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Cerebrovascular diseases, in particular ischemic stroke, are one of the leading global

causes of death in developed countries. Perfusion CT and/or MRI are ideal imaging

modalities for characterizing affected ischemic tissue in the hyper-acute phase. If infarct

growth over time could be predicted accurately from functional acute imaging protocols

together with advanced machine-learning based image analysis, the expected benefits

of treatment options could be better weighted against potential risks. The quality of the

outcome prediction by convolutional neural networks (CNNs) is so far limited, which

indicates that even highly complex deep learning algorithms are not fully capable of

directly learning physiological principles of tissue salvation through weak supervision due

to a lack of data (e.g., follow-up segmentation). In this work, we address these current

shortcomings by explicitly taking into account clinical expert knowledge in the form of

segmentations of the core and its surrounding penumbra in acute CT perfusion images

(CTP), that are trained to be represented in a low-dimensional non-linear shape space.

Employing a multi-scale CNN (U-Net) together with a convolutional auto-encoder, we

predict lesion tissue probabilities for new patients. The predictions are physiologically

constrained to a shape embedding that encodes a continuous progression between the

core and penumbra extents. The comparison to a simple interpolation in the original

voxel space and an unconstrained CNN shows that the use of such a shape space can

be advantageous to predict time-dependent growth of stroke lesions on acute perfusion

data, yielding a Dice score overlap of 0.46 for predictions from expert segmentations of

core and penumbra. Our interpolation method models monotone infarct growth robustly

on a linear time scale to automatically predict clinically plausible tissue outcomes that

may serve as a basis for more clinical measures such as the expected lesion volume

increase and can support the decision making on treatment options and triage.
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1. INTRODUCTION

Cerebrovascular diseases, in particular strokes, are one of the
leading global causes of death in developed countries (1). Acute
stroke, which is usually caused by the blockage of cerebral blood
flow due to a blood clot, is often diagnosed through CT or MR
perfusion imaging (beside others, such as CTA). The derived
perfusion parameter maps, e.g., Cerebral Blood Volume (CBV)
or Time To Drain (TTD), provide spatio-temporal distributions
of a contrast medium bolus within brain tissue. In contrast to
native CT or standard MR sequences, such as T2 or FLAIR,
perfusion images with their apparent functional signals enable
the delineation of the potential infarct area even in the early acute
phase and allow to visually assess the expected stroke severity,
which helps the radiologist to come to a final therapy decision as
early as possible.

In order to decide for a treatment the doctor has to weigh the
risk of a therapy such as thrombolysis or thrombectomy against
the expected outcome. For instance, (2) describe hemorrhages,
such as symptomatic intracerebral hemorrhage, as a typical risk
of intravenous thrombolysis therapy. For large vessel occlusions,
mechanical thrombectomy improves functional outcomes but is
logistically challenging. It is of major importance to consider the
immediate availability of a therapy option, since the expected
outcome strongly relies on the onset-to-treatment time (3).
Depending on the expected time until revascularization, the
radiologist has to estimate if further progression of the stroke can
be avoided so that substantial parts of the tissue-at-risk within
the penumbra could be salvaged. In the infarct core, however, as
evident by a decrease in CBV, severe tissue injury and permanent
vascular collapse have occurred.

Since stroke lesions vary widely in shape or size, and also
evolve spatially heterogeneously over time, it is challenging for
the radiologist to estimate growth or the size of the potentially
stroke-affected tissue. For this reason, it is difficult to derive a
time window in which a specific therapy path may be beneficial
over another. Deep learning with CNNs has become popular
in medical image analysis over the past recent years by clearly
exceeding the so far state-of-the-art results, potentially capable of
modeling this complex relationship.

1.1. Objective
We present a novel tool for automatic stroke tissue outcome
estimation using a CNN with a convolutional auto-encoder
(CAE) that incorporates learned stroke shapes of core and
penumbra. In a proof-of-concept, the trained model is able to
predict the stroke lesion growth for patients with successful
recanalization based on a given time-to-treatment for the
thrombectomy (Table 1) and the CTP imaging parameter maps
CBV and TTD. An evaluation of the method shows the
practicality in principle on a limited dataset and the discussion
provides pros and cons that suggest to further investigate this
approach for clinical use.

1.2. Outline
In order to gain a fundamental understanding of the method
and its design choices, we provide a methodological overview in

TABLE 1 | Inclusion criteria of the dataset for evaluation.

Inclusion criteria

Initial CT perfusion imaging

Thrombectomy

Follow-Up CT within 6–24 h

Age at least 18 years

the following section: First, a review on the established stroke
image analysis methods in clinical research literature is given;
Second, the foundations of different image representations that
can help solving higher-level tasks for image analysis as well
as machine learning methods that have been investigated for
stroke imaging are described; Third, we explain the use of
CAEs for regularization in image segmentation by learning shape
representations and how our work is based upon it. Subsequent,
a detailed description of the assumptions and components of
our method is provided—this third section also explains how to
reproduce the method, that is, how to train the shape space and
predict follow-up lesions based on noisy shape estimates. The
fourth section lists the materials for a comparative evaluation and
discusses its results, before we provide a final conclusion in the
last section.

2. IMAGE ANALYSIS

Classic thresholding methods for stroke image analysis have the
drawback of only modeling a single univariate hard decision
border between affected and non-affected tissue. Even when
splitting into subgroups of different admission times (4) or
distinguishing core against penumbra, the result will be a
binary map of the affected vs. unaffected tissue. Further, purely
voxel-based methods can produce irregular and physiologically
implausible shapes. Statistical models, e.g., a linear regression
model as used by Kemmling et al. (5), can cope with the variances
in the data according to the complexity of the model and proper
parameterization, while simple models will usually show a strong
bias when used for high-dimensional problems.

2.1. Representation and Spaces
In general, noisy images make it difficult to operate in image
space, for instance, to apply a threshold to images for extracting
regions that define the outcome. The input representation is
not always suitable to detect the complex input patterns that
determine the output. As known from signal processing and
analysis, transforming the input into another representation
(extract features) can oftenmake it easier to perform classification
or regression tasks. There are many transformations, e.g.,
non-linear kernel methods can bring a representation into a
higher dimensionality where it may become linear separable.
As this is a vast field that shall not be described here in
detail, we emphasize that the input image data often needs
to be fit into a regularized model or transformed to another
representation first, on which the high-level task becomes easier
to solve.
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Kolouri et al. (6) propose transport spaces based on
optimal transport theory to model biomedical problems such
as tumor growth. The idea of looking at images as mass
particle distributions is related to tissue distributions in
biology, for example, when learning the transformations of
some sample images onto a mean non-pathological image to
extract the main modes of variance ideally representing the
change from benign to pathological tissue (7). The modes
could be extracted by principle component analysis (PCA)
or other machine-learning approaches, e.g., auto-encoders
(8). The formulation of the transport space and described
applications suggest to make use of it for modeling other
biological growth processes. However, to our knowledge,
this has not yet been investigated for the cerebrovascular
domain and applicability remains unclear for stroke tissue
prediction.

While for all the above-mentioned methods their
transformations to acquire a new representation are
predefined, there are other models whose parameters can
be estimated from samples. For instance, this could be learning
a statistical distribution, like the shape and appearance of
point representations (9), where the parameterization of the
probabilistic distribution is learned from a training set. With
a suitable representation at hand, there are several ways to
machine-learn rather than fitting the input representation with
its outcome into a statistical model. This often leads to more
accurate results: Before Deep Learning has become popular in
the last years, the medical image community had investigated
Decision and Regression Forest models extensively, and they
have shown good performance over statistical linear models
or boosting approaches (10). However, these methods rely on
previously specified or separately learned feature representations
that need to be extracted from the image data first.

Opposite to the prior definition of the representations
used, one can also machine-learn the representation and
the classification (or regression) both at once using non-
linear artificial neural networks that are capable of learning
sufficiently complex models without the need of tuning the right
parameterization by hand. The review paper of Lee et al. (11)
shows that the methods used with deep learning are still new to
the field of stroke imaging and analysis. Some attempts with other
machine learning methods have been made for diagnosis and
prognosis, however, those models usually predict disease scores
or specific clinical outcomes but not tissue outcome.

2.2. Deep Learning for Stroke Imaging
Deep Learning with artificial neural networks is based on the idea
of perceptrons where the output of a perceptron is computed
by the weighted sum of its inputs x followed by an activation
function σ (e.g., rectifier as in Equation 1). The power of such
networks has been proven in the early work of Hornik et al. (12)
by the fact that even a single hidden layer perceptron network
with a proper activation function is capable of approximating
any mathematical function. However, estimating that relation
between input and output requires a lot of data and proper
regularization since we have an underdetermined system when

learning the coefficients wi (neuron weights for incoming
connections), otherwise.

z = σ (
∑

i

wixi), σ (y) = max(0, y) (1)

Although known for a long time, training and regularization of
such networks is difficult. As a consequence of this, there have
only been few attempts to utilize them for spatial data such
as medical images, e.g., as proposed by Huang et al. (13) for
predicting tissue fates of stroke on acute image data, but their
performance could not be tweaked to exceed other former state-
of-the-art approaches. For image data, the breakthrough came
with deep (i.e., many layers) CNNs automatically learned through
the back-propagation algorithm. Their layers form a feature
hierarchy of increasingly complex features detected by the single
layers through convolving the input of shared-weights kernel
neurons, which themselves can be simulated by perceptrons.
Interspersing pooling layers with spatial strides allows to learn
texture or in general global features of the input images. See
Schmidhuber (14) for an accurate explanation of these principles.

One of the first approaches modeling stroke tissue outcome
with a deep learning CNN has been presented by Stier et al.
(15). They trained a 2D-patch-based architecture with respect
to the Tmax feature from MR perfusion observed for acute
ischemic stroke patients and a follow-up segmentation on FLAIR
about 4 days later. The patch-basedmethod clearly outperformed
voxel-based approaches. As with other typical black box-like
deep learning models, there are no further hyperparameters or
constraints that can be set to control the prediction, e.g., for
estimating the effect of time.

There are two major challenges in deep learning for stroke
analysis tasks with regard to the data: First, there exists a general
lack of accessible medical (ground truth) data and, second, the
data is of irregular temporal nature. That makes it difficult to
apply regular sequence models, such as Markov chains, recurrent
neural networks, or the Long-Short-Term-Memory of Hochreiter
and Schmidhuber (16). The data is temporally scattered: The
points in time tOnset, tImaging, and tTreatment are sampled as
patients rush into the hospital’s emergency room and cannot be
collected in a regular manner.

2.2.1. U-Net Architecture
The U-Net architecture of Ronneberger et al. (17) has been
successfully and widely used for biomedical applications by
producing semantic segmentations through a fully-convolutional
CNN (18) that additionally incorporates skip connections
between the context encoding and the refining decoding path for
each scale level. The encoding-decoding pattern has established
well especially for fully-convolutional networks and is also
known from auto-encoders, as used in our proposed method
of this paper. Considering different scales is usually a good
approach to capture context and details, and this works already
well with just two pathways as in the DeepMedic architecture
of Kamnitsas et al. (19) who won the sub-acute ischemic stroke
lesion segmentation task of the first ISLES challenge in 2015 (20).
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At the 2017 edition of the ISLES challenge (21) we presented
a robust network on perfusion image data to predict an average
lesion outcome and ranked second overall for the binary
segmentation output. Many of the top-ranked methods exploited
a U-Net architecture, such as the challenge winner (22) who used
a 3D U-Net within an ensemble along with other networks and
focused on its hyperparameter optimization. In our 2D network
instead, we added further skip connections within the encoding
path to enhance sensitivity in particular for the difficult smaller
lesions in comparison to a standard U-Net (23).

We did not observe advantages when providing clinical
variables (e.g., disease scores, time points) as constant input
features along with the perfusion images to predict the follow-
up lesion, although they are known to be good predictors for
the outcome. In fact, the 2D U-Net performance on the ISLES
data could not benefit from the additional information and so we
only used spatial perfusion maps to train on. The visual results
suggested that rather the robust image features for detecting some
highly probable necrotic stroke tissue were learned (cf. also our
experiments later in this paper: Table 4, Figure 9). This makes
such a network suitable for segmenting present perfusion lesions,
but requires a new strategy to make use of clinical variables
for predicting follow-up lesions. It remains an open question in
literature, how to ideally incorporate clinical data in a U-Net-only
architecture.

2.2.2. Biomedical Shape Regularization
Auto-encoders (AE) are one of several unsupervised methods to
learn meaningful features from a data representation by typically
encoding the input data x ∈ � into a lower-dimensional
representation (bottleneck) and decoding this representation to
get the reconstruction z ∈ � of the input x (Equation 2).
This can be achieved through classical fully-connected layers
or also by shared-weights convolutional layers for image data.
In a convolutional auto-encoder (CAE) as introduced by
Masci et al. (8) encoder E(x) usually consists of a typical
convolutional feature hierarchy (akin to CNNs) that results in
a discriminative latent code y ∈ M, which could be a feature
vector or map. Decoder D(y) computes a reconstruction z back
in input space �. During training, the weights of both are
optimized such that a loss L(x, z), e.g., the mean squared error
1
n

∑

n(x − z)2 for n training samples, is minimized. If used with
volumetric segmentations, one can learn shape embeddings on
a low-dimensional manifold M (Figure 1) with its dimensions
representing some main modes of the shapes by optimizing the
CAE:

z = (D ◦ E)(x). (2)

The principle of shape-constrained segmentation learning was
proposed by Ravishankar et al. (24), whose cascaded architecture
includes a U-Net and a CAE for shape regularization. While
the U-Net follows the same encoder-decoder principle like the
convolutional auto-encoder, it does not learn local geometry and
shape but produces rather noisy predictions through its skip
connections that skip its inner bottleneck. The authors combine
both sub-tasks of segmentation and reconstruction in an overall
loss to utilize the anatomically regularizing bottleneck of the

FIGURE 1 | Interpolation of stroke shapes Ŝc and Ŝcp: The trivial linear

interpolation (gray line) in voxel space � leads to a fade-in/fade-out

appearance of the two shapes. Embedding shapes non-linearly on a manifold

M allows geodesic interpolation (red line) on M which results in a non-linear

interpolation of the shapes in voxel space (Ŝl ).

auto-encoder for completing noisy kidney segmentations, which
improves the segmentations by about 5% compared to U-Net
only.

Oktay et al. (25) presented an anatomically constrained neural
network (ACNN) approach to also incorporate shape constraints
of anatomical labels as prior knowledge. Their generic training
scheme can be applied to various image analysis tasks and
was documented for image segmentation and super-resolution.
By using a CAE that is trained on ground truth shapes, they
constrain the predicted image segmentations to lie close to the
learned latent representation of the ground truth. In the end the
decoder produces an anatomically constrained reconstruction
of the segmentation from the learned shape space, because the
segmentation has indeed been forced during training to lie close
to the anatomy shape ground truth.

2.3. Our Contribution
In this paper – based on the robust results that U-Nets achieve on
perfusion imaging data and the shape-constrained network idea
of Ravishankar et al. (24)—we present a novel methodology that:

1. Utilizes a 3D U-Net and constrains its segmentations on the
CBV and TTD maps through a 3D CAE;

2. Enables continuous interpolation within the non-linear and
low-dimensional embedding of both core and core+penumbra
segmentations according to the time-to-treatment, that results
in a shape-constrained prediction of the final lesion;

3. Empirically demonstrates—quantitatively and visually—the
feasibility of predicting the final lesion shape from core and
core+penumbra segmentations, as well as the advantage over
using an unconstrained CNN or linear interpolations in image
space.
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3. METHODS

Our idea is to estimate a time-to-treatment-dependent tissue
outcome based on CBV and TTD perfusion images. We
hypothesize that the minimum and maximum extents of the
potential final stroke lesion can be approximated by delineating
the core and penumbra area on the perfusionmaps. This includes
the following assumptions:

1. The CBV is sufficient for segmenting the core area, and TTD
for core+penumbra.

2. The final lesion extents will not exceed the area boundaries of
the tissue-at-risk outlined by the penumbra, but continuously
evolve from the necrotic parts of the core in the direction of
the outer penumbral boundary.

3. Growth over time is conducted linearly in the non-linear
shape space.

4. We set a limit of 10 h after stroke onset for the infarct
progression to reach the final size of core+penumbra. This
value is chosen by experience and technically has to contain
the maximum time-to-treatment from all training samples
(maximum in our evaluation dataset: 7 h after onset).

It should be noted that training a model normalized to
the acute stroke phase time range of 24 h is possible
(cf. results of our evaluation later in this paper: Table 3,
Figure 8) and recommended, if enough follow-up lesion data is
available to sample roughly the entire space between core (0 h)
and core+penumbra (24 h) representations to avoid areas of
uncertainty.

3.1. Architecture
The method consists of a two-phase neural network
that combines three main components for automatic
shape-constrained follow-up lesion prediction (Figure 2):

1. U-Net estimating core (Ŝc) and core+penumbra (Ŝcp) from
CBV and TTD maps.

2. CAE transforming the segmentations into a shape space and
back.

3. Linear interpolation in the shape space to predict the follow-
up lesion (Ŝl).

First, the perfusion images ICBV and ITTD are processed by a
U-Net U to compute the segmentation estimates Ŝc and Ŝcp.
Second, the encoder E of the CAE transforms each segmentation
into a low-dimensional shape embedding ŷc and ŷcp of a shape
space that must be learned beforehand. Linear interpolation
(ŷi, Equation 3) between the latent core and core+penumbra
codes ŷc and ŷcp is conducted according to the expected
tImaging→Treatment time, which must be normalized by the
remaining time to reach 10 h after onset (corresponding to the
total core+penumbra).

ŷi = ŷc + η(ŷcp − ŷc), η =
tImaging→Treatment

10− tOnset→Imaging
(3)

This linear interpolation in shape space is crucial, as it
corresponds to a non-linear interpolation of the reconstructed

shapes on the manifold (Figure 1). The decoder D of the CAE is
required to compute that reconstruction of the interpolated code
ŷi in the voxel space with a segmentation Ŝl for the final lesion as
result (Figure 3 illustrates a binarized 3D segmentation).

3.1.1. Cascading Networks for Prediction
The construction of a two-phase network targets different sub-
tasks that constrain the learning of the high-dimensional and
complex overall task of follow-up lesion prediction. When
discriminating only the final lesion binary label from background
through high-dimensional multivariate input, it makes it hard for
a machine learning algorithm to properly generalize the relation
between input and outcome. Instead of directly estimating a
follow-up segmentation from the input data, we guide the
first sub-network (U-Net) to segment core and penumbra
correctly, which is—as explained before—of major importance
for predicting final lesion tissue outcome. Once this data is
provided, the second sub-network (CAE) can learn the most
salient shape features on a rather simplified representation
with respect to the task (shape probability maps vs. different
physiological CTP parameters) along with clinical data to
estimate the follow-up lesion.

3.1.2. U-Net
Instead of taking the 2D U-Net that we have used before
at the ISLES 2017 challenge, we employ a smaller standard
3D U-Net U to reduce computational and memory demand
while it can cope well with the three-dimensional nature of
stroke volume data. Furthermore, instead of forwarding the
full 128 × 128 × 28 input CTP images the U-Net is trained
on randomly positioned cubic patches of size 64 × 64 × 28
(with additional padding of 20 voxels in each direction) and
thus needs to forward 4 patches for segmentation of one single
case. It receives patches from ICBV and ITTD as input and
estimates Ŝc, Ŝcp = U(ICBV , ITTD). The U-Net is build of double-
convolutional blocks as known from Ronneberger et al. (17),
while each 3 × 3 × 3 convolution is preceded by a batch
normalization layer of Ioffe and Szegedy (26) for data whitening.
The blocks are spread over three resolution levels (two Max-
Poolings) with 16, 32, and 64 channels, respectively. This sums
up to a total of about 355.000 network parameters.

3.1.3. Convolutional Auto-Encoder
Focusing on the subsequent CAE, we had to ensure some
minimum number of layers (Figure 4) to detect the most salient
and descriptive abstract stroke shape features while being well-
regularized in order to reconstruct a good general estimate
of the shape. This requires a bottleneck layer between E and
D to produce low-dimensional latent codes that must have a
limited but sufficient dimensionality. Consequently, only the
main modes should be represented in the code with their major
variances describing different stroke shapes without noise or
overfitting of training samples. Regarding overfitting, our linear
approach for the interpolation on the low-dimensional codes is
in principle also robust against noise in time.

The input of the CAE is forwarded akin to the U-Net through
double-convolutional blocks including batch normalization
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FIGURE 2 | Overview of proposed method, showing the U-Net for segmenting core (Ŝc) and penumbra (Ŝcp), which are forwarded to the encoder E of the CAE for

transforming them into low-dimensional shape space representations such that they can be linearly interpolated and decoded to output a follow-up estimate Ŝl .

layers. Instead of two Max-Pooling operations, three additional
2-stride convolutional layers intersperse those blocks, while the
final block is a single 3 × 3 × 3 convolution that convolves the
feature map to the 10 × 10 × 1 bottleneck size. Like for the U-
Net, 3 × 3 × 3 filter kernels throughout all convolutional layers
of the CAE, as introduced by Simonyan and Zisserman (27), are
exclusively used to decrease complexity compared to networks
with bigger kernels while the same receptive field sizes can be
reached by just stacking more layers of the smaller kernels. This
results in more non-linearities and usually generalizes better.

The decoder is a mirrored encoder, with deconvolutional
layers replacing the 2-stride convolutions. With this architecture,
a single 128×128×28 shape segmentation image can be encoded
into a low-dimensional code representation, and then decoded
back to a segmentation image. Note that although the U-Net
is fed with both CBV and TTD images as separate channels
at once, the CAE’s encoder has to forward their segmentations
independently to get two separate latent codes, which will be then
interpolated and forwarded in one step through the decoder to
get the final lesion prediction.

Since there are several global scalar predictors (time, age,
sex, clinical scores) that might be required to model the space
properly, we also tried to map the shape segmentation input
of the CAE to a vector representation (instead of spatial
feature maps) in the bottleneck by using a fully-connected or
convolutional layer with appropriate kernel size. This would have
allowed us to add an arbitrary number of scalar values directly as
additional dimensions to the latent code in the bottleneck and to
easily quantify the dimensionality of such shape representations
in the latent space. However, regularization is difficult – even
when using dropout (28)—and the reconstructions are less
accurate than with latent spatial feature map representations.
Therefore, the CAE remains convolutional-only and no clinical
variables other than the combination η of both time predictors
for the interpolation are used as per definition in Equation (3).

3.2. Training
The training is conducted in three consecutive steps (see Figure 5
for illustration of steps 2 and 3) that are characterized by different
objectives formulated in their corresponding losses:

1. Training the U-Net with a LSoftDice loss.
2. Training E1 and D to learn the shape space of the CAE from

manual segmentations (LShape)
3. Training E2 to fit automatic segmentation estimates of U into

the shape space (LPrediction)

The U-Net is initially trained beforehand using the stochastic
gradient variant ADAM of Kingma and Ba (29) for optimization.
The ground truth segmentations Sc and Scp of core and
core+penumbra are used to penalize their predictions with a
bigger loss for less overlap in the SoftDice measure, which is
defined for all voxel positions i in a segmentation A with ground
truth B and a small constant ǫ as follows:

SoftDice(A,B) =
2 ·

∑

i(AiBi)+ ǫ
∑

i(AiAi + BiBi)+ ǫ
(4)

3.2.1. Shape Space Learning
First, a low-dimensional shape space is learned that embeds the
ground truth shapes of core and core+penumbra segmentations,
Sc and Scp. This is enforced by loss LShape in Equation (5),
that consists of three parts: (1) Reconstruction Rc, Rcp, and
Rl of core, core+penumbra and final lesion shape, (2) the
property of the reconstructed core/lesion volume to still be
a subset of the core+penumbra volume, and (3) a L1 loss
for keeping the latent code yl of the lesion shape close to
the linear interpolation yi of the core and core+penumbra
codes:

LShape =
∑

s∈{c,cp}

LSoftDice(Rs, Ss)+
∑

s∈{c,l}

Lmono(Rs,Rcp)+αL1(yl, yi)

(5)
For the first 25 epochs α = 0 holds, otherwise α = 1.
We observed that this helps the non-convex optimization
function to first learn to reconstruct the shape into the correct
brain hemisphere and was found to robustly prevent the
network from getting trapped in implausible minima at the
beginning of the training. Since SoftDice ∈ [0, 1] with 0
indicating non-overlap and 1 for full overlap, we need to define

Frontiers in Neurology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 989

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Lucas et al. Learning to Predict Stroke Growth

FIGURE 3 | 3D surface illustration for the binarized reconstruction of the interpolation in shape space for a single test case from our experiments. The top image

shows the manual segmentation of core in red within a cutout of the brain volume, while the bottom image shows the ground truth segmentation of penumbra in

yellow. Three steps of the interpolation between the estimates of both manual segmentations are shown in the middle rows.
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FIGURE 4 | Representational complexity of the CAE and reduced dimensionality in the bottleneck. The numbers given top to bottom indicate: Quadratic size of the

first two spatial dimensions, size in the third spatial dimension (axial), and number of feature channels. There is one input channel for the segmentation image and one

output channel for its reconstruction.

FIGURE 5 | Overview of involved convolutional sub-networks (blue) in the two-phase training according to section 3.2 in the text. In the first phase (A) the shape

space is trained with E1 and D by using loss LShape (red) to reconstruct Rc and Rcp. In the second phase (B) E2 is trained to map segmentations from U into the

shape space via the second loss LPrediction (green). The latent code ŷi interpolated between ŷc and ŷcp is decoded with the previously trained D of phase (A) for

predicting the desired follow-up lesion Ŝl .

LSoftDice(S, Ŝ) = 1− SoftDice(S, Ŝ). To force the CAE to learn that
the interpolation is only growing when interpolating along the
(time) trajectory from core until reaching the core+penumbra
segmentation at maximum, we define a constraint Lmono for
all voxel positions i in two segmentation images A,B so
that the reconstructions of the core segmentation and the

intermediate lesion interpolation are monotone increasing to the
total core+penumbra segmentation:

Lmono(A,B) =
∑

i

max(Ai − Bi, 0) (6)
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3.2.2. Noisy Shape Interpolation
In the second training phase, the encoder and decoder weights
from the shape space learning phase before will be fixed. A second
encoder is then learned for the U-Net predictions Ŝc and Ŝcp
of core and core+penumbra to compute latent representations
ŷc and ŷcp that are located close to the shape embeddings yc
and ycp of the corresponding ground truth segmentations in
terms of L1 norm. LPrediction in Equation (7) further enforces the
monotone properties for the reconstructed segmentations and
the main goal of high overlap for the prediction Ŝl decoded from
the interpolated code ŷi to the actual follow-up ground truth Sl:

LPrediction = LSoftDice(Ŝl, Sl)+
∑

s∈{c,l}

Lmono(Ŝs, Ŝcp)+
∑

s∈{c,l,i}

L1(ŷs, ys)

(7)
This way, the decoder D of the first phase ideally decodes
an approximate representation from the shape space so
that the reconstruction of the core and core+penumbra
estimates should be close to the ground truth reconstruction
of core and core+penumbra, (D ◦ E2)(Ŝc) ≈ (D ◦ E1)(Sc) and
(D ◦ E2)(Ŝcp) ≈ (D ◦ E1)(Scp). Moreover, the main goal remains
to achieve an interpolation as close as possible to the true lesion
segmentation:

D
(

η · E2(Ŝcp)+ (1− η) · E2(Ŝc)
)

≈ (D ◦ E1)(Sl) (8)

The individual loss terms have not been weighted by further
manual parameters as we found no benefit for other than the
uniformly weighted individual loss parts for both LShape and
LPrediction. Further, we tried to apply both losses beforehand
in an alternating and joint manner but this did not let
the optimizer find proper minima; in particular, learning the
exclusive occurrence of a stroke on either hemisphere could not
be learned, which is what the network basically learns during the
first epochs of training.

4. EXPERIMENTS

We run a 5-fold test on a 29 subjects dataset, because the time
demand for a full cross-validation was too high. In order to
test each of the 5 folds, we thus had to train 5 models with
the remaining 4 folds. Four of the folds consist of 6, and 1 fold
consists of 5 cases. About one fourth of the training samples were
used as validation set, so that a training set consists of 17 or 16
cases and is validated in each epoch on 6 other cases (disjoint
with the test fold).

We prevent overfitting of the model by training until the
validation loss converges and choose the model with the lowest
validation loss. Since the model is eventually tested on a different
fold of patients not used for the training and validation, we also
avoid that the evaluation results could be tuned on the validation
loss optimum. Due to the huge number of parameters in our
3D sub-networks, the memory demand for gradient computation
increases rapidly, so a batch size of 4 had to be chosen to fit the
training data into 11 GB of GPU memory.

TABLE 2 | Characteristics for subjects with manually segmented core, penumbra

and follow-up lesion of the retrospectively collected data.

Baseline characteristics Value

Subjects n 29

Male sex, n (%) 16 (55%)

Age, years, median (IQR) 70 (63− 77)

Admission NIHSS, median (IQR) 15 (12− 16)

Core volume, ml, median (IQR) 27 (3− 86)

Penumbra vol., ml, median (IQR) 164 (149− 199)

Lesion (FU) vol., ml, median (IQR) 31 (18− 93)

tOnset→Imaging, hours, median (IQR) 1.7 (1.4− 3.4)

tImaging→Treatment, hours, median (IQR) 1.7 (1.4− 2.1)

tOnset→Treatment, hours, median (IQR) 3.9 (3.2− 4.9)

4.1. Data
We used a dataset of 29 subjects from the Neuroradiology
department at the University Hospital Schleswig-Holstein
formerly collected for the TRAVESTROKE project for which
one rater had created manual segmentations on the CT
perfusion (CTP) modalities CBV (Cerebral Blood Volume)
and TTD (Time-To-Drain) at the time of admission for core
and core+penumbra, as well as a lesion segmentation on
follow-up CT after treatment. The data was acquired with a
Siemens Somatom Definition AS 40 (Siemens Healthcare GmbH
Forchheim, Germany) and the raw data was deconvolved using
the vendor algorithm to get CT perfusion parameters such as
CBV or TTD. All patients of the dataset had been treated
successfully with thrombectomy (TICI score 2b or 3). See
baseline characteristics of the subjects included in the evaluation
in Table 2.

The dataset was pre-processed with FSL-FLIRT (30) for
affine registration to correct tilted heads and transform
them into common space. A downsampling was applied so
that input size of the CBV and TTD maps was 128 ×

128 × 28 voxels for reducing the computational demand.
Additional clinical data for each subject was given. For the
evaluation we only used the two durations tOnset→Imaging

and tImaging→Treatment, which were normalized according to
Equation (3). All shape segmentations have been elastically
deformed in each epoch to augment the limited available
training data for learning generic features of the CAE such
that the representations in shape space can be robustly
reconstructed.

4.2. Comparison
In section 2.2.1, we referred to the ISLES 2017 task of predicting
a follow-up lesion based on MR perfusion data. We participated
in this challenge with a single U-Net directly predicting the
final follow-up lesion, as many of the teams were using
unconstrained CNNs [as presented in (21)]. Since this does
not lead to accurate predictions of a progressed stroke when
facing acute image data, we compare our proposed method
with this simple U-Net approach with and without clinical time
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TABLE 3 | Reconstruction (1. training phase) results: Average Dice values on the test data for the CAE trained on core (Sc) and core+penumbra (Scp) expert

segmentations, as well as average Dice overlap of the follow-up expert lesion segmentation (Sl ) with the reconstructed interpolation from shape space (Ri ).

Method Method # Parameters Dice

Core/Penumbra Lesion (Training phase) of network Core (Rc) Core+Penumbra (Rcp) Lesion (Ri )

Expert Oracle CAE 10h (1. phase) 4.7 · 106 0.68 0.90 0.53

Expert CAE 10 h (1.) 4.7 · 106 0.68 0.90 0.46

Expert CAE 24 h (1.) 4.7 · 106 0.70 0.90 0.44

While the first row shows an oracle prediction overlap for the theoretically best-fit per case interpolation within our model (could be before or after the true time-to-treatment), the second

row lists the result for our proposed approach using the actual time-to-treatment ground truth to predict the follow-up lesion from ground truth. The third row indicates that the effect

of choosing a different normalization value from within the time range of the acute stroke phase can rather be neglected.

TABLE 4 | Experimental results from 5-fold test data based on the U-Net’s Ŝc, Ŝcp, and lesion estimates: The average values for the Dice overlap with the ground truth

segmentations Sc, Scp, and Sl are presented.

Method Method # Parameters Dice

Core/Penumbra Lesion (Training phase) of network(s) Core Core+Penumbra Lesion

U-Net CAE (2. phase) 3.6 · 105 + 4.7 · 106 0.55 0.81 0.43 (Ŝl )

U-Net CAE (1. phase) 3.6 · 105 + 4.7 · 106 0.43 0.80 0.40 (Ŝl )

U-Net Image Interpolation 3.6 · 105 0.45 (Ŝc) 0.81 (Ŝcp) 0.36

– U-Net 2in 3.6 · 105 – – 0.34

– U-Net 4in 3.6 · 105 – – 0.22

The baseline U-Net-only approach has the same architecture as used in combination with the CAE above, but instead of predicting core and penumbra (2 channel output), it directly

predicts the follow-up lesion (1 channel output) as described in section 4.2. We input CBV and TTD maps only (2in), or additionally both tOnset→Imaging and tImaging→Treatment as constant

image channels (4in), whereas the latter performed worse coincident with our previous experience (see section 2.2.1 and Figure 9). The highest overlaps for core, core+penumbra,

and lesion are highlighted in bold.

FIGURE 6 | Two example cases with good and bad performance from the validation set at the end of the shape space learning (1. training phase) and their

interpolation at different tImaging→Treatment ∈ [0, 5] values. The first row shows an axial slice of an accurate reconstruction of core at 0h as well as of the penumbra,

and as a consequence the non-linear interpolation of both gives a reliable estimation of the true follow-up lesion at its actual tImaging→Treatment value (outlined in

purple). The second row shows a case where the temporal progression of the stroke is different, such that the final lesion was much smaller than a interpolation

between core and penumbra would suggest.

points as input. Unfortunately, the ISLES dataset consists of
MR perfusion data without appropriate core and penumbra
segmentations, so we cannot directly compare on the same
dataset.

Our sub-task of linearly interpolating along the trajectory
between core and core+penumbra requires representations of
such in a suitable non-linear shape space that has to be learned
before. In order to show the advantage of conducting this in
such a shape space, we compare with the naïve way of linearly
interpolating the shape segmentations in �. This can be simply

computed with the same η as defined before in Equation (3):

Ŝl = Ŝc + η(Ŝcp − Ŝc) (9)

5. RESULTS

The reconstruction results (Table 3) demonstrate the capability
of our learned model to make time-dependent predictions
and present the advantages of our CAE approach using core
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FIGURE 7 | Visual comparison of linear interpolation in image and shape space for an axial slice of a single case from the 5-fold test (Ground truth denoted as GT ).

Compare the predictions at 2h with the actual follow-up at 1.7h: With linear interpolation of the segmentations, the core area Ŝc remains unchanged while the huge

penumbra area is faded in. Note that for a normalization of 24h, the fading over time would progress even slower. With the CAE and its interpolation in shape space,

the shape grows non-linearly, first locally, and then quickly into the surrounding tissue-at-risk areas segmented by the U-Net in Ŝcp.

FIGURE 8 | Three example cases (as in Figure 9) from the 5-fold test data with their results for the reconstruction. The top row shows a case with fast admission and

treatment times, where the lesion appears about the same size as the initial core. The middle and bottom row are interpolated at η located one third on the trajectory

from core to core+penumbra, while one case is an early and the other is a late admission; However, the case with bigger core progresses slowly with respect to the

non-linear reconstruction compared to the smaller core case at the bottom. Reference overlays for manual segmentations Sc (red), Scp (orange), and Sl (green) are

shown as outlines. Note that models trained with a normalization of 10 or 24 h output similar predictions.
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FIGURE 9 | Three example cases (as in Figure 8) from the 5-fold test data with their results for the prediction. The top row shows a case with fast admission and

treatment times, where the lesion appears about the same size as the initial core. The middle and bottom row are interpolated at η located one third on the trajectory

from core to core+penumbra, while one case is an early and the other is a late admission; However, the case with bigger core progresses slowly with respect to the

non-linear reconstruction compared to the smaller core case at the bottom. Reference overlays for manual segmentations Sc (red), Scp (orange), and Sl (green) are

shown as outlines. Note that prediction with unconstrained U-Net-only variants with (4in) or without (2in) clinical input channels cannot reach the prediction

performance of our proposed U-Net + CAE method.

and penumbra segmentations to generalize well even from
a small training dataset to estimate non-linear follow-up
lesion interpolations. A Dice overlap of 0.46 was achieved in
comparison to a manual rater. Considering a reconstruction
Dice overlap for the CAE itself of 0.68 and 0.90 for core and
core+penumbra, respectively, this represents a good result. In
a use case, where a clinical expert manually segments core and
penumbra, this can already be a helpful estimate for assessing the
expected treatment outcome after thrombectomy.

However, even a very good reconstruction of core and
penumbra does not guarantee a good final lesion estimate
(Figure 6, bottom row). The quality and severity of the stroke in
routine clinical data is not always fully encoded in its core and
penumbra shape segmentations, and some of the follow-up lesion
segmentations are actually smaller than even their corresponding
core segmentations contrary to the definition that core should
include only necrotic tissue which cannot be recovered. Potential
reasons for this include the challenges of the manual annotations
based on CBV and TTD alone.

With our trained model we could determine an upper bound
of 0.53 for a linear interpolation-based lesion prediction oracle
(Table 3), which does not use the true time-to-treatment but

knows the correct η ∈ [0, 1] that results in the best overlap
with the ground truth lesion. Apart from non-linear growth over
time that has been observed in literature (31) and the lack of any
information from the perfusion signal, the difference between
0.46 and 0.53 could be explained by too much noise in the time
data; Especially the determination of tOnset→Imaging can often be
quite inaccurate in clinical practise. While it would be desirable
to have the best interpolation reconstructed from times as near
as possible to the true time-to-treatment, the linear approach is
quite robust against inaccurate times and monotone growth is
enforced. The doctor is essentially interested to see if there will be
much relative growth and, consequently, how much of the tissue
could be salvaged within the next hours.

Given the CAE, the second encoder E2 learns to map the
segmentations from the U-Net with a high quality into the shape
space during the second training phase (Table 4). This phase
requires only 50 epochs for a convergence of the validation
set loss, compared to 200 epochs in the first phase when
training E1 and D. Automatic core+penumbra segmentations
achieved by our U-Net model are of very high quality (Dice
score of 0.81) and close to the optimal reconstruction given
the constraints of the CAE (Dice of 0.90). The segmentation of
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the core is more challenging yielding Dice scores of only 0.45
which is improved by the second CAE to 0.55. This confirms
the results of the shape-constrained network proposed by
Ravishankar et al. (24).

Interpolating between the latent shape representations of core
and core+penumbra estimated by the U-Net is less accurate than
performing this with the latent representations of ground truth
segmentations. Nevertheless, the advantages of our proposed
U-Net + CAE architecture with a Dice score of 0.43 for
the lesion are evident as the result is close to the ground
truth interpolation (Dice 0.46). A significant improvement
is found in comparison to the two baseline methods (0.36
and 0.34). It can be visually observed in Figure 7 that our
linear interpolation in the shape space leads to a non-linear
growth of the infarct shapes: first locally, then into the outer
penumbra. Contrary to that, simply interpolating linearly on
segmentation predictions leads to implausible fading of the
entire tissue-at-risk infarct probabilities in the image voxel space,
where the rate of progression is also strictly depending on the
normalization value!

Moreover, our subdivided approach clearly reveals the sub-
tasks that need to be tuned in our method for improvement
of the final prediction, different to a closed unconstrained
model like the single U-Net. We observed that there is less
overlap for the core than for both core+penumbra. By improving
the core reconstruction from shape space, the interpolation
trajectory would be closer to the true lesion representation. Thus,
prediction for the true time-to-treatment could benefit, for both
ground truth and estimated segmentations. If furthermore the
core estimate could be more accurate, the closer will the latent
code of ŷc be located to the representation yc of the ground truth
core, and so will the trajectory in shape space be more close to the
ideal trajectory.

Compared to the results of the ISLES stroke lesion challenges
of the last 2 years onMR perfusion and diffusion data, none of the
participating groups has reached a higher overlap of the predicted
lesion outcome with the actual follow-up than a Dice of 0.32 (see
https://www.isles-challenge.org). With respect to the similar task
and comparable functional imaging modalities, the results of our
method predicting the lesion outcome on core and penumbra
estimates are promising.

6. CONCLUSION

In this work we have shown the feasibility of using interpolations
between low-dimensional shape embeddings of core and
penumbra segmentations for improving the prediction of stroke
lesion tissue outcome. First, we could show that a CAE is
able to model the main variances of volumetric stroke shapes
resulting in good reconstructions on test data. With the latent
representation at hand, one can now continuously interpolate
along robust linear trajectories in the shape space to obtain non-
linear shape growth from the core to the entire penumbral area.
Fed with an actual time-to-treatment point, this results in a
shape-constrained estimate of the expected final lesion for the
given time, making it possible to compute other measures on this

result, such as volume or density, to be of further assistance to
the radiologist. Thus, our framework facilitates the assessment of
potential infarct growth and possible salvageable tissue to support
treatment decisions and prioritization.

With our current interpolation method we have an upper
bound for the prediction Dice score of 0.53, which can be
achieved on manual expert segmentations as end points for
the linear interpolation in shape space when using a time-to-
treatment oracle. This is nearly reached with our best performing
fully-automatic model based on the actual time-to-treatment
(Dice score 0.43). To improve the overall performance for the
prediction by interpolating between the shape representations of
automated core and penumbra segmentations according to time,
we believe that time as a factor for the stroke growth will not
always be in fixed linear relationship with the interpolation. First
of all, there are other clinical variables that have an (combined)
effect on the outcome, such as age or NIHSS (National Institutes
of Health Stroke Scale) score, not yet considered in our method.
Furthermore, differences in the growth rate even for similar
early lesions could be found between patients. In future, we
would like to investigate how an integrated approach can also
learn non-linear growth over time to further close the gap
from 0.43 to 0.53. Nevertheless, our method does not only
strive for ideal overlap but rather robust growth over time in a
plausible manner.

We observed that there are still cases lowering the overall
prediction performance, where the follow-up lesion remains
smaller than the core area. This cannot only be explained
by different treatment outcomes or a decline in swelling,
and requires a review with clinical experts on the dataset
(perfusion parameters, manual segmentation protocol) as well
as our hypothesis. For instance, if manual segmentations
are not consistent throughout the dataset, rejecting data
cases, which do not fit the hypothesis and thus make it
difficult to train our proposed network according to our
preconditions, could show substantial improvements in the
results.
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