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Parkinson’s disease (PD) is an age-associated, progressive neurodegenerative disorder

characterized by motor impairment and in some cases cognitive decline. Central to the

disease pathogenesis of PD is a small, presynaptic neuronal protein known as alpha

synuclein (a-syn), which tends to accumulate and aggregate in PD brains as Lewy bodies

or Lewy neurites. Numerous in vitro and in vivo studies confirm that a-syn aggregates can

be propagated from diseased to healthy cells, and it has been suggested that preventing

the spread of pathogenic a-syn species can slow PD progression. In this review, we

summarize the works of recent literature elucidating mechanisms of a-syn propagation,

and discussed the advantages in using patient-derived induced pluripotent stem cells

(iPSCs) and/or induced neurons to study a-syn transmission.
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INTRODUCTION

Parkinson’s disease (PD) is a progressive and chronic neurological disorder and the second most
prevalent neurodegenerative disease after Alzheimer’s disease, affecting an estimated seven to ten
million people worldwide. Dopaminergic (DA) neurons in the substantia nigra par compacta
(SNpc) are selectively lost in PD, leading to a constellation of motor deficits that include
bradykinesia (slowed movements), tremors and muscle rigidity. In some patients, symptoms of
dementia are also present. Approximately 15% of people with PD have a family history of the
disease (termed familial PD) while the others are sporadic cases. Mutations in several genes are
each associated with the occurrence of PD, including alpha synuclein (SNCA), leucine-rich repeat
kinase 2 (LRRK2), and other autosomal recessive mutations in genes such as Parkin (PARK2),
PTEN-induced putative kinase 1 (PINK1) and Protein/nucleic acid deglycase DJ-1 (PARK7), and
has been extensively reviewed in Klein and Westenberger (2012). Although the exact cause for
sporadic PD is yet to be identified, the largest risk factors for PD are genetics, advanced age and
exposure to environmental toxins such as paraquat (Ascherio and Schwarzschild, 2016).

One of the pathological hallmarks of PD is the formation of intracellular inclusions termed Lewy
bodies, which are caused by aggregates of a-syn protein. Multiple in vivo studies—both human
and mouse—have confirmed that a-syn aggregates can be transferred from affected neurons to
healthy neural cells (Kordower et al., 2008; Li et al., 2008; Pan-Montojo et al., 2012; Recasens et al.,
2014). It is becoming increasingly appreciated that misfolded a-syn can transmit to anatomically
connected areas (Braak et al., 2003), and this could explain why a substantial proportion of PD
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patients also suffer from cognitive impairment, depression and
psychosis. Several mechanisms of a-syn transmission have been
proposed, including receptor-mediated endocytosis, direct cell-
to-cell transfer through tunneling nanotubes or through a trans-
synaptic pathway (Pan-Montojo et al., 2010; Luk et al., 2012b;
Holmes et al., 2013; Abounit et al., 2016;Mao et al., 2016; Rostami
et al., 2017). Although the mechanism of spread remains slightly
controversial, it is well accepted that limiting the spread of
a-syn aggregates can slow the progression of PD, and potentially
prevent other PD-associated decline in cognitive functions.

In recent years, scientific advances in the field of induced
pluripotent stem cells (iPSCs), direct reprogramming into
induced neurons and the formation of neural organoids have
enabled the modeling of PD using patient-derived cells, and
opened up possibilities for the discovery of prognostic and
therapeutic agents. Over the years, differentiation protocols
have dramatically evolved to give rise to specific midbrain
DA neuron populations that are lost in PD. From co-culture
with mouse PA6 or MS5 stromal cells (Kawasaki et al., 2000;
Perrier et al., 2004) that gave rise to low DA neuron yield,
midbrain DA differentiation has now become more reproducible
and efficient with chemically defined protocols (Kriks et al.,
2011; Kirkeby et al., 2012; Doi et al., 2014; Paik et al., 2018).
Disease modeling efforts by multiple groups worldwide has now
uncovered that midbrain DA neurons derived from PD patients
exhibit mitochondrial dysfunction and a-syn aggregation (Devi
et al., 2008; Byers et al., 2011; Cooper et al., 2012; Imaizumi
et al., 2012; Ryan et al., 2013; Flierl et al., 2014; Shaltouki
et al., 2015; Chung et al., 2016; Kouroupi et al., 2017). iPSC-
derived midbrain DA neurons are also useful for potential cell
replacement therapies, an undertaking that is initiated by the
GForce-PD group, a global team of scientists and clinicians
that are committed to accelerate the translation of stem cell-
based therapies to the clinic for Parkinson’s disease human trials
(Barker et al., 2015). While cell replacement therapy can correct
the motor deficits in PD patients, it is unlikely to rectify the
non-motor symptoms such as dementia, depression, delusions
or hallucinations, which are common in advanced-staged PD
patients. Therefore, slowing down PD progression remains an
attractive therapeutic option. The focus of this mini-review will
be to highlight the complexity of a-syn propagation and how
iPSC-derived cell types and organoids can address some of this
complexity.

ALPHA SYNUCLEIN PROPAGATION AS
THE CENTRAL MECHANISM IN THE
DEVELOPMENT OF PD

Lewy bodies and lewy neurites are the histological hallmark
of PD. The main protein constituent of Lewy bodies and
Lewy neurites is a-syn, a 140-amino acid presynaptic nerve
terminal protein that comprises an amphipathic N-terminal
alpha-helical domain, a hydrophobic center of non-amyloid beta
component and a hydrophilic C-terminal domain. Under the
native physiological state, a-syn does not have a defined structure
and exists in an amorphic state. Although the exact functions

of a-syn is still unknown, knockout studies have revealed roles
of a-syn in synaptic vesicle release and trafficking, fatty acid
binding, and the regulation of enzymes and transporters that
are essential for neuronal survival (Sharon et al., 2001; Kanaan
and Manfredsson, 2012; Stefanis, 2012). In the pathological state,
a-syn becomes misfolded and therefore prone to aggregation.
First, it forms soluble oligomers and then further aggregate into
insoluble fibrils. These insoluble fibrils are made up of β-sheets
consisting of two or more polypeptide chains connected by
hydrogen bonds. Although the exact pathogenic form of a-syn
is still debatable, recent studies suggest that soluble oligomers
could be more toxic than insoluble fibrils (Karpinar et al., 2009;
Winner et al., 2011); presumably because soluble oligomers
can be transmitted more readily than insoluble fibrils. The
misfolding, aggregation and accumulation of a-syn has serious
neurotoxic implications (Stefanis et al., 2001; Tanaka et al., 2001;
Snyder et al., 2003; Cuervo et al., 2004; Xilouri et al., 2009;
Kamp et al., 2010; Nakamura et al., 2011), and is extensively
reviewed in Lashuel et al. (2012). A-syn is also thought to
be the pathogenic agent that underlies the progression of PD
when toxic a-syn species transmit from diseased to healthy
cells.

Braak and colleagues first suggested a prion-like mechanism
in PD progression (Braak et al., 2003). They proposed that Lewy
pathology spread through a stereotyped pattern of six stages,
beginning from the peripheral nervous system of the gut and
olfactory bulb and gradually progresses into the central nervous
system. Within the brain, it spreads from the brainstem to
the multiple cortical regions of the brain in a caudal-to-rostral
fashion. Following on, in 2008, the serendipitous discoveries
from two separate studies uncovered the presence of Lewy
bodies in grafted neurons of PD patients whom have received
transplantation a decade or two ago (Kordower et al., 2008;
Li et al., 2008). Such observation further supports the prion-
like spreading of a-syn in PD. Subsequently, many groups have
attempted to recapitulate the prion-like capacity of a-syn in in
vivo and in vitro models. The first few studies demonstrated
the host-to-graft transfer of a-syn by transplanting neural stem
cells or naïve rodent neurons into the brains of transgenic
mice expressing human a-syn (Desplats et al., 2009; Hansen
et al., 2011; Kordower et al., 2011; Angot et al., 2012). It was
shown that human a-syn was taken up by the grafted cells and
can act as a seeding template or a nucleation process to form
aggregates with the intracellular mouse a-syn. In a unique mouse
model that incorporates both preformed fibrils (PFFs) and a-syn
overexpression, it was also shown that PFFs were necessary for
the transmission of a-syn as simply overexpression of a-syn was
not sufficient to result in the propagation phenomenon (Thakur
et al., 2017). Other studies went even further to prove the prion-
like capacity of a-syn when pathogenic a-syn were detected in
neurons distant from the site of injection (Luk et al., 2012a,b;
Mougenot et al., 2012; Rey et al., 2013; Sacino et al., 2013;
Recasens et al., 2014; Peelaerts et al., 2015; Shimozawa et al.,
2017).

The molecular mechanisms of a-syn propagation are slowly
becoming unraveled. Detection of extracellular a-syn confirmed
that cells secrete a-syn either as a naked entity or packaged
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into exosomes and exocytosed (Emmanouilidou et al., 2010;
Danzer et al., 2012). Soluble oligomeric and monomeric a-
syn were readily detected in cell culture media, in a calcium-
dependent manner (Emmanouilidou et al., 2010), suggesting that
dysregulation in neuronal activity can impact a-syn exocytosis
and propagation. In humans, monomeric and oligomeric a-syn
are also detected in human blood plasma and cerebrospinal fluid
(Borghi et al., 2000; El-Agnaf et al., 2006; Lee et al., 2006; Tokuda
et al., 2006), with increased levels of oligomeric a-syn in PD
patients (El-Agnaf et al., 2006). It is also shown that elevated
a-syn burden, caused by increased a-syn production (through
overexpression or duplication and triplication mutations), or
reduced clearance through lysosomal or proteosomal systems,
would increase a-syn exocytosis (Alvarez-Erviti et al., 2011;
Lee et al., 2013; Fernandes et al., 2016). Extracellular a-syn
can interact with different surface proteins on the cells that
facilitate its uptake via receptor-mediated endocytosis. Heparan
sulfate proteoglycan interact with a-syn fibrils and induce uptake
via macropinocytosis (Holmes et al., 2013). By means of a
proteomics screen, Mao et al. (2016) has identified a few surface
proteins that interact well with preformed fibrils (PFFs) of a-syn
(Mao et al., 2016). Lymphocyte-activation gene 3 (LAG3) was
one receptor found to have the strongest interaction specifically
to a-syn PFFs but not monomers. LAG3, a transmembrane
protein, facilitates the uptake of a-syn PFFs in neighboring
neurons, astrocytes and microglial via endocytosis. Through
genetic knockdown and antibody-blocking intervention, uptake
of a-syn was reduced, which led to decreased neuronal toxicity
and inter-neuronal propagation in vitro and in vivo (Mao et al.,
2016).

One major caveat of the abovementioned studies is
the assumption that fibrillar forms of a-syn are present
extracellularly. Indeed, a-syn has been detected in human
cerebrospinal fluid (CSF) exosomal vesicles (Alvarez-Erviti
et al., 2011; Danzer et al., 2012; Stuendl et al., 2016), but
these are mainly soluble a-syn monomers or oligomers.
It is not clear whether fibrillar forms of a-syn are present
extracellularly.

VARIOUS NEURAL CELL TYPES
CONTRIBUTE TO ALPHA SYNUCLEIN
PATHOLOGY

Alpha synuclein deposits are also found in astrocytes at advanced
disease stages (Braak et al., 2007) and in oligodendrocytes as
glial cytoplasmic inclusions (Ubhi et al., 2011). This means that
pathogenic a-syn can also be transferred from neurons to other
cell types such as astrocytes and oligodendrocytes. Astrocytes
have been observed to take up extracellular a-syn in vitro (Lee
et al., 2010; Fellner et al., 2013; Rannikko et al., 2015; Lindström
et al., 2017). Glial cytoplasmic inclusions develop despite the
lack of a-syn mRNA in oligodendrocytes (Miller et al., 2005),
suggesting that a-syn is not produced by the oligodendrocytes
but rather internalized from the external microenvironment.
Studies have shown that monomeric and oligomeric forms in
a-syn are internalized by oligodendrocytes in vitro (Kisos et al.,

2012; Konno et al., 2012) and in vivo (Reyes et al., 2014) with
suggestions of dynamin-mediated mechanisms involved in the
uptake. Overall, the role of astrocytes and oligodendrocytes
in pathogenic a-syn propagation or PD disease progression
remain largely unknown. Studies by Abounit et al. (2016)
proposed a model for propagation of pathogenic a-syn species
by interneuronal transfer of fibrillar a-syn-laden lysosomes. a-syn
PFFs within specialized cellular structures known as tunneling
nanotubes (TNTs) were detected and these can seed soluble a-
syn aggregation in the cytosol of recipient cells (Abounit et al.,
2016). Apart from interneuronal TNTs, inter-astrocytic TNTs
also spread a-syn aggregates. Using human embryonic stem
cell-derived astrocytes, Rostami et al. (2017) demonstrated that
failure of diseased astrocytes to degrade a-syn PFFs led them
to unload their burden to surrounding astrocytes through TNTs
(Rostami et al., 2017).

It is postulated that astrocytes and microglia play key
roles in clearance of toxic a-syn species from the extracellular
environment, and consistent with this notion, astrocytes are
capable of extensive uptake of a-syn oligomers, which they
then attempt to degrade via the lysosomal pathway (Lindström
et al., 2017). Incomplete degradation caused by a-syn overburden
can result in cellular damage in recipient astrocytes, including
lysosomal defects and mitochondrial damage. Internalization of
a-syn has also been shown to cause astrocyte activation and
neuroinflammation (Yu et al., 2018), which impacts neuronal
survival. Microglia are the primary immune cells of the
central nervous system, and are known to be activated by
aggregated a-syn (Zhang et al., 2005). In particular, microglial
phagocytosis of a-syn was thought to be a mechanism that
promotes a-syn clearance. It has been reported by several
studies that toll-like receptor 4 (TLR4) is required for a-syn
dependent activation of microglia, and TLR4 ablation led
to impaired microglia phagocytosis and suppressed cytokine
release, enhancing neurodegeneration in those mice (Stefanova
et al., 2011; Fellner et al., 2013).

Taken together, these are key evidence supporting the notion
that propagation of a-syn is a key driver underlying PD
pathogenesis and progression; and that interaction between
multiple cell types regulate this process. Therefore, cellular
systems using neuroblastoma cell lines (such as mouse Neuro-
2a and human SH-SY5Y) or neural stem cell lines do not
recapitulate the complexity of a-syn propagation. Animal models
are also valuable tools for studying a-syn propagation. To this
end, wild-type mice with a single inoculation of a-syn fibrils or
pathological a-syn purified from postportem PD brains showed
a-syn propagation to anatomically connected brain regions (Luk
et al., 2012b; Blesa and Przedborski, 2014; Masuda-Suzukake
et al., 2014; Recasens et al., 2014) that is reviewed in Blesa
and Przedborski (2014). Though important, the conservation
of a-syn transmission between mouse and human has to be
established, and that eventual drug screening approaches would
be more feasible and have a high throughput if performed
in cultured human cells. Therefore, we propose that human
induced pluripotent stem cell (iPSC)-derived neurons and
neural organoids are ideal cellular platforms for studying a-syn
pathology.
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INDUCED PLURIPOTENT STEM CELLS
AND MIDBRAIN DIFFERENTIATION

Induced pluripotent stem cells or iPSCs revolutionize the way
human diseases are modeled in vitro. iPSCs are typically skin
or blood cells genetically reprogrammed to revert back to an
embryonic stem cell (ESC)-like state by ectopic expression of ESC
transcription factors OCT4, SOX2, c-MYC and KLF4 (Takahashi
and Yamanaka, 2006). Several methods of reprogramming iPSCs
have now been described (Takahashi and Yamanaka, 2006; Carey
et al., 2009; Sommer et al., 2009; Somers et al., 2010) and are
also summarized in Table 1 and reviewed in Malik and Rao
(2013) and Seki and Fukuda (2015). Importantly, these iPSCs
behave like ESCs with the capacity to self-renew and retain its
pluripotency. iPSCs also retain the genetic mutations from their
donors, making these attractive cellular models for modeling
human diseases. Thus far, human iPSCs has become a promising
tool to address the ethical issues of handling embryonic material,
clinical applications for personalized treatments, and research
applications as model systems to investigate human diseases
in the fields of neuro-developmental and degenerative diseases
(Ardhanareeswaran et al., 2017).

For meaningful disease modeling, one of the greatest hurdles
is to be able to produce large amounts of the cell type of
interest with high efficiency and reproducibility. One of the
earliest methods of deriving DA neurons from ESCs was to
co-culture with stromal feeder cells MS5 or PA6 (Kawasaki
et al., 2000; Perrier et al., 2004). This stromal co-culture
method, however, was chemically undefined, resulting in a
heterogeneous population of neurons with overall low DA
neuron yield, and the physical co-culture of human iPSCs with
mouse stromal cells made it undesirable for downstream analyses
or applications. The labs of Lorenz Studer andMalin Parmar have
made significant progress in a chemically defined protocol for
efficient differentiation of midbrain DA neurons. These methods
made use of the knowledge on developmental patterning
to efficiently differentiate iPSCs into midbrain-regionalized
floorplate progenitor cells (Fasano et al., 2010; Kirkeby and
Parmar, 2012) using chemical inhibitors of SMAD signaling
(achieved by LDN-193189 and SB431542), early high-dose Sonic
Hedgehog (SHH) pathway agonists (such as Purmorphamine
or recombinant SHH) and partial glycogen synthase kinase
(GSK) inhibitors/Wnt activation (by CHIR99021) (Cooper et al.,
2010; Devine et al., 2011; Kriks et al., 2011; Kirkeby et al.,
2012). This revised strategy produces midbrain DA neurons
that expresses the specific forehead box protein A2 (FOXA2)
and LIM Homeobox Transcription Factor 1 Alpha (LMX1A)
markers and demonstrates efficient dopamine release in vitro
(Kirkeby et al., 2012) and in vivo after transplantation (Kriks
et al., 2011).

However, even with a chemically-defined approach, a
heterogeneous mix of both substantia nigra pars compacta
(SNpc or A9-subtype) and ventral tegmental area (VTA or A10-
subtype) DA neurons are produced, and it remains a challenge
to derive only A9 DA neurons—the neuronal subtype that
is lost in PD. Previous work from the laboratories of Ole
Isacson and Thomas Perlmann showed that the transcription

factor Orthodenticle Homeobox 2 (Otx2) is a marker, and
controls the specification of mouse A10 VTA DA neurons,
while Sox6 defines the A9 SNpc DA neurons (Panman et al.,
2014). SOX6 is also shown to localize to neuromelanin and
Tyrosine hydroxylase (TH)-positive neurons in the human SNpc
(Panman et al., 2014). A recent article that made use of single
cell RNA profiling confirmed that Sox6 and Otx2 mark SNpc
and VTA neurons respectively, while also adding a panel of
genes specific to SNpc vs. VTA that they found from single
cell RNA-seq (Poulin et al., 2014). This genetic information
would be helpful in subsequent efforts to direct A9 DA neuron-
specific differentiation. One possibility is to overexpress SOX6,
or knockdown OTX2 expression in iPSC-derived floorplate cells
as they differentiate into neurons. It has previously been shown
in mice that ablation of Otx2 results in severely diminished
VTA DA neuron differentiation (Di Giovannantonio et al., 2013)
but it remains to be determined if overexpression of SOX6
and/or knockdown of OTX2 will drive the SNpc DA neuron
transcriptional program in human iPSC-derived cultures.

BRAIN ORGANOIDS AND DISEASE
MODELING

More recently, the ability to generate three-dimensional (3D)
neural organoids has challenged the way we think about
conventional cellular differentiation and disease modeling
approaches. The two-dimensional approach to differentiate cells
forces cells into a monolayer that is uniformly exposed to
extracellular signals but does not represent their in vivo context,
and does not fully maintain the complex cell-cell and cell-
matrix interactions, resulting in the tendency to lose important
physiological function. A landmark paper by Lancaster et al.
(2013) showed that neural organoidsmimick the cytoarchitecture
of the developing cortex. The development of a protocol for
brain-like organoids focused on two aims: the induction and
differentiation of neural tissue and achieving a 3-D spatial
organization that captures the development of specific brain
regions. Firstly, iPSCs can be stimulated to form germ layers
within iPSC aggregates known as embryoid bodies (EBs) (Evans,
2011). Specific media compositions are used to induce the
formation of neural rosettes (Zhang et al., 2001) (polarized
organization of epithelial cells) within the EBs. The subsequent
change to differentiation medium (usually Neurobasal medium
and B27 supplement for neuronal survival and differentiation
with specific morphogens) facilitates the development of an
organized neuroepithelium that would form various brain
structures. Due to the absence of a basement membrane for
the EBs to establish proper apical-basal polarity to form the
neuroepithelium, an external structural support is required to
ensure proper orientation of the neuroepithelium. For most
organoid protocols, hydrogels (usually matrigel) are used to
encapsulate the EBs to promote the accurate growth and
formation of brain-like structures. When EBs are encapsulated
within stagnant matrigel droplets, the diffusion of nutrients and
oxygen is very poor causing death to the cells at the center of
the organoids. Hence, after establishing the proper growth and
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TABLE 1 | Gene delivery methods used for iPSC generation.

Methods Types Subtypes Advantages Disadvantages

Viral Integrating Lentiviral (Somers et al., 2010) • Ability to infect non-dividing and proliferating

cells i.e., somatic cells

• Incorporation of vector sequence into host

genome

• Solution: single cassette reprogramming

vector

• & cre/loxp mediated transgene excision e.g.,

STEMCCA

Non-integrating Adenovirus (Zhou and Freed,

2009)

• Does not integrate into host genome • Very low reprogramming efficiency compared

to lentiviral delivery

Sendai virus (RNA virus) (Fusaki

et al., 2009; Ban et al., 2011)

• Does not enter nucleus and gets diluted out

of cells

• Can produce large amounts of protein

• Difficult to remove replicating virus

Nonviral mRNA transfection (Warren et al., 2010) • No integration into host genome

• Higher efficiency than original retroviral

system

• Commercially available

• Labor intensive

• Technically complex

miRNA transfection (Miyoshi et al., 2011;

Subramanyam et al., 2011)

• Absence of breaks in existing genes

• Avoids reactivation of transgenes

• No established reprogramming protocol

available

Transposons i.e., Piggybac (Kaji et al., 2009;

Woltjen et al., 2009; Yusa et al., 2009)

• Highly active in mammalian cells

• Vector can be removed from the host

genome by expressing transposase

• Low reprogramming efficiency

Episomal plasmids (Yu et al., 2009; Chen et al.,

2011)

• No integration into host genome

• More stable expression compared to

standard plasmids

• Requires changes to cell culture methods

Recombinant proteins (Kim et al., 2009; Zhou et al.,

2009)

• Absence of breaks in existing genes

• Avoids reactivation of transgenes

• Lower reprogramming efficiency compared to

retroviral systems

• Challenging to generate and purify

Small molecules (Hou et al., 2013) • Nonimmunogenic

• Easy to handle

• No established protocol for human somatic

cells

differentiation within the matrigel droplet, the organoids have
to be cultured in a spinning bioreactor to increase diffusion
efficiency that promotes tissue survival. Neural organoids can
capture the key features of the human brain such as ventricle-
like spaces, distinct proliferative layers of cells, and the choroid
plexus (Marton and Paşca, 2016); offering a great potential to be
used as models of neurodevelopmental and neurodegenerative
conditions. Furthermore, protocols have already been established
for various brain regions such as cerebral (Lancaster and
Knoblich, 2014; Muguruma et al., 2015), forebrain (Qian et al.,
2016), and midbrain (Jo et al., 2016) organoids.

Although mostly used to model neurodevelopmental diseases,
neural organoids can also be extremely useful for modeling a
degenerative disorder such as PD. Since organoids mimick the
brain’s microenvironment, it has been postulated that culturing
of neurons in such a 3D microenvironment would promote
their maturation. Jo et al. (2016) reported the generation of a
midbrain organoid with A9 neurons that produces neuromelanin
(a dark pigment expressed in the SNpc of humans). So far,
none of the 2D differentiation protocols have given rise in vitro
to neuromelanin-producing DA neurons. Of significance, the
accumulation of neuromelanin in DA neurons increases with age,
suggesting that DA neurons in organoids are far more mature
than those in 2D. Comparisons of gene expression between
DA neurons cultured in 2D vs. 3D organoids also suggest that
neurons in organoids are more mature, expressing dopamine

transporter (DAT or SLC1A3) (Jo et al., 2016; Monzel et al.,
2017), and genetically resembling the prenatal midbrain (Jo
et al., 2016). Recently, Monzel et al. (2017) managed to derive
midbrain-specific organoids that contained spatially-organized
groups of dopaminergic neurons with other neuronal, astroglial,
and oligodendrocyte differentiation. Functionally, they detected
the presence of synaptic connections and electrophysiological
activity. Since PD is an age-onset neurodegenerative disorder, it is
critical tomodel cellular andmolecular aspects of the disease with
mature and aged neurons rather than neurons of an embryonic
resemblance. Moreover, the heterogeneity of cell types within
midbrain organoids would be useful to study the interplay and
contributions of other cell types to the a-synuclein pathology of
PD. As such, midbrain organoids are a very promising platform
for investigating late phenotypes associated with PD–a unique
feature that 2D culture models cannot offer.

DIRECT REPROGRAMMING OF
FIBROBLASTS INTO INDUCED
DOPAMINERGIC NEURONS (IDANS)

Apart from differentiation of iPSCs toward DA neurons that
mimic neural developmental processes, overexpression of key
transcription factors in patient-derived fibroblasts can be directly
transdifferentiated into neurons, includingmidbrain DA neurons
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(Xu et al., 2017). Wernig and colleagues have reported viral-
based transdifferentiation of mouse and human fibroblasts
into induced neurons (iNs) by overexpressing up to four
neuronal transcription factors, namely, achaetescute homolog 1
(ASCL1), BRN2 (also known as POU3F2), myelin transcription
factor 1-like protein (MYT1L) and neuronal differentiation 1
(NEUROD1) (Vierbuchen et al., 2010; Pang et al., 2011). These
iNs obtained were morphologically and electrophysiologically
similar to bona fide neurons, and resembled excitatory neurons
of the cerebral cortex (Heinrich et al., 2014). Building onto this
knowledge of direct reprogramming, it has also been shown that
midbrain DA neurons can be directly converted from fibroblasts.
To do so, several groups have reported direct reprogramming
of DA neurons using a cocktail of transcription factors specific
to the midbrain lineage (Table 2). The factors that were used
for induced DA neurons (iDANs) are extensively reviewed in
Jang and Jung (2017). Overall, regardless of the combination
of transcription factors used, the efficiency of iDAN conversion
from fibroblasts is typically below 20%, even though iDANs
demonstrated spontaneous and rebound action potentials which
are characteristics of midbrain DA neurons in vivo. This low
efficiency of conversion is potentially a limiting factor for disease
modeling studies especially when large numbers of cells are

required for high throughput screening. Recently, this hurdle
has been overcome by a reprogramming strategy that involves
ASCL1, LMX1A, and NURR1 in combination with p53-small
hairpin RNA (shRNA) and miR-124, as well as small molecule
and trophic factor supplements that maintain the identity and
survival of midbrain DA neurons (Jiang et al., 2015). This
transdifferentiation approach resulted in more than 50% TH+

iDANs, and it was concluded from this study that G1 arrest
was crucial for efficient transdifferentiation, and that addition
of patterning small molecules such as SB431542, CHIR99021,
Purmorphamine (SHH pathway agonist), Dorsomorphin and
trophic factors significantly enhanced reprogramming efficiency.

Another method for generating DA neurons from patient
fibroblasts is to derive expandable dopaminergic precursors
known as floorplate progenitor cells. This has been achieved in
mouse fibroblasts by ectopic expression of Brn2, Sox2, and FoxA2
(Tian et al., 2015), resulting in acquisition of floorplate identity
which include expression of Otx2, Corin and Lmx1a expression.
Induced floorplate progenitors generated with this method were
shown to differentiate primarily into TH+ midbrain DA neurons
(with more than 90% efficiency), even without addition of Shh
and Fgf8. Although this has not been demonstrated for human
cells, we expect similar results based on previous iN studies where

TABLE 2 | List of different strategies used to derive induced dopaminergic neurons. Adapted and revised from Jang and Jung (2017).

No. Type of

transdifferentiated

cells

Transcription factors miRNA Small molecules TH+

differentiation

efficiency

Characterization tests References

1 Human induced

dopaminergic neurons

(iDAN)

Ascl1, Brn2, Myt1l,

Lmx1a and FoxA2

N/A N/A ∼10% Expression of dopaminergic neuron

markers and electrophysiological profile of

functional dopaminergic neurons

Pfisterer

et al., 2011

2 Mouse and human

iDAN

Ascl1, Lmx1a

and Nurr1

N/A N/A ∼15%-20% Expression of dopaminergic neuron

markers, electrophysiological profile of

functional dopaminergic neurons and

dopamine release

Caiazzo et al.,

2011

3 Mouse iDAN Ascl1, Lmx1b

and Nurr1

N/A N/A ∼18% Expression of dopaminergic neuron

markers, electrophysiological profile of

functional dopaminergic neurons and

dopamine release

Addis et al.,

2011

4 Mouse iDAN Ascl1, Pitx3, Lmx1a,

Nurr1, FoxA2 and EN1

N/A Sonic hedgehog

(Shh) and

fibroblast growth

factor 8 (FGF8)

∼7% Expression of dopaminergic neuron

markers, electrophysiological profile of

functional dopaminergic neurons,

dopamine release and relief PD-like

symptoms in PD mice

Kim et al.,

2011

5 Human iDAN Ascl1, Ngn2, Sox2,

Nurr1 and Pitx3

N/A N/A ∼40% Expression of dopaminergic neuron

markers, dopamine uptake and release,

electrophysiological profile of functional

dopaminergic neurons and relief PD-like

symptoms in PD mice

Liu et al.,

2012

6 Human iDAN Ascl1, Lmx1a

and Nurr1

miR124 p53 suppressor,

G1 cell cycle arrest

and Tet1 agonist

∼60% Expression of dopaminergic neuron

markers, DA uptake and release,

electrophysiological profile of functional

dopaminergic neurons

Jiang et al.,

2015

7 Mouse induced neural

progenitor cells (iNPCs)

with midbrain identity

Foxa2, Brn2

and Sox2

N/A N/A ∼90% Expression of dopaminergic neuron

proliferative progenitor cell markers,

capable of deriving functional

dopaminergic neurons and to rescue

MPTP-lesioned mice

Tian et al.,

2015
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the same reprogramming factors worked similarly in mouse and
human cells. If so, this could be an ideal method for disease
modeling because large numbers of DA neurons can be derived
from these self-renewing induced floorplate progenitors.

Although transdifferentiation technologies may not be
compatible with neural organoid formation, because directed
reprogramming forces fibroblasts to take on a specific cell
fate rather than allow for a “self-organizing” approach that is
important for organoid formation, there are distinct advantages
in using iNs for disease modeling. Two recent studies (Mertens
et al., 2015; Huh et al., 2016) found that iNs from aged fibroblasts
retained the aging cellular and molecular characteristics while
iPSCs made from the same patient fibroblasts were epigenetically
reprogrammed to erase the aging signatures and subsequent
neurons differentiated from these iPSCs did not acquire aging
characteristics. Since PD is an age-onset neurodegenerative
disease, iNs that retain aged signatures could be an especially

relevant cellular model to understand the role of aging in
neuronal decline. It is unclear, however, if induced floorplate
progenitors retain aged cellular signatures that also make them
suitable models for studying aged-associated neuronal decline.

IPSC-DERIVED MIDBRAIN CULTURES AS
AN IN VITRO MODEL OF A-SYN
TRANSMISSION

Despite numerous in vivo and in vitro studies that were
discussed in the previous sections demonstrating transmission
and propagation of a-syn in PD pathology, there is still a lack
of a robust and reproducible in vitro model that could allow
us to accurately study its role in PD pathogenesis. As such, it
makes it even more difficult to screen for potential therapeutic
compounds that could halt PD progression.

FIGURE 1 | iPSC-derived midbrain cultures as an in vitro model of alpha synuclein transmission. A co-culture model of PD-DA neurons (cells in yellow), WT-GFP

neurons (cells in green), and astrocytes (in blue) can be used to track the transfer of pathogenic alpha-synuclein (orange hexagon) between diseased and healthy

neurons/astrocytes. PD-DA neurons are derived from the iPSCs of PD patients with their alpha synuclein tagged with a FLAG protein (red rectangle). WT-GFP neurons

are derived from the iPSCs of healthy subjects and are constitutively expressing GFP as a reporter–the successful transmission of alpha-synuclein between diseased

and healthy neurons can be defined as GFP-expressing cells co-expressing the FLAG signal. Several mechanisms have been postulated to be involved in the

propagation of diseased alpha-synuclein to healthy neurons/astrocytes. One mechanism describes that pathogenic alpha synuclein secreted by PD-DA neurons (1a)

could interact with various surface proteins on healthy neurons/astrocytes to induce uptake through receptor-mediated endocytosis (1b), for example LAG3 receptor.

Furthermore, there are also specialized structures known as tunneling nanotubes (TNTs) between neuron-neuron and neuron-astrocytes that are involved in the

spread of alpha synuclein (2).
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One obvious advantage of patient-derived iPSCs is that the
iPSCs can be differentiated into disease-relevant DA neurons,
and phenotypes observed in these in vitro neurons are well
correlated with clinical observations (Torrent et al., 2015). Apart
from being an endless source of midbrain DA neurons, using
patient-derived cells (with their specific mutations) removes
the need to rely on an artificial overexpression system that is
not representative of PD pathology. Recent advances in the
CRISPR/Cas9 technology has greatly availed genome-editing
strategies to stem cell labs to create isogenic pairs of iPSCs.
These typically take the form of “corrected iPSCs” where the
disease-causing mutation is corrected to become wild-type, or
“mutation-introduced iPSCs,” where wild-type iPSCs have their
genomic DNA altered into a known disease-causing mutation
(Soldner et al., 2011; Hockemeyer and Jaenisch, 2016; Bassett,
2017). The rationale for generating isogenic pairs of iPSCs
is to minimize genetic variation that is inherent between
different individuals and/or cell lines, and is crucial in disease
modeling studies to identify disease-related molecular and
cellular events.

Importantly, a-syn aggregation has been observed in DA
neurons derived from PD iPSCs. By differentiating a-syn
A53T iPSCs into midbrain DA neurons, Kouroupi et al.
(2017) detected the presence of the pathological form of a-
syn that is phosphorylated on serine 129 in the dendrites
of PD neurons, reminiscent of Lewy neurites in PD patients
(Kouroupi et al., 2017). Protein aggregates, as revealed by
Thioflavin S staining, also showed high concentrations of a-
syn and such inclusion bodies were observed in the cell bodies
as well as along neurites. iPSCs derived from patients with
PINK1 and Parkin mutations also differentiate into midbrain
DA neurons that showed a time-dependent increased a-syn
accumulation (Chung et al., 2016). It was also demonstrated
that mutant PINK1 and Parkin DA neurons had significantly
more insoluble a-syn protein, indicative of aggregated a-syn.
These studies have proven that important cellular features
of PD are recapitulated in iPSC-derived neurons, similar
to what has been observed for other neurodegenerative
diseases.

Critically, what has not been elucidated in these iPSC
studies is the transmission and propagation of endogenous
a-syn aggregates. While important discoveries pertaining to
mechanistic spread of a-syn have been made using exogenously-
added PFFs, this approach over-simplifies the physiological
conditions in which a-syn isoforms exist. Therefore, it remains
to be determined if LAG3 or heparan sulfate proteoglycan
reduction can protect neurons against a-syn propagation. It
would also be important to establish that TNTs transport
endogenously-formed a-syn aggregates from host to recipient
cells in iNs or iPSC-derived cultures. We propose that these
endogenous propagation studies can be performed by co-
culturing PD iPSC-derived neural cultures with healthy neural
cultures, either in 2D or as organoids (Figure 1). One possible
method to track a-syn transfer from diseased to healthy cells,

a-syn from PD patients has to be tagged with a small reporter
protein such as Y-FAST (Plamont et al., 2016), while healthy
cells should express a different reporter such as constitutive
expression of CFP. Successful transmission events would then
be defined as CFP-expressing cells co-stained with Y-FAST. It
also remains to be discovered whether monomeric, oligomeric
or fibrillar forms of a-syn are transmitted from host to recipient
cells.

An advantage of organoid models vs. conventional 2D
cultures is that the cytoarchitecture of cells in organoids
closely resemble that of a brain—which may enhance
neuronal maturation and/or function that promotes aggregate
transmission. Since PD is an age-onset neurodegenerative
disease, it is also likely that the maturation status of neurons is
critical for a-syn transmission. Neurons grown in 3D cultures are
also known to be more mature (Jo et al., 2016), and accumulate
aggregates (Choi et al., 2014). The heterogeneity of neural
cells in organoids is also an ideal system for studying selective
neuronal vulnerability in PD. In particular, there are key
questions left unanswered: Are specific neural types (astrocytes,
DA neurons or other neuronal subtypes) more susceptible
to a-syn transmission? What is the molecular signature of
neurons with a-syn aggregates? Will attenuating key molecular
events downstream of a-syn transmission protect neurons
from cell death? Single-cell RNA-seq data of organoid-derived
neural cells are expected to give us insights to some of these
questions.

CONCLUDING REMARKS

Alpha synuclein accumulation, aggregation and transmission are
key events in the pathology of PD, and strategies to prevent
any of these events are thought to be able to slow down disease
progression. Patient-derived iPSCs, coupled with the use of
genome-editing tools, have become powerful tools in disease
modeling, but its utility in modeling a-syn propagation has not
been explored. In this review, we present a point-of-view that
iNs and iPSC-derived neurons can be a physiologically relevant,
all-in-one model that provides the opportunity to study a-syn
accumulation, aggregation and transmission concurrently.
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