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There are countless microbes in the human body, and they play various roles in the
physiological process. There is growing evidence that microbes are closely associated
with human diseases. Researching disease-related microbes helps us understand the
mechanisms of diseases and provides new strategies for diseases diagnosis and
treatment. Many computational models have been proposed to predict disease-related
microbes, in this paper, we developed a model of Adaptive Boosting for Human
Microbe-Disease Association prediction (ABHMDA) to reveal the associations between
diseases and microbes by calculating the relation probability of disease-microbe pair
using a strong classifier. Our model could be applied to new diseases without any
known related microbes. In order to assess the prediction power of the model, global
and local leave-one-out cross validation (LOOCV) were implemented. As shown in the
results, the global and local LOOCV values reached 0.8869 and 0.7910, respectively.
What’s more, 10, 10, and 8 out of the top 10 microbes predicted to be most likely to
be associated with Asthma, Colorectal carcinoma and Type 1 diabetes were all verified
by relevant literatures or database HMDAD, respectively. The above results verify the
superior predictive performance of ABHMDA.

Keywords: microbe, disease, association prediction, adaptive boosting, decision tree

INTRODUCTION

Microbes are ubiquitous in our lives. After deeper research, microbes could be simply divided
into the following types: bacteria, fungi, viruses, archaea, protozoa, and so on (Sommer and
Backhed, 2013). As we all know, there are a number of microbes living in the human tissues,
such as gut (Grenham et al., 2011), skin (Fredricks, 2001) and lung (Cole, 1989). Cells are
the basic unit of our body’s structure and function, and our body contains more than 40
trillion cells, but studies have shown that the number of microorganisms in humans is 10%
more than the number of cells, which shows that the microbial community is relatively large
in the human body (Sender et al., 2016). There are studies showing that microorganisms are
involved in many biological processes in the human body, such as metabolic function, immune
function, and so on (Gill et al., 2006). For example, in the intestinal tract of the adult, most
of the intestinal microbes living in the gastrointestinal tract are able to not only synthesize
necessary amino acids and vitamins, but also are conducive to the digestion and absorption of
indigestible food (Huang Z.A. et al., 2017). So it is not surprising that there are links between
microbes and human diseases (Consortium, 2012).Some researchers had found a close relationship
between human type 2 diabetes and changes in the composition of the intestinal microbiota
(Larsen et al., 2010). Gut microbes could induce colorectal cancer by generating butyrate that
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promoted the hyperproliferation of MSH2(−/−) colon epithelial
cells (Belcheva et al., 2014). There was also evidence that toxins
produced by microbes such as Streptococcus and Staphylococcus
aureus had been shown to be a new class of allergens that
could induce or even aggravate inflammatory skin diseases
(Skov and Baadsgaard, 2000). Therefore, revealing disease-related
microbes not only helps to further understand the pathogenesis
of the disease but also provides new strategies for the diagnosis
and treatment of the disease. Although some proven disease-
microbe associations have been documented in the database
HMDAD (Ma et al., 2017)1, such as Allergic asthma-Helicobacter
pylori, Allergic sensitization-Clostridium difficile, and Asthma-
Bacteroidetes, these are far from enough. Unfortunately, using
biological experiments to reveal the relationship between disease
and microbes is cumbersome and costly. Therefore, it is
imperative to predict the potential disease-related microbes by
constructing computational models.

According to the assumption that functionally similar
microbes tend to be associated with similar diseases, by
integrating two separate recommendation algorithms based
on neighbor information and network topology, respectively,
Huang Y.A. et al. (2017) developed a neighbor and graph based
combined recommendation model for human microbe-
disease association prediction (NGRHMDA) to predict
potential disease-related microbes. As a combination of
two independent recommendation models, the prediction
accuracy of NGRHMDA was significantly improved compared
to a single recommendation model. Unlike previous methods,
NGRHMDA was an unsupervised learning method that did
not require negative samples. Of course, there were some
restrictions on NGRHMDA. Firstly, NGRHMDA could not
be applied to predict microbes associated with new diseases
without any known related microbes. Secondly, the optimal
values of some parameters in the model were still not solved.
Huang Z.A. et al. (2017) proposed a method of Path-Based
Human Microbe-Disease Association prediction (PBHMDA)
by integrating confirmed disease-microbe relations and the
Gaussian interaction profile kernel similarity for diseases and
microbes into a heterogeneous network. This model traversed
all possible pathways between microbes and diseases through
a novel depth-first search algorithm to predict the most likely
disease-associated microbes. Both global and local leave-one-out
cross validation (LOOCV) AUC values of PBHMDA were
greater than 0.9, which showed that the prediction accuracy
of PBHMDA was quite impressive. Regrettably, this model
still had some shortcomings. Firstly, both the disease–disease
similarities and microbe–microbe similarities were obtained
from the Gaussian kernel for interaction profiles of microbes
and diseases that were calculated based on the known disease-
microbe associations, which might be biased for diseases with
more known related microbes. Secondly, PBHMDA was also
not suitable for new diseases. What’s more, based on the known
human microbe-disease association network obtained from
the HMDAD database, Wang et al. (2017) proposed a novel
computational model of Laplacian Regularized Least Squares

1http://www.cuilab.cn/hmdad

for Human Microbe-Disease Association (LRLSHMDA) to
reveal potential disease-related microbes (Wang et al., 2017).
LRLSHMDA applied a semi-supervised learning framework
due to the lack of pairs of disease-microbes that had proven
to be unrelated. In this model, the microbe similarity network
and the disease similarity network were constructed based on
the Gaussian interaction profile kernel similarity calculated by
known microbe-disease association, and then by constructing
and optimizing the cost functions in microbe space and disease
space to integrated the optimal classifier functions to calculate
the relation probabilities of microbe-disease pairs. Although
the reliable prediction performance of LRLSHMDA had been
verified, the model still had some shortcomings that needed
further improvement. Firstly, the number of proven-microbe
associations was too small, and sparse known association
network might affect the prediction performance of the model.
Secondly, LRLSHMDA could not be suitable for new microbes
without any known related diseases.

In addition, Ma et al. (2017) built a microbe-disease
association network based on published literature, and
constructed a disease–disease network (Human Microbe
Disease Network, HMDN) based on disease-associated microbes
where the weight of the link between diseases was the similarity
of microbes associated with the corresponding disease, and
then by integrating data of disease genes, symptoms, chemical
fragments, and drugs to investigate the overlaps between
microbes and genes. Chen et al. (2017a) built a microbe-
human disease association network and proposed a novel
computational model of KATZ measure for Human Microbe-
Disease Association prediction (KATZHMDA) based on this
hypothesis that functionally similar microbes tend to have similar
interactions and non-interactive patterns with non-infectious
diseases and vice versa. By merging known disease-microbe
association networks, disease similarity networks and microbe
similarity networks into a heterogeneous network, KATZHMDA
integrated walks with different lengths in the network to
calculate the relation probability between microbe and disease.
As a global computation method, KATZHMDA was capable of
simultaneously revealing microbes associated with all diseases
in a large-scale network. However, KATZHMDA still had many
problems need to be solved in the future. For example, the
problem of the optimal value of the parameter k had not been
solved yet, and the prediction accuracy of KATZHMDA needed
to be improved.

The above methods had various shortcomings. For instance,
some models were not suitable for new diseases, and the optimal
values of the parameters in some models were not well solved. For
the sake of revealing the association between microbe-diseases
better, in this paper, we proposed a model of Adaptive Boosting
for Human Microbe-Disease Association prediction (ABHMDA)
to uncover the associations between diseases and microbes by
calculating the relation probability of disease-microbe pair using
a strong classifier. Compared with the above methods, our model
had the advantage of predicting microbes associated with new
diseases. Since the number of negative samples was much larger
than that of positive samples, we introduced k-means clusters
to sample negative samples to balance the samples for training.
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What’s more, the strong classifier was composed of multiple
weak classifiers according to the corresponding weights, and the
higher the prediction accuracy of weak classifier, the greater the
weight of it. We applied global and local LOOCV to evaluate
the prediction performance of ABHMDA. As the results shown,
the global and local LOOCV values reached 0.8869 and 0.7910,
respectively, which indicated that the model’s prediction power
was reliable. Besides, we used ABHMDA to conduct case studies
on three diseases. 10, 10, and 8 out of the top 10 microbes
predicted to be most likely to be associated with Asthma,
Colorectal carcinoma and Type 1 diabetes were all verified by
relevant literatures or database HMDAD, respectively.

MATERIALS AND METHODS

Human Microbe-Disease Associations
We could obtain 450 known associations between 292 microbes
and 38 diseases from Human Microbe-Disease Association
Database (HMDAD) (Ma et al., 2017). For the reason that there
were several grades of microbe classification, and when using
16s RNA sequences to study microbes, only the information in
the level of genus would be acquired, we revealed the microbes
which were likely to be related with human diseases in genus level.
Besides, we defined the adjacency matrix A, if there was known
association between disease d (i) and microbes m

(
j
)
, the value

of the element A
(
d (i) , m

(
j
))

matrix A was 1. We applied the
variable nd, nm to denote the number of diseases and microbes
studied, respectively.

Gaussian Interaction Profile Kernel
Similarity
Inspired by this article (Laarhoven et al., 2011), Considering the
assumption that if two similar diseases were associated with two
microbes, respectively, the two microbes were likely to be similar,
and there were similar interaction and non-interaction pattern
between diseases and microbes, Gaussian interaction profile
kernel similarity for disease KD was constructed to indicated the
similarities between diseases based on the known associations
of disease-microbe pairs. Firstly, binary vector IP

(
d (i)

)
was

defined to represented the interaction profiles of diseases d(i)
by observing whether there was a known association between
disease d(i) and each microbe (i.e., the ith row of the adjacency
matrix A). Then, the Gaussian interaction profile kernel similarity
between disease d(i) and d(i) could be calculated as follow:

KD
(
d (i) , d

(
j
))
= exp

(
−γd||IP

(
d (i)

)
− IP

(
d (i)

)
||

2) (1)

Here, parameter γd was introduced to regulated the kernel
bandwidth and got by normalizing another parameter γ′d by the
average number of related microbes of all the diseases. γd was
calculated as follow:

γd =
γ′

d∑
1 nd||IP(d(i))||2

nd

(2)

where the value of γ′d was 1.

The definition of Gaussian interaction profile kernel similarity
for microbe KM was similar to KD

Integrating Symptom-Based Disease
Similarity
From the above we could see that Gaussian interaction profile
kernel similarity was only based on the adjacency matrix A. If we
wanted to effectively and scientifically predict potential disease-
associated microbes, it was necessary to introduce other datasets
in combination with the Gaussian interaction profile kernel
similarity. Based on the disease and corresponding symptom
recorded in PubMed bibliography. Zhou et al. (2014) calculated
similarity between diseases and constructed the symptom-based
human disease network (HSDN). Here, we integrated the
Gaussian interaction profile kernel similarity for disease KD
and the symptom-based disease similarity SDM to obtained
the Integrating symptom-based disease similarity SD, and the
calculation of SD was defined as follow:

SD =
KD+ SDM

2
(3)

ABHMDA
Motivated by this paper (Rayhan et al., 2017), we constructed a
novel calculation model of ABHMDA to predict disease-related
microbes and the flow chart of the algorithm was shown in
Figure 1. The core idea of ABHMDA was to train different
classifiers (weak classifiers) for the same training samples, and
then grouped these weak classifiers with different ratios to form
a stronger classifier to score and sort samples. Here, we chose
the decision tree as our weak classifier. The specific steps were
mainly divided into three steps: integrating the data, training the
model, and scoring the samples. In the first step, we integrated
the Gaussian interaction profile kernel similarity for microbe KM
and the Integrating symptom-based disease similarity SD. In the
second step, we firstly referred to the sample with confirmed
association as a positive sample, otherwise it was an unknown
sample. On account of the unknown sample accounting for about
97% in all the samples, that was to say, there were far more
unknown samples than positive ones, and it was unreasonable
to directly train such unbalanced datasets. Here, we introduced a
novel method to balance the datasets. In this method, we applied
the k-mean clustering to divide the unknown sample into k
parts, and then randomly extract some samples from each part as
negative samples, while positive samples kept unchanged. There
were researchers studying the effect to random extraction when
k took different values, and the results shown that the optimal
value of parameter k was 23. In order to make the dataset used
for training more balanced, the number of the unknown samples
randomly selected ought to be approximately equal to the positive
sample. In the end, the negative and positive samples together
formed the training samples. Each training sample was weighted
with an initial weight of 1

n , where n was the total number of
training samples. The main purpose of the training process was to
calculate the proportion of each weak classifier in the final strong
classifier and update the weight of each training sample according
to whether it was classified correctly by the last classifier and the
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FIGURE 1 | The flowchart of ABHMDA includes three steps: preparing the data; training the model; and scoring and ranking the disease-microbe pairs.

overall classification accuracy of the last classifier. After updating,
the new training sample set with modified weight values was sent
to the next weak classifier for training. Here, we built lists DI, h(i)
and Y , all of which had n elements. The value of each element in
Di was the weight of the corresponding sample when the ith weak
classifier trained the sample. The value of i was 0, 1, 2, , , , 29. In
other words, D0 was a list with all elements being 1

n . The value
of the element in label lists h (i) and Y was only 0 or 1, and the
difference between them was that the value of h(i)j depended
on the prediction of the ith weak classifier, while the value of Yj
depended on whether the corresponding sample was a positive
sample, if the corresponding sample was a positive sample, the
value of Yj was equal to 1, otherwise 0. The error function ∈i was
calculated as follow:

∈i=

n∑
j=1

Di1h(i)j 6=Yj (4)

It could be seen from the formula that the error function ∈i
was equal to the sum of the weights of the samples, whose label
predicted by the weak classifier h (i)j was different from the
known label Yj. That was to say ∈i was equal to the sum of the
weights of all the samples that were predicted wrong. Then the
proportion of the ith weak classifier in the strong classifier could
be defined as follow:

αi =
log 1−∈i

∈i

2
(5)

It could be seen from equation (5) that the smaller the error
function was, the larger the proportion of the weak classifier
in the strong classifier would be. And the variate Zi could be
calculated as follow:

Zi = 2 [∈i (1− ∈i)]2 (6)

The weight of the sample could be updated according to the
following formula:

Di+1
(
j
)
=

1
Zi

Di
(
j
)

e−αiYjh(i)j (7)

Here j = 0, 1, 2...n− 1. After the weights of samples being
updated, the samples with the new weights were sent to the
next weak classifier to start the next training until all the weak
classifiers completed the training (Theoretically, the more weak
classifiers, the higher the prediction accuracy of strong classifier.
But when the weak classifier reached a certain number, the
prediction accuracy tended to be stable. And then as the number
of weak classifiers increased, accuracy was not significantly
improved, but the prediction process took longer. We compared
the prediction results with 20, 30, and 40 weak classifiers, the
accuracy of using 30 and 40 weak classifiers was basically the
same, which was better than 20 weak classifiers. However, the
prediction time of 40 weak classifiers was longer than using 30
classifiers. Comprehensive consideration of prediction time and
accuracy, here, we chose to use 30 weak classifiers to form the
final strong classifier.), then the training process was end. The
next step was to score the sample, and the score of the jth sample
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was defined as follows:

s
(
j
)
=

29∑
i=0

αiH (i)j (8)

Here, H (i)j was the score scored by the ith weak classifier for the
jth sample. That was to say, the score of the sample was equal
to the sum of the product of the sample’s goal scored by weak
classifier and the corresponding weight (The corresponding data
and code had been submitted to the website2).

RESULTS

Performance Evaluation
In order to verify the prediction performance of ABHMDA,
we implemented global and local LOOCV for our model based
on the database HMDAD (Ma et al., 2017) which recorded
450 known associations between 39 diseases and 292 miRNAs.
Specifically, each of the 450 samples (positive samples) with
known association was left out in turn as a test sample while
the remaining 449 were used for model training, while all of
the samples without known associations were considered as
candidate samples (unknown samples). In global LOOCV, we
sorted the test sample with all candidate samples based on the
score marked by calculation model, while the test sample was
ranked with the candidate samples that contained the same
disease as the test sample in local LOOCV. We evaluated the
prediction performance of models based on the AUC value of
the LOOCV. To be specific, only the test sample ranked above
a certain threshold, could it be considered as a correct prediction,
and then we set the true positive rate (TPR, sensitivity) as the
horizontal axis and the false positive rate (FPR, 1-specificity) as
the vertical axis. Therefore, we could plot the Receiver operating
characteristics (ROC) curve, which was composed of points
corresponding to different thresholds, then we could obtain the
Area under the ROC curve (AUC). A model with an AUC value
equal to 0.5 was equivalent to a random prediction. When the
AUC took the maximum value of 1, the model had excellent
prediction performance. In other words, when the value of AUC
was greater than 0.5 and less than 1, the larger the value was, the
better the prediction performance of the model would be.

As shown in Figure 2, the global LOOCV value of
ABHMDA was 0.8869, which was significantly larger than that
of KATZHMDA (0.8644) and LRLSHMDA (0.8843). What was
more, the local LOOCV value of our model reached 0.7910,
which was also obviously better than KATZHMDA (0.6998)
and LRLSHMDA (0.7508). These results confirmed the superior
prediction performance of ABHMDA

Case Study
In order to further assess the prediction ability of ABHMDA,
we implemented two case studies on some important diseases
of human. In the first kind, there were 10938 unknown samples
about 39 diseases and 292 miRNAs in HMDAD. We sorted

2https://github.com/githubcode007/ABHMDA

and ranked all unknown samples corresponding to the same
disease and verified whether the association between the top 10
microbes and the disease studied was verified by the relevant
literature. In the second kind, we converted all 1 in the adjacency
matrix A to 0 and sorted all the samples (positive and unknown
samples) corresponding to the same disease and then verified
the association between disease and the 10 microbes most
likely associated with it predicted by the model in the database
HMDAD. In other words, the purpose of the second case study
was to verify our model’s power to predict microbes associated
with new diseases without any known related microbes. Here,
we implemented the first case study on asthma, Colorectal
carcinoma, and the second case on Type 1 diabetes.

As an inflammatory disease on the airway, it was very difficult
to completely cure asthma under current medical conditions
(Preston et al., 2007). According to statistics, there were about
300 million asthma patients worldwide, and in recent years its
morbidity and mortality had also increased rapidly, especially
in developing countries (Sagar et al., 2014). Therefore, a deeper
study of asthma was imperative, and studies had shown that there
was a close relationship between the microbes in the respiratory
tract and the development and progression of asthma (Marri
et al., 2013). For example, studies had shown that Firmicutes was
reduced in asthmatic patients compared with normal humans
(Wu et al., 2018). In contrast, Proteobacteria accounted for a
larger proportion of microorganisms in asthma patients than
normal people (Marri et al., 2013). What’s more, there was
evidence that when the hypopharyngeal area of Neonates was
infected with Streptococcus pneumoniae, the risk of developing
asthma was increased compared to uninfected (Bisgaard et al.,
2007). We implemented the first case study of asthma and the 10
microbes predicted to be most relevant to asthma were all verified
by literatures. For instance, the experimental results showed that
the abundance of Lachnospiraceae (First in the prediction list)
in asthma patients was 1.9 times that of normal people (Jung
et al., 2016). The researchers found that the relative abundance
of Veillonella (Second in prediction list ) in infants at risk
of asthma was significantly lower than in normal people, and
inoculation of sterile mice with Veillonella could improve its
airway inflammation, which provided new ideas for the treatment
of asthma (Arrieta et al., 2015). Moreover, there was evidence that
if there was Clostridium coccoides (Third in prediction list) in a
3 week old baby’s stool, he was at risk of developing asthma, so
Clostridium coccoides may become an early diagnostic target for
asthma (Vael et al., 2011; See Table 1).

To facilitate further research and validation, we provided
a ranking of the relevant probabilities for all pairs of
disease-microbe pairs without confirmed association (See
Supplementary Table S1).

Colorectal carcinoma (CRC) was a common gastrointestinal
malignant tumor in China (Xue et al., 2014). As one of the top
cancers with the highest morbidity and mortality worldwide, it
was estimated that there were approximately one million new
cases of CRC and 500000 deaths per year (Sun et al., 2013).
What was more serious was that its incidence would continue
to increase in the next few decades, and the survival rate in
5 years was less than 60% (Sun et al., 2011). Therefore, it
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FIGURE 2 | Comparison of prediction performance of ABHMDA with two other computational models (KATZHMDA, LRLSHMDA) in terms of ROC curves and AUCs
values based on global and local LOOCV. As shown in the results, the global and local LOOCV values of ABHMDA were 0.8869 and 0.7910, respectively, which
were significantly larger than that of KATZHMDA (0.8644, 0.6998) and LRLSHMDA (0.8843, 0.7508).

TABLE 1 | The 10 microbes predicted to be most likely to be associated with the
Asthma.

microbe Evidece

Lachnospiraceae PMID: 27433177

Veillonella PMID: 26424567

Clostridium coccoides PMID: 21477358

Firmicutes PMID: 23265859

Streptococcus PMID: 17928596

Actinobacteria PMID: 23265859

Lactobacillus PMID: 20592920

Bacteroides uniformis PMID: 27433177

Enterococcus PMID: 22641478

Escherichia coli PMID: 26277095

The first column records the top 10 microbes most likely to be related Asthma, and
the second column records the databases and experimental literatures in PubMed,
which verify the associations between the corresponding microbe and Asthma.

was necessary to study the pathogenesis of CRC to explored
new treatment methods, and studies had shown that microbes
played an important role in the development and progression
of cancer that were closely related to inflammation like CRC
(Liang et al., 2014). For example, there were studies showing
that the number of Lactobacillus hamster increased significantly
during the formation of CRC (Liang et al., 2014). The researchers
compared CRC cases with the normal control group and found
that the relative abundance of phylum Bacteroidetes in the case
group reached 16.2%, which was much higher than 9.9% of
the normal group (Ahn et al., 2013). We applied ABHMDA to
implement the first case study on CRC, and the 10 predicted
microorganisms most likely to be associated with CRC were all
verified by related literature in PubMed. There was evidence
that the relative abundance of Veillonella (First in the prediction

TABLE 2 | The 10 microbes predicted to be most likely to be associated with the
Colorectal carcinoma.

microbe Evidece

Veillonella PMID: 22761885

Klebsiella PMID: 22776247

Enterobacteriaceae PMID: 25182170

Proteobacteria PMID: 24603888

Lachnospiraceae PMID: 21850056

Clostridium coccoides PMID: 19807912

Streptococcus PMID: 21247505

Actinobacteria PMID: 24316595

Lactobacillus PMID: 15828052

Bacteroides uniformis PMID: 24828543

The first column records the top 10 microbes most likely to be related Colorectal
carcinoma, and the second column records the databases and experimental
literatures in PubMed, which verify the associations between the corresponding
microbe and Colorectal carcinoma.

list) in CRC cancer tissues was 2.87% and only 0.68% in the
intestinal lumen (Chen et al., 2012). Pyogenic liver abscess was
identified as an early manifestation of adult CRC, and an 11-
year follow-up study showed that pyogenic liver abscess patients
with Klebsiella (Second in the prediction list) pneumoniae had
a higher probability of having CRC than those without (Huang
et al., 2012). What was more, there were studies showing that
Enterobacteriaceae (Third in the prediction list) was very rich
in CRC patients (Arthur et al., 2014). From the above results, it
could be seen that the predicted performance of ABHMDA was
very reliable (See Table 2).

Type 1 diabetes was an autoimmune disease which resulted
from the immune-mediated destruction of insulin-producing
pancreatic β cells (Li et al., 2014). The incidence of Type 1
diabetes was increasing globally, but the proportion of patients
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TABLE 3 | The 10 microbes predicted to be most likely to be associated with the
Type 1 diabetes.

microbe Evidece

Veillonella confirmed

Bacteroidaceae confirmed

Enterobacteriaceae PMID: 24475780

Coxiellaceae unconfirmed

Prevotella confirmed

Bacteroidetes confirmed

Prevotella copri unconfirmed

Lachnospiraceae confirmed

Lactobacillus confirmed

Clostridia confirmed

The first column records the top 10 microbes most likely to be related Type
1 diabetes, and the second column records the databases and experimental
literatures in PubMed, which verify the associations between the corresponding
microbe and Type 1 diabetes.

suffering from genetic factors was decreasing, which suggested
that the virus, nutrition, and overweight were very likely to have
become the main cause of Type 1 diabetes (Islam et al., 2014).
Studies had shown that the abnormality in the gut microbiota was
closely related to the development of Type 1 diabetes (De Goffau
et al., 2014). The number of Firmicutes and Actinomycetes were
significantly reduced in children with Type 1 diabetes compared
with normal people (Murri et al., 2013). We conducted the
second case study on Type 1 diabetes to test the prediction power
of ABHMDA to predict the potential microbe-related of new
diseases, and the results showed that 7 of the top 10 potential
disease-related microbes predicted were validated by the database
HMDAD. The associations between Type 1 diabetes and microbe
Veillonella (First in the prediction list) with Bacteroidaceae
(Second in the prediction list) were confirmed by HANDAD.
Some researchers had found that patients with Type 1 diabetes
had increased colonization of Enterobacteriaceae (Third in the
prediction list) in addition to Escherichia coli compared with
normal people (Soyucen et al., 2014). The above results indicated
that ABHMDA’s ability to predict microbes associated with new
diseases was also reliable (See Table 3).

DISCUSSION

As a kind of tiny creature that are invisible to the human eyes, the
microbes are small in size and simple in structure, but they are
closely related to human beings. There are thousands of microbes
in the human body. They build complex functional institutions
and play an extremely important role in many biological
processes, although they can benefit people, they can also bring a
lot of trouble to human beings, such as diseases. More and more
research shows that many human diseases are closely related
to microorganisms, especially gastrointestinal diseases. Revealing
the relation between disease and microbes contributes to further
understand the pathogenesis of the disease and the development
of new drugs (Chen et al., 2016b, 2017a). However, due to limited
technology, the cost of using experimental methods to reveal

disease-related microbes is greater. Therefore, it is imperative
to construct model for the prediction of potentially relevant
microbes. In this paper, we proposed a novel model ABHMDA
to reveal the association between disease and microbes. The
global and local LOOCV value of ABHMDA was 0.8869 and
0.7910, respectively, which was significantly larger than that of
KATZHMDA (0.8644, 0.6998) and LRLSHMDA (0.8843, 0.7508).
This result confirmed the strong prediction power of ABHMDA.

Several factors that led to ABHMDA prediction performance
were summarized as follows. Firstly, the datasets used by
our model were relatively reliable. Secondly, we extracted the
potential similarities for diseases and microbes through Gaussian
interaction profile kernel similarity. Thirdly, we combined
multiple weak classifiers into one strong classifier according
to different weights to score the samples. The high-precision
weak classifiers accounted for a high proportion and vice
versa, which conduced to improve the accuracy of the strong
classifier. Of course, ABHMDA also had some defects that
needed to be resolved in future work. Firstly, although the
prediction performance of ABHMDA had improved compared
to previous methods, prediction capabilities were expected to
improve further if more reliable similarities were considered.
Many groups have developed several effective computational
models for the association prediction (Chen and Yan, 2013; Chen
et al., 2016a; Chen and Huang, 2017; You et al., 2017; Chen
et al., 2018a,b,c). We would introduce these reliable techniques
to this new research area. Secondly, ABHMDA might cause bias
to microbes with more associated diseases. Finally, the model did
not consider the microbe–microbe similarity based on sequence
similarity, which was also where we needed to improve in our
future work (Chen et al., 2017b,c; Hu et al., 2018; Zhao et al.,
2018).
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