND METHODS

Study Design
The overall study flow is presented in Figure 1. MRSA isolates
were cultivated from a bacterial bank (Wang et al., 2018). In the
study, the 125 MRSA isolates had been collected from 2009 to
2014 at the Linkou branch of Chang Gung Memorial Hospital
(CGMH), Taiwan. The specimen type was blood specimen. The
MALDI-TOF MS spectra of these isolates were then obtained
and relevant features selected for distinguishing VSSA from
hVISA/VISA. The performance of the proposed models for rapid
detection of hVISA/VISA was evaluated using a nested cross-
validation approach.
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FIGURE 1 | The study flow of rapid detection of hVISA based on MALDI-TOF.

Bacterial Isolates
The bacterial strains were stored at−70◦C until use (Wang et al.,
2018). The strains were cultured on a blood agar plate (Becton
Dickinson, MD, USA) in a 5% CO2 incubator for 16–18 h.
A colony morphology inspection, catalase test, and coagulase
test were performed, and the results were in line with the
characteristics of S. aureus. Single colonies from the blood agar
plate were selected and spread onto a steel target plate (Bruker
Daltonik GmbH, Bremen, Germany), followed by application
of 1mL of 70% formic acid. After being dried in ambient air,
an additional 1mL matrix solution (50% acetonitrile containing
1% α-cyano-4-hydroxycinnamic acid and 2.5% trifluoroacetic
acid) was applied before analytical measurement was conducted
using a Microflex LT mass spectrometer (Bruker Daltonik
GmbH, Bremen, Germany). The conditions of the Microflex
LT mass spectrometer were as follows: linear positive mode;
accelerating voltage: +20 kV; laser frequency: 60Hz; and laser
shots per colony: up to 240. The Bruker Daltonics Bacterial Test
Standard was used as an external calibration for each batch.
The species of S. aureus was reconfirmed according to the
identification results provided by Biotyper 3.1 (Bruker Daltonik
GmbH, Bremen, Germany). ASTs of oxacillin were performed
according to Clinical and Laboratory Standards Institute M100
S27 guideline (CLSI., 2017). A cefoxitin disc was used for
testing oxacillin susceptibility. Amethod ofmultiplex polymerase
chain reactions for staphylococcal cassette chromosome mec
(SCCmec) was used for determining SCCmec type and detecting
mecA to confirm MRSA (Kondo et al., 2007). The MIC of
vancomycin was determined using an Etest (bioMérieux, Marcy-
l’Étoile, France) according to the manufacturer’s instruction.
In brief, bacterial isolates were inoculated with concentration

of 0.5 McFarland on Mueller Hinton agar plates (Creative
Media Plate, New Taipei City, Taiwan), followed by placing
vancomycin Etest strips. The MRSA isolates were screened
by Etest and those with MICs ≥2–4µg/mL were selected for
modified population analysis profile–area under the curve (PAP-
AUC) analyzes to be classified as either VSSA, hVISA, or
VISA(Wootton, 2001). For multilocus sequence typing (MLST),
seven housekeeping genes were sequenced, including carbamate
kinase (arcC), shikimate dehydrogenase (aroE), glycerol kinase
(glpF), guanylate kinase (gmk), phosphate acetyltransferase
(pta), triosephosphateisomerase (tpi), and acetyl coenzyme A
acetyltransferase (yqiL). The MLS typing result was determined
by comparing the sequence results to the S. aureus MLST
database (http://saureus.mlst.net/) (Enright et al., 2000).

Analysis of MALDI-TOF MS Spectra
The quality of the MS spectra was defined by the log score
provided by Biotyper 3.1 (Bruker Daltonik GmbH, Bremen,
Germany). MS spectra with a log score larger than 2.00 were
considered acceptable quality. A spectral range from 0 to
20,000 Da was collected. Before further analysis, the MALDI-
TOF MS spectra were preprocessed using Flexanalysis 3.4
(Bruker Daltonik GmbH, Bremen, Germany), as reported in a
study (Wang et al., 2018). Features were extracted from the
MALDI-TOF MS spectra after preprocessing. The aim of feature
extraction was to standardize and facilitate the application of
ML algorithms for analyzing complicated MS spectra. Feature
extraction was performed on the basis of a study (Wang et al.,
2018). First, type templates were constructed based on the
occurrence frequency of specific peaks in the MALDI-TOF
MS spectra. In the present study, the type templates of VSSA
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and hVISA/VISA were obtained using this approach. Features
were then extracted from the MALDI-TOF MS spectra by
aligning an individual spectrum onto the type templates. After
the alignments, matched vectors for each type template could
be obtained and an integrated vector of individual bacterial
strain was generated. Supervised ML algorithms could be trained
and validated according to the integrated vectors and their
corresponding labels.

Relevant Feature Selection
To include only the relevant features for use in the model
development, we performed a feature selection step before
constructing the predictive models. In each training task, a mean
decrease in accuracy, obtained from the random forest algorithm
(Liaw andWiener, 2002), was employed to select the most crucial
features from the training dataset. Themean decrease in accuracy
was generated by measuring the effect of each feature on the
accuracy of the model, permuting the values of each feature, and
measuring the decrease in accuracy.

Development of Predictive Models
We used random forest, a support vector machine (SVM)
with a radial basis function kernel, k-nearest neighbors, and
a decision tree to develop the models. Random forest is an
ensemble classifier proposed by Breiman (2001) that uses random
feature selection and comprises numerous classification trees.
The frequency of a feature’s appearance in the classification
trees represents the importance of the feature. The library
“randomForest” in R software (version 3.4.4, R Foundation for
Statistical Computing, http://www.r-project.org/) was used for

implementing the random forest classifier (Liaw and Wiener,
2002). An SVM is a data-mining method that constructs a
classification model for a binary-class problem. It uses nonlinear
mapping to transform the data into a higher dimension.
Through appropriate nonlinear mapping to a sufficiently high
dimension, data from two classes are separated by a hyperplane
(Cortes and Vapnik, 1995). The library “e1071” was used for
implementing the SVM classifier (Meyer et al., 2017). A simple
algorithm, k-nearest neighbors stores all available cases and
predicts the numerical target based on a similarity measure; it
was implemented using a “class” library (Venables and Ripley,
2002). A decision tree is a recursive partitioning approach. The
classification and regression trees algorithm splits each input
node into two child nodes, and the same process is applied to each
child node. Splitting is halted when the algorithm detects that
no further gain can be made (Breiman et al., 1984). We applied
the classification and regression trees algorithm to our dataset by
using the “rpart” library (Therneau and Atkinson, 2018).

Predictive Model Evaluation
To develop predictive models for distinguishing VSSA from
hVISA/VISA strains, we applied a nested 5-fold cross-validation
approach to train and evaluate themodels (Figure 2). In the outer
5-fold cross-validation loop, we divided the data into training
(4-folds) and test (1-fold) datasets to evaluate the performance
of the models with an untouched test set. In each training step in
the outer fold, repeated inner 5-fold cross-validation was applied
to tune and select the optimal models. The nested 5-fold cross-
validation process was repeated six times to ensure our evaluation
results were robust.

FIGURE 2 | Flow diagram of the predictive model development and evaluation.
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In each fold of outer cross-validation, we selected the features
and constructed the models using data from the training set and
then evaluated the performance of the models using the data in
the untouched test set. The area under the receiver operating
characteristic curve (AUC) was used to evaluate the performance
of the models. Furthermore, we used Youden’s J statistic—
a single statistic that captures the performance of a dichotomous
diagnostic test—to generate sensitivity and specificity for further
analysis of prediction performance.

Statistical Analysis
TheMann–WhitneyU-test was used to analyzeMALDI-TOFMS
spectra peak characteristics. We performed analysis of variance
(ANOVA) and Tukey honestly significant difference post-hoc
analyses on the AUC values of the predictive models. All analyses
were performed using the R software. All statistical tests were
two-sided, and statistical significance was defined as p < 0.05.

Data Availability
The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

RESULTS

MALDI-TOF MS Spectra of MRSA Isolates
A total of 125 MRSA isolates, namely 35 hVISA/VISA and 90
VSSA strains, were used to develop the proposed predictive
models. For each isolate, 127 peaks were extracted from a mass
spectrum. The peak characteristics and their intensities for these
MRSA isolates are presented in Supplementary Table 1. Among
these peaks, the intensities of 13 peaks were differed significantly
between the hVISA/VISA and VSSA strains (Table 1).

Relevant Features for Distinguishing VSSA
From hVISA/VISA
We defined relevant peak features as peaks with importance
greater than 1.9 based on the random forest algorithm results.
The importance was defined as z-score of mean decrease in
accuracy obtained from the random forest algorithm (Liaw and
Wiener, 2002). Among the 109 relevant features selected from 30
feature selection results based on repeated nested 5-fold cross-
validation (Supplementary Table 2), four peak features were
selected in more than 90% of the models. Figure 3 shows the
distribution based on kernel density estimation of the importance
of four peak features. The peak at m/z 6591 was selected
as a relevant feature in all the training tasks (n = 30) and
identified as the most crucial feature for distinguishing VSSA
from hVISA/VISA.

Performance of the Predictive Models
Regarding model performance for distinguishing VSSA strains
from hVISA/VISA strains among the MRSA isolates, the optimal
predictive model for the test set was the model constructed
using the SVM classifier with a radial basis function kernel and
with AUC = 0.790. The model constructed using the random
forest algorithm had similar performance, with AUC = 0.763

TABLE 1 | MALDI-TOF MS spectra peak characteristics that their intensities

differed significantly between the hVISA/VISA and VSSA strains.

Peak, m/z Intensity P-valued

hVISAa/VISAb strains

(median [IQR])

VSSAc strains

(median [IQR])

118 12.97 [11.58, 14.32] 11.39 [0.00, 13.20] 0.005

119 12.97 [11.58, 14.32] 11.41 [0.00, 13.23] 0.005

680 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.006

852 0.00 [0.00, 12.26] 12.37 [0.00, 13.46] 0.005

948 0.00 [0.00, 11.87] 0.00 [0.00, 0.00] 0.006

1132 0.00 [0.00, 11.42] 0.00 [0.00, 0.00] <0.001

1266 0.00 [0.00, 11.62] 0.00 [0.00, 0.00] 0.009

2429 12.37 [0.00, 13.31] 0.00 [0.00, 12.44] 0.004

2895 0.00 [0.00, 11.82] 0.00 [0.00, 0.00] <0.001

3176 10.65 [0.00, 11.18] 0.00 [0.00, 10.64] 0.001

6351 10.86 [10.58, 11.15] 10.62 [2.51, 10.94] 0.009

6591 10.54 [10.10, 11.02] 0.00 [0.00, 10.70] <0.001

9625 12.66 [12.32, 12.92] 12.30 [11.77, 12.81] 0.01

aHeterogeneous Vancomycin-intermediate S. aureus.
bVancomycin-intermediate S. aureus.
cVancomycin-susceptible S. aureus.
dMann–Whitney U test.

(p = 0.30). The AUCs for the models constructed using k-
nearest neighbors and a decision tree were 0.722 and 0.668,
respectively (Figure 4), which were lower than those of the
optimal predictive models (p < 0.01). Based on the maximum
value of Youden’s J statistic, the average sensitivity and specificity
of the SVM classifier were 0.770 and 0.814, respectively
(Figure 5). The validation results of all the classifiers using
nested 5-fold cross-validation, repeated 6 times, were presented
in Supplementary Table 3.

DISCUSSION

In the present study, we demonstrated that the ML-based
approach can successfully distinguish VSSA from hVISA/VISA
on the basis of MALDI-TOF MS data. The preliminary AST
obtained from the ML-based approach can yield an accurate
and rapid administration of correct antibiotics against MRSA
infection.

To distinguish hVISA/VISA from VSSA, a local ML model
can be established using the proposed strategy, and local clinical
microbiologists can easily acquire ML models that adequately
fit their own population. The prevalence of hVISA differs
among countries and areas (Zhang et al., 2015). Up to 50%
of isolates reported as susceptible to vancomycin can harbor
hVISA clones (Horne et al., 2009). Moreover, the composition of
isolates potentially varies among different areas. Consequently,
a localized ML model trained by locally relevant data would
offer superior performance to a general model. The strengths
of the ML models proposed in this study are their rapidness
and low cost. A vancomycin susceptibility test report could be
obtained using MALDI-TOF MS alone without other testing
methods. Clinical microbiologists could provide preliminary
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FIGURE 3 | Distribution of importance based on kernel density estimation of

peak features selected by more than 90% of the predictive models.

Importance: z-score of mean decrease in accuracy obtained from the random

forest algorithm.

but accurate vancomycin susceptibility days prior to PAP-AUC,
which is regarded as time-consuming and expensive. Although
various other hVISA screening tools have been developed, these
methods are typically culture-dependent and require a long
incubation time (Riederer et al., 2011; van Hal et al., 2011).
Moreover, the ML models do not require additional hVISA
screening tests such as glycopeptide resistance detection, the
Etest macromethod, or brain heart infusion screening agar plate
screening to report hVISA. Therefore, the cost of diagnosis could
be considerably decreased. The MALDI-TOF MS used in this
study was performed with direct deposit of bacteria onto a steel
plate rather than extracting it and placing in a tube. Direct
deposition is used in routine practice because it is rapid and not
labor-intensive. We used typical sample processing methods so
that the proposed ML models could cope with MALDI-TOF MS
data in real-world applications.

Incorporating ML algorithms into prediction of antibiotics
susceptibility is a promising application of ML. However, its
associated issues have not been widely addressed. One study
reported detection of hVISA/VISA using ML to analyze MALDI-
TOF MS data. The authors used an SVM and correctly
identified 100% of VISA and 97% of VSSA isolates with an
overall classification accuracy of 98% (Mather et al., 2016). The
performance was promising, and the authors also demonstrated
that the performance did not result from the specific composition
of the bacterial isolates (Mather et al., 2016). However, bias
may still have existed, because only 21 VISA, 21 hVISA, and
38 VSSA isolates were used in the study. Moreover, the feature
selection (essential peak selection) and model optimization steps
appeared to be conducted within all the datasets, not within
an independent training dataset, which may have resulted in
overfitting and thus perfect performance. Another study also
detailed a promising model with 99% sensitivity and 88%
specificity for classifying VSSA, VISA, and hVISA (Asakura
et al., 2018). The study provided a graphical user interface with

FIGURE 4 | Performance of predictive models for distinguishing VSSA from

hVISA/VISA isolates. KNN: k-nearest neighbor; SVM, support vector machine;

RBF kernel, radial basis function kernel.

fully public release code, which could truly benefit health care
and research teams. However, due to the study’s selection of
multiple colonies from one hVISA strain and the use of leave-
one-out validation, the model was also likely to be overfitted.
Given the high fidelity of MALDI-TOF MS (Croxatto et al.,
2012), we did not replicate each isolate by performing multiple
MALDI-TOF analyses as did by other study (Asakura et al.,
2018). Oversampling by direct replicating the isolates may result
in overfitting bias (Kubat and Matwin, 1997; Kegelmeyer et al.,
2002; Guo et al., 2008). By contrast, we used nested cross-
validation to avoid overfitting. The feature selection step and
model tuning were conducted within an independent training
dataset in each iteration (Figure 2). Consequently, the selected
feature compositions were different (Supplementary Table 2).
The importance of the features could be determined by their
frequency of occurrence in the nested cross-validation. As shown
in Supplementary Table 2 and Figure 3, the ions at m/z 1132,
2895, 3176, and 6591 were selected as the essential peaks and
were selected in more than 90% of the predictive models.
The ions at m/z 6887 and 9625, were selected with moderate
frequency (Supplementary Table 2), whereas the ion at m/z
3006 was selected as an essential peak in only a few iterations
(Supplementary Table 2). The results indicated the necessity of
selecting features using an independent training dataset. A peak
may be mistaken as an essential peak when iteration is not used.
We confirmed the importance of characteristic peaks by using
nested cross-validation. In this work, we analyzed the region from
0 to 20000 m/z because we did not presume that a characteristic
peak cannot be found under 2000 m/z. We just included all
the data and discover meaningful information by a data mining
technique (i.e., feature selection process in this study). In most of
studies, region 2000 to 20000m/z was used for analysis, and some
irregular peaks from the agar medium may show up within the
region below 2000 m/z. To avoid an irregular peak being selected
as a characteristic peak, random forest algorithm was applied to
estimate the importance of each peak in discriminating VSSA
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FIGURE 5 | Sensitivity and specificity of the predictive models, calculated based on the maximum value of Youden’s J statistic. KNN, k-nearest neighbor; SVM,

support vector machine; RBF kernel, radial basis function kernel.

from hVISA/VISA, under the scheme of nested cross validation
(Figure 2). Characteristic peaks would be selected through the
unbiased method.

The ions at m/z 1132, 2895, 3176, and 6591 were the crucial
features in distinguishing VSSA from hVISA/VISA in the present
study (Supplementary Table 2 and Figure 3). Lu et al. reported
that the ions at m/z 1835 and 1863 were characteristic peaks for
hVISA andVISA (Lu et al., 2012). However,Mather et al. revealed
that ions at m/z 4540 and 8258 were characteristic for VISA
and VSSA, respectively (Mather et al., 2016). This discordance
may be due to several reasons. First, the bacterial isolates were
acquired from different locations and at different times. Second,
the extraction methods were also different; tube extraction was
used in these two studies (Lu et al., 2012; Mather et al., 2016),
whereas we used direct deposition, which is the method used
in routine practice. Third, the aforementioned difference in the
methods of selecting essential peaks could also account for the
discordance. In the previous studies, the characteristic peaks
were selected on the basis of either descriptive statistics (Lu
et al., 2012) or multiple regression (Mather et al., 2016). By
contrast, we selected characteristic peaks by using random forest
feature importance and confirmed the importance of the peaks in
multiple iterations. In the present study, the ion at m/z 6591 was
detected in 85.7 and 41.1% of the hVISA/VISA and VSSA groups,
respectively. Previous studies have demonstrated m/z 6591 as
a characteristic peak of clonal complex 8 (CC8) MRSA isolates
(Wolters et al., 2011; Boggs et al., 2012; Josten et al., 2013; Camoez
et al., 2016). In the first study conducted byWolters et al. a model
was demonstrated with the ability to discriminate five major CCs
(CC5, CC8, CC22, CC30, and CC45) by using 13 peaks, including

m/z 6591, which appeared to be specific to CC8 isolates (Wolters
et al., 2011). In another study, m/z 6591 was adopted as one of
the three peaks of a classifier constructed from 47 USA300/CC8
and 77 non-USA300 MRSA isolates. The classifier had an 87.9%
overall accuracy on a validation dataset (Boggs et al., 2012).
In 2013, Josten et al. analyzed the peak pattern of 401 MRSA
and MSSA strains, revealing that the peak protein at m/z 6592
provided a sensitivity of 0.889 and specificity of 0.996 for CC8
(Josten et al., 2013). In 2016, a supervised neural network model
constructed by Camoez et al. on the basis of data covering a 20
years period suggested m/z 6591.84 as a unique biomarker of
CC8 isolates (Camoez et al., 2016). In our data, m/z 6591 was also
noted in 56 of 62 CC8 and ST239 strains (90.3%). Our results are
consistent with those of previous studies conducted in Europe
and the United States, which suggests that despite geographical
and racial diversity, peak protein m/z 6591 can provide valuable
classification information regarding MRSA in Asian populations.
Although ions at m/z 1132, 2895, and 3176 were also selected
as informative features in the present study, the significance and
relation of these features in the resistance of VISA and hVISA
have not yet been reported.

This study had several limitations. First, bacterial composition
affected the performance of the ML models. The performance of
ML can be compromised by a complex bacterial composition.
In this study, the bacterial composition of the isolates was
analyzed using multilocus sequence and SCCmec typing. The
bacterial composition results revealed a non-restricted bacterial
distribution, for which classification problems are not generally
simple (Supplementary Figure 1). The ML models and results
may not be generalized directly to other countries or areas.
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The MLS type of most MRSA isolates in this study are ST239
(62/125), followed by ST5 and ST59 (Supplementary Figure 1).
This is the distinct composition of MRSA isolates in Taiwan
(Sheng et al., 2009), and the characteristic peaks and the models
created based on the cohort may be only used for the population
in this region. In this study, we demonstrated a ML-based
methodology for detecting hVISA/VISA. Through using the
workflow proposed in this study, other clinical microbiology
laboratories could obtain their own ML models specific for
detecting hVISA/VISA in their region. We did not aim to and
may not possibly generalize the ML models but we proposed a
methodology which may help others generating a specific model
fitting their populations more properly than do a generalized
model. Second, the ML performance reported in this study is not
as high as that reported in other studies that evaluated model
performance using leave-one-out cross-validation (Rishishwar
et al., 2014; Mather et al., 2016). This lower performance may
have resulted from the stricter validation method applied
in the present study. We used direct deposition instead of
in-tube extraction. The direct deposition method offers a
rapid turnaround time and requires less labor; however, the
reproducibility and quality of MALDI-TOF MS data may be
compromised (Goldstein et al., 2013; Mather et al., 2016).
Compromised MALDI-TOF data may reduce ML model
performance because non-susceptible S. aureus is relatively
rare (10−5-10−6) in hVISA (van Hal and Paterson, 2011);
more sensitive MALDI-TOF data could facilitate detection of
subtle changes during MS. Third, although the performance
of the ML models was validated using a minimally biased
method, the models should undergo external validation in other
Taiwanese institutes. Fourth, the primary aim of this study is to
demonstrate and validate an unbiased methodology to detect
hVISA/VISA by analyzing MALDI-TOF MS spectra through a
ML-based approach. We focus more on the aspect of clinical
application in this work. The validated ML model is ready to
be used in our clinical practice and hopefully the proposed
method can help generate clinically useful ML model in other
local clinical microbiology laboratories. Besides, identifying
protein/peptide behind the peaks is essential for understanding
the causative proteins/mechanisms for vancomycin resistance,
which is worthy further investigation in the future. In general,
the present study successfully demonstrated the use of an
ML approach for detecting hVISA/VISA. The negative

predictive value of detecting vancomycin-non-susceptible
S. aureus was 0.9695 when the prevalence of hVISA was 10%.
Additionally, the absolute reduction of risk of administering
inadequate glycopeptide dose in treating vancomycin-non-
susceptible S. aureus was 0.0695 under the prevalence
setting.

In conclusion, the proposed ML models, validated by a robust
model evaluation method, successfully distinguished emerging
superbugs (hVISA/VISA) from VSSA, which cannot be detected
in most clinical microbiology laboratories. By utilizing cost-
effective MALDI-TOF and ML technologies, providers have
the opportunity to offer rapid and accurate treatment for
MRSA.
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