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The reproduction and replication of scientific results is an indispensable aspect of good

scientific practice, enabling previous studies to be built upon and increasing our level

of confidence in them. However, reproducibility and replicability are not sufficient: an

incorrect result will be accurately reproduced if the same incorrect methods are used.

For the field of simulations of complex neural networks, the causes of incorrect results

vary from insufficient model implementations and data analysis methods, deficiencies

in workmanship (e.g., simulation planning, setup, and execution) to errors induced

by hardware constraints (e.g., limitations in numerical precision). In order to build

credibility, methods such as verification and validation have been developed, but they

are not yet well-established in the field of neural network modeling and simulation,

partly due to ambiguity concerning the terminology. In this manuscript, we propose a

terminology for model verification and validation in the field of neural network modeling

and simulation. We outline a rigorous workflow derived from model verification and

validationmethodologies for increasingmodel credibility when it is not possible to validate

against experimental data. We compare a published minimal spiking network model

capable of exhibiting the development of polychronous groups, to its reproduction on the

SpiNNaker neuromorphic system, where we consider the dynamics of several selected

network states. As a result, by following a formalized process, we show that numerical

accuracy is critically important, and even small deviations in the dynamics of individual

neurons are expressed in the dynamics at network level.
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1. INTRODUCTION

Even for domain experts, it is often difficult to judge the
correctness of the results derived from a neural network
simulation. The factors that determine the correctness of the

simulation outcome are manifold and often beyond the control
of the modeler. It is therefore of great importance to develop
formalized processes and methods, i.e., a systematic approach,
to build credibility. This applies not only to the modeling,
implementation, and simulation tasks performed in a particular

study, but also to their reproduction in a different setting.
Although appropriate methods exist, such as verification and
validation methodologies, they are not yet well-established in
the field of neural network modeling and simulation. One
reason may lie in the rapid rate of development of new neuron
and synapse models, impeding the development of common
verification and validation methods, another is likely to be that
the field has yet to absorb knowledge of these methodologies
from fields in which they are common practice. This latter point
is exacerbated by partly contradicting terminology around these
areas.

In this study, we propose a reasonable adaptation of the
existing terminology for model verification and validation and
apply it to the field of neural network modeling and simulation.

We introduce the concept ofmodel verification and substantiation
and apply it to the issue of reproducibility on a worked
example. Specifically, we quantitatively compare a minimal

spiking network model capable of exhibiting the development
of polychronous groups, as described in Izhikevich (2006), to
its reproduction on the SpiNNaker (a contraction of Spiking
Neural Network Architecture) neuromorphic system (Furber
et al., 2013). The Izhikevich (2006) study is highly cited as an
account of how spike patterns emerge from network dynamics,
and contains a number of non-standard features in its conceptual
and implementational choices that make it a particularly
illustrative example for the verification process. The choice of a
network reproduction implemented on SpiNNaker as a target for
comparison is motivated by the fact that SpiNNaker is subject
to rather different constraints from typical simulation platforms,
in particular the restriction to fixed-point arithmetic, and so
demonstrates interestingly different verification problems. With
this process we demonstrate the value of software engineering
methodologies, such as refactoring, for verification tasks.

Moreover, this study contributes to a question that is
intensively debated in the neuromorphic community: how do
hardware constraints on numerical precision affect individual
neuron dynamics and, thus, the results obtained from a
neural network simulation? We compare the neuronal and
network dynamics between the original and the SpiNNaker
implementation, and our results show that numerical accuracy
is critically important; even small deviations in the dynamics of
individual neurons are expressed in the dynamics at network
level.

This study arose within a collaboration using the same initial
study to examine different aspects of rigor and reproducibility
in spiking neural network simulations, which we describe briefly
here to motivate the scope of the current study. Firstly, a frequent

source of errors in a neural network simulation is unsuitable
choices of numerics for solving the system of ordinary differential
equations underlying the selected neuron model. In section 3.4.2
we focus on the issues of time step and data type; the question
of which solver to use is addressed in Blundell et al. (2018b),
who present a stand-alone toolbox to analyze the system of
equations and automatically select an appropriate solver for
it. Secondly, a key aspect of our study is the reproduction of
the network described in Izhikevich (2006) on SpiNNaker, as
described in sections 3.1.2 and 3.4.1. The difficulties of creating
such a reproduction are comprehensively examined by Pauli
et al. (2018). Their investigation of the features of source code
that support or diminish the reproducibility of a network model
is based on reproducing the Izhikevich (2006) study in the
NEST simulator (Gewaltig and Diesmann, 2007). In addition
to developing a checklist for authors and reviewers of network
models, they demonstrate that the reported results are extremely
sensitive to implementation details. Finally, in order to determine
whether two simulations are producing results of acceptable
similarity, we employ a statistical analysis of spiking activity. This
is summarized in section 3.2.2; the complete description and
derivation of this analysis can be found in our companion paper
(Gutzen et al., 2018).

2. TERMINOLOGY

2.1. Reproducibility and Replicability
Reproducibility and replicability are indispensable aspects of
good scientific practice. Unfortunately, the terms are defined in
incompatible ways across and even within fields.

In psychology, for example, reproducibility may mean
completely re-doing an experiment, whereas replicability refers
to independent studies that yield similar results (Patil et al.,
2016). For computational experiments, where the outcome is
usually deterministic1, reproducibility is understood as obtaining
the same results by a different experimental setup conducted by a
different team (Association for Computing Machinery, 2016; see
also Plesser, 2018). Although attempts were made to help resolve
the ambiguity in the terminology by explicitly labeling the terms
or by attempting to inventory the terminology across disciplines
(Barba, 2018), the problem persists. Plesser (2018) gives a brief
history of this confusion.

In this study, we follow the definitions suggested by
the Association for Computing Machinery (Association for
Computing Machinery, 2016):

Replicability (Different team, same experimental setup) The
measurement can be obtained with stated precision by a
different team using the same measurement procedure, the
same measuring system, under the same operating conditions,
in the same or a different location on multiple trials. For
computational experiments, this means that an independent
group can obtain the same result using the authors own
artifacts.

1In analog neuromorphic systems the outcome is not only determined by the

initial conditions. Chip fabrication tolerances and thermal noise add a stochastic

component.
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Reproducibility (Different team, different experimental setup)
The measurement can be obtained with stated precision by
a different team, a different measuring system, in a different
location on multiple trials. For computational experiments, this
means that an independent group can obtain the same result
using artifacts which they develop completely independently.

To be more specific about the terminology of reproducibility,
in this study we aim for results reproducibility (Goodman et al.,
2016; see also Plesser, 2018).

Results reproducibility Obtaining the same results from the
conduct of an independent study whose procedures are as closely
matched to the original experiment as possible.

2.2. Model Verification and Validation
The critical question for all modeling tasks is whether the model
provides a sufficiently accurate representation of the system being
studied. Evaluating the results of a modeling effort is a non-trivial
exercise which requires a rigorous validation process.

The term validation, or more generally verification and
validation also require a precise definition, as they have different
meanings in different contexts. In software engineering, for
example, verification and validation is the objective assessment
of products and processes throughout the life cycle. Its purpose
is to help the development organization build quality into
the system (Bourque and Fairley, 2014). With respect to
the development of computerized models, verification and
validation are processes that accumulate evidence of a model’s
correctness or accuracy for a specific scenario (Thacker et al.,
2004).

As a cornerstone for establishing credibility of computer
simulations, the Society for Computer Simulation (SCS)
formulated a standard set of terminology intended to
facilitate effective communication between model builders
and model users (Schlesinger et al., 1979). This early
definition is very general and often does not do justice to
a particular modeling domain. Therefore, domain specific
adaptations to the terminology can be found, but having
fundamentally the same meanings. For the field of neural
network modeling and simulation we propose the terminology
shown in Figure 1B, amended from Thacker et al. (2004).
While Thacker et al. (2004) uses the terms reality of interest,
conceptual model, and computerized model, we prefer the
terms system of interest, mathematical model, and executable
model. The terms are more explicit and better express
the underlying intent. In particular, due to the empirical
challenges of neurobiology, spiking neural network models
are often not based on a specific biological network that
could be considered “reality” and from which ground truth
behavior can be recorded, in contrast to, for example, the
air flow around a wing. The term “system of interest”
recognizes that the process of verification and validation
can also be applied to systems without concrete physical
counterparts.

The essence of the introduced terminology is the division of
the modeling process into three major elements as illustrated in
Figures 1A,B.

Reality or system of interest is an “entity, situation, or
system which has been selected for analysis.” The conceptual
or mathematical model is defined as a “verbal description,
equations, governing relationships, or natural laws that purport
to describe reality or the system of interest” and can be
understood as the precise description of the modeler’s
intention (Schlesinger et al., 1979). The formulation of the
conceptual or mathematical model is derived in a process
called analysis andmodeling and its applicability is motivated
in a process termed qualification or confirmation. However,
the conceptual or mathematical model by itself is not able to
simulate the system of interest. By means of applying software
engineering and development efforts, it has to be implemented
as a computerized or executable model.

By separating the understanding of a model into a mathematical
and an executable model, this terminology also illustrates the
difference between verification and validation.

Verification describes the process of ensuring that the
mathematical model is appropriately represented by the
executable model, and improving this fit.

Model verification is the assessment of a model implementation.
Neural network models are mathematical models that are written
down in source code as numerical algorithms. Therefore, it is
useful to define two indispensable assessment activities:

Source code verification tasks confirm that the functionality
it implements works as intended.
Calculation verification tasks assess the level of error that
arises from various sources of error in numerical simulations
as well as to identify and remove them (Thacker et al., 2004).

This process mainly involves the quantification and
minimization of errors introduced by the performed calculations.
Only when the executable model is verified it can be reasonably
validated.

The validation process evaluates the consistency of the
predictive simulation outcome with the system of interest.

The validation process aims at the agreement between
experimental data that defines the ground truth for the system of
interest and the simulation outcomes. This evaluation needs to
take into consideration the domain of intended application of the
mathematical model as well as its expected level of agreement,
since any model is an abstraction of the system of interest and
only intended to match to a certain degree and for certain
prescribed conditions.

2.3. Model Verification and Substantiation:
Model Assessment in the Absence of
Experimental Data
For neural network simulations, the ground truth of the
system of interest can be provided by empirical measurements
of activity data, for example single unit and multi-unit
activity gathered by means of electrophysiological recordings.
However, there are a number of reasons why this data may
prove inadequate for validation. Firstly, depending on the
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A B

FIGURE 1 | Interrelationship of the basic elements for modeling and simulation. In order to be able to apply the terminology, introduced by Schlesinger et al. (1979) for

modeling and simulation processes (A), to numerical models for neural network simulations, a less generic terminology is more expedient. We propose the

terminology shown in (B) which we have adapted slightly from Thacker et al. (2004). While Thacker et al. (2004) uses the terms reality of interest, conceptual model,

and computerized model, we prefer the terms system of interest, mathematical model, and executable model as they better express the underlying intent. The model

distinguishes between modeling and simulation activities (black solid arrows), and assessment activities (red dashed arrows).

specification of the system of interest, such data can be scarce.
Secondly, even for comparatively accessible areas and assuming
perfect preprocessing (e.g., spike sorting), single cell recordings
represent a massive undersampling of the network activity.
Thirdly, for a large range of computational neuroscientific
models, the phenomenon of interest cannot be measured in a
biological preparation: for example, any model relying on the
plasticity of synapses within a network.

Consequently, for many neuronal network models, the most
that the modeler can do with the available experimental data
is to check for consistency, rather than validate in the strong
sense. Thus, we are left with an incomplete assessment process.
However, circumstantial evidence to increase the credibility
of a model can be acquired by comparing models and their
implementations against each other with respect to consistency
(Thacker et al., 2004; Martis, 2006). Such a technique can be
meaningful in accumulating evidence of a model’s plausibility
and correctness even if none of the models is a “validated model”
that may act as a reliable reference.

To avoid ambiguity with the existing model verification and
validation terminology, we propose the term “substantiation.”

Substantiation describes the process of evaluating and
quantifying the level of agreement of two executable models.

Model verification and substantiation are then processes
that accumulate circumstantial evidence of a model’s
correctness or accuracy by a quantitative comparison of
the simulation outcomes from validated or non-validated
model implementations. The interrelationship of the modeling,
simulation, and assessment activities are shown in Figure 2. To
this end, the modeler has to define reasonable acceptance criteria
that define the limits within which the process can be executed.

In this study, we will demonstrate the usefulness of such an
approach.

2.4. Application of Terminology to Neural
Network Modeling and Simulation
Applying the given terminology to the domain of neural
network modeling and simulations, we will use the terms as
follows. Replication means using the author’s own model, which
may consist of the model source code, scripts for network
generation and simulation execution as well as additional
software components in a particular version (e.g., if a specific
simulation software is used). A replication should aim for bit-
identicality. Although computers are deterministic, this is not
always feasible, for example, if the seed of the pseudorandom
number generator has not been recorded, or the generated
trajectory of pseudorandom numbers is dependent on the
software version or the underlying hardware. Beyond this,
replicable models should have the property of delivering exactly
the same result in successive simulations on the same hardware.
When using random number generators, this entails setting a
seed.

A reproduction (or specifically, results reproduction) is then
the re-implementation of the model in a different framework,
e.g., expressing a model as a stand-alone script using neural
simulation tools, such as NEURON (Hines and Carnevale,
1997), Brian (Goodman and Brette, 2008), NEST (Gewaltig
and Diesmann, 2007), or the SpiNNaker neuromorphic system
(Furber et al., 2013), and getting statistically the same results.

Applying the terminology defined in this section, one can
say: in this study, we replicate a published model and create
a reproduction of the model on the SpiNNaker neuromorphic
system. In an iterative process of model substantiation, we arrive
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FIGURE 2 | Model verification and substantiation workflow. The workflow

shown can be thought of as the combination of two separate model

verification and validation processes (Figure 1) without the backward

reference to the system of interest, i.e., the validation of the model. In this

concept, the consistency of the simulation outcomes of two executable

models that share the same system of interest and mathematical model is

evaluated, in an assessment activity we term “substantiation.” Modeling and

simulation activities are indicated by black solid arrows, whereas assessment

activities are indicated by red dashed arrows.

at the point that both executable models are verified, and in good
agreement with one another.

3. MODEL VERIFICATION AND
SUBSTANTIATION OF THE IZHIKEVICH
POLYCHRONIZATION MODEL: THE
REPRODUCTION OF SELECTED
NETWORK STATES ON SPINNAKER

3.1. Definition of the Model Verification and
Substantiation Methodology Entities
For the purposes of demonstrating a rigorous model verification
and substantiation methodology, we define as our system of
interest the mammalian cortex. A mathematical and executable
model of this system was proposed by Izhikevich (2006), who
demonstrated that this model exhibits the development of
polychronous groups. The mathematical model is described in
detail in section 3.1.1, the corresponding executable model,

referred to in the following as the C model, constitutes one
target of the verification and substantiation process illustrated in
Figure 2. For the other target, we reproduce the mathematical
model on the SpiNNaker neuromorphic system (Furber et al.,
2013); the resultant executable model is referred to as the
SpiNNaker model (see section 3.1.2).

3.1.1. Mathematical Model

3.1.1.1. Network topology
The network connectivity is illustrated in Figure 3. A population
of 800 excitatory neurons makes random connections to itself
and to a population of 200 inhibitory neurons using a fixed out-
degree of 100. Excitatory synaptic connections are initially set to
a strength of wij = 6.0 and a conduction delay Dij drawn from
a uniform integer distribution such that Dij ∈ [1, 2, . . . , 20] ms.
The inhibitory population is connected with the same out-degree
to the excitatory population only, forming connections with a
fixed synaptic strength and delay, wij = −5.0,Dij = 1 ms.

3.1.1.2. Component dynamics
Each neuron in the network is described by the simple neuron
model presented in Izhikevich (2003), which can reproduce a
variety of experimentally observed firing statistics:

v̇ = 0.04v2 + 5v+ 140− u+ I (1)

u̇ = a(bv− u) (2)

if v ≥ 30 mV, then

{

v← c

u← u+ d
. (3)

Equations (1)–(3) describe the time evolution of the
membrane voltage v(t) and the threshold dynamic variable
u(t) of a single neuron. For the polychronization model,
excitatory neurons are parameterized to show regular-
spiking: (a, , b, c, d) = (0.02, 0.2, −65.0, 8.0), and inhibitory
neurons are parameterized to exhibit fast-spiking: (a, b, c, d) =
(0.1, 0.2,−65.0, 2.0).

The excitatory connections are plastic and evolve according to
an additive spike-timing-dependent plasticity (STDP) rule:

w←

{

w+ A+ · exp(−1t/τ+) :1t ≥ 0
w− A− · exp(1t/τ−) :1t < 0

(4)

where τ+ = τ− = 20 ms, A+ = 0.1 mV, A− = 0.12 mV, and
1t is the difference in time between the last post-synaptic
and pre-synaptic spikes, i.e., positive on occurrence of a post-
synaptic spike and negative on occurrence of a pre-synaptic
spike. However, the rule has an unusual variant: synaptic weight
changes are buffered for one biological second and then the
weight matrix is updated for all plastic synapses simultaneously.
Thus, synaptic weights are constant for long periods, causing the
network dynamics to break down into epochs.
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FIGURE 3 | Network architecture. The minimal spiking network exhibiting polychronization as decribed in Izhikevich (2006). The input to the network is a constant

current of Iext = 20 pA into a single neuron, which is randomly selected in each simulation time-step. Please see section 3.1.1 for a detailed description of the

mathematical model.

3.1.2. Executable Models

3.1.2.1. C model
The original network model and its analysis form a stand-alone
application. Several implementations are available for download
from the author’s website2: a MATLAB implementation
(spnet.m) and two versions of a C/C++ implementation
(spnet.cpp, poly_spnet.cpp). They differ slightly in algorithms
and functionality and thus do not exhibit bit-identical behavior.
All implementations use a grid-based simulation paradigm
with a resolution of 1 ms. Threshold detection according to
Equation (3) is performed only at the grid points. For numerical
integration of the ODE system consisting of the Equations
(1) and (2) a Forward Euler method is used. From the two
available versions of the C/C++ implementation we selected
the computationally more precise variant poly_spnet.cpp that
makes use of double precision data types and also implements
the analysis, i.e., algorithms for detecting polychronous
groups.

3.1.2.2. SpiNNaker model
The SpiNNaker neuromorphic system is a massively parallel
multi-core computing system designed to provide a real-time
simulation platform for large neural networks (Furber et al.,
2013). The largest available system is a half-million core
machine3. The real-time capability is achieved at an simulation
resolution of h = 1 ms using a grid-based simulation paradigm.
This is analog to the integration scheme and simulation
paradigm used in the original C model implementation. For
our study, we use a SpiNN-3 development board that houses
4 SpiNNaker chips, each containing 18 ARM968 processing
cores (Temple, 2011a). For simulation control and cross-
development, the SpiNN-3 board must be connected to a host

2https://www.izhikevich.org/publications/spnet.htm
3http://apt.cs.manchester.ac.uk/projects/SpiNNaker/project/Access/

system, which then communicates with the board via Ethernet-
based UDP packets (Temple, 2011b). The SpiNNaker software
stack (Rowley et al., 2017b) supports the implementation of
neural network simulations in PyNN4. In addition, it offers
several neuron and synapse models as well as a template
that enables user to develop custom neuron and synapse
models using the event-driven programming model employed
by SpiNNaker kernel (Rowley et al., 2017a), available for
download from the SpiNNaker repository on GitHub5. The
SpiNNaker model used in this study was developed from
scratch, making use of this template to produce the various
Izhikevich neuron model implementations presented in this
manuscript.

3.2. Definition of the Model Substantiation
Assessment
In the absence of specific biological data to define the
ground truth for the system of interest, we are left with
the simulation outcomes of the two executable models. Here,
we consider the dynamics of five selected network states
in the C model. The dynamics is assessed by applying
statistical analysis methods to the spike train activity data
(see section 3.2.2). For an in-depth treatment of the analysis
methods used for comparison, see the companion study
(Gutzen et al., 2018). Note that we do not use the emergence
of polychronous groups or their statistics to define the
ground truth, as this turns out to be rather sensitive to
details not only of the mathematical model, but also of the
implementational choices used to generate the executable model.
For a comprehensive investigation of this aspect, see Pauli et al.
(2018).

4PyNN is a common interface for neural network simulators (Davison et al., 2009).
5https://github.com/SpiNNakerManchester/sPyNNaker8NewModelTemplate
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A

B

C

FIGURE 4 | The experimental set-up for the simulations. (A) To create the reference data, the C model is executed (with STDP) and the connectivity matrix AAA and

delay matrix DDD are saved. Then five times are selected, for which the weight matrixWWW(ti ) is recorded. Along with the input stimulus to the network III(t), these matrices

determine five network states for later comparison. These initial conditions are then set for an implementation of the C model (B) and for the SpiNNaker model (C),

both without STDP. This results in the network spiking activity recordings SC
i
(WWW(ti ), t) and SNM

i
(WWW(ti ), t) for five simulation runs for the C model and the SpiNNaker

model, respectively.

3.2.1. Experimental Set-Up
In order to generate the network activity data for the comparison
tasks carried out in the model substantiation process, we perform
the following steps, illustrated in Figure 4.

First, for a given realization (i.e., an implementation and
selection of a random seed) for the C model, we execute the
model for a duration6 of 5 h. During this time we select five times
ti, i = (1, 2, . . . , 5) (here: after 1, 2, 3, 4, and 5 h), at which we save
the weight matrixWWW(ti), containing the current strength of each
synapse according to the STDP rule described in section 3.1.1.
In addition, we save the connectivity matrix AAA, the delay matrix
DDD and the first 60 s’ worth of the random series of neurons to
which an additional stimulus is provided, III(t). This procedure is
illustrated in Figure 4A.

In a second step, we switch STDP off in the C model.
In five consecutive simulation runs, we initialize the network
with AAA,DDD, III, and the respective WWW(ti), and record the resultant
spiking activity SCi (WWW(ti), t) over 60 s, as illustrated in
Figure 4B. These activity recordings define five dynamic
states of the network at different stages of its evolution,
constituting the reference data (i.e., fulfilling the role that
ground truth data plays in a classical model validation
assessment).

6This refers to the simulated time and not to the run time of the simulation.

Finally, we repeat the second step using the SpiNNaker model
(see Figure 4C), resulting in corresponding network activity
recordings SNMi (WWW(ti), t). To perform the model substantiation
assessment, the spiking data SCi and SNMi are analyzed and
compared as described in section 3.2.2.

Note that although the parameters and properties of
the polychronization model remain untouched, model
implementations do change in successive iterations
of the verification and substantiation process as
described below; consequently, so do the reference
data.

3.2.2. Analysis of Network Spiking Activity
Besides a verification on the level of the dynamics of an
individual neuron, we assess the degree of similarity between
the different implementations of the Izhikevich polychronization
model on the descriptive level of the population dynamics (cf.
also, Gutzen et al., 2018). As issues such as the choice of 32/64-
bit architecture, floating-point/fixed-point arithmetic, compiler
options influencing the evaluation order of expressions or the
choice of pseudorandom numbers and the corresponding seed
should not be considered part of the mathematical model,
it is legitimate and expected that different implementations
will not yield an exact spike-by-spike correspondence (but see
Pauli et al., 2018 for a counterexample). We therefore resort
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to testing for equivalence of statistical features extracted from
the population dynamics. These tests are conducted in an
automated, formal framework that conducts statistical analysis
of parallel spike trains using the standardized implementations
found in the Electrophysiology Analysis Toolkit7 (Elephant,
RRID:SCR_003833) as its backend. We stress the importance
of using a common tool to extract the statistical features for
both simulation outcomes in the substantiation procedure in
order to prevent distortions in the substantiation outcome due
to discrepancies in the implementations of the substantiation
procedure itself. In addition, making use of methods provided by
such open-source projects greatly contributes to the correctness
and replicability of the results.

When choosing the measures by which to compare the
network activity, it is essential to assess diverse aspects of the
dynamics. Besides widely used standard measures to characterize
the statistical features of spike trains or the correlation between
pairs of spike trains, this may also include additional measures
that reflect more specific features of the network model (e.g.,
spatio-temporal patterns). Here, we apply tests that compare
distributions of three statistical measures extracted from the
population dynamics: the average firing rates, the local coefficient
of variation as a measure of spike time regularity (Shinomoto
et al., 2003), and the pairwise correlation coefficients between
all pairs of parallel spike trains (bin width: 2 ms). They can be
regarded as forming a hierarchical order and evaluate different
aspects of the network dynamics: rates consider the number of
observed spikes, whilst ignoring their temporal structure; the
local coefficient of variation considers the serial correlations
inherent in a spike train, whilst ignoring the relationship between
spike trains; the cross correlation considers coordination across
neurons.

It should be noted that, as shown later in this study, this
conceptual hierarchy does not imply a hierarchy of failure, i.e., a
correspondence on the highest level (here: cross correlation) does
not automatically imply correspondence of the other measures.
Therefore, it is imperative to independently evaluate each
statistical property.We evaluate the similarity of the distributions
of these measures between simulations using the effect size
(Cohen’s d), i.e., the normalized difference between the means of
the distributions (Cohen, 1988). In addition to the substantiation
tests selected for the current study, more intricate comparisons
can evaluate the correlation structure and dynamical features of
the network activity in greater detail, outlined in our companion
study (Gutzen et al., 2018).

3.3. Definition of the Model Verification and
Substantiation Workflow
As stated above, model substantiation evaluates the
level of agreement between executable models and their
implementations, but is not conclusive whether the model itself
is correct, i.e., an appropriate description of an underlying
biological reality. It is therefore out of scope of this study to
evaluate any neuroscientific aspects of the model described in
Izhikevich (2006).

7http://neuralensemble.org/elephant

Derived from the concept of model verification and
substantiation (Figure 2), the workflow in Figure 5 depicts
a condensed illustration of the activities performed in this
study. We execute the workflow several times whilst subjecting
the C and SpiNNaker model implementations to various
implementation and verification activities. The latter can be
divided into two categories: source code verification and
calculation verification.

The purpose of source code verification is to confirm that the
functionality it implements works as intended (Thacker et al.,
2004). Unlike commercially developed production software,
scientific source code is used to draw scientific conclusions
and, thus, it should act as an available reference (Benureau and
Rougier, 2017).

The purpose of calculation verification is to assess the level
of error that arise from various sources of error in numerical
simulations as well as to identify and remove them. The types
of errors that can be identified and removed by calculation
verification are, e.g., errors caused by inadequate discretization
and insufficient grid refinement as well as errors by finite
precision arithmetic. Insufficient grid refinement is typically the
largest contributor to error in calculation verification assessment
(Thacker et al., 2004).

3.4. Application of the Method
The model verification and substantiation process we describe
in this study required three iteration cycles, named Iteration I,
II, and III, until an acceptable agreement was achieved. Figure 6
shows a complete and detailed breakdown of the activities, which
were shown in more general form in Figure 5.

In the following, we describe for each iteration the verification
activities that identified issues with the executable models, and
the consequent adaptations to the C and SpiNNaker model
implementations. The substantiation activity performed at the
end of each iteration is marked in Figure 6 with I, II, and III,
respectively; the results for each one are given in Figure 7. A
full description of these and further substantiation activities is
provided in our companion study (Gutzen et al., 2018).

In order to be able to reproduce the findings of this work
and our companion study (Gutzen et al., 2018), all source code
and simulation data is available online. The model source codes,
simulation scripts and the codes used in the verification activities
are available on GitHub8 (doi: 10.5281/zenodo.1435831). The
simulation data and scripts used for the quantitative comparisons
of statistical measures in the substantiation task can be found on
GIN9.

3.4.1. Iteration I
In the first iteration, our main focus is source code verification.
For the C model, this takes the form of assessing and
improving source code quality, whereas for the SpiNNaker model
implementation we carry out functional testing.

8https://github.com/gtrensch/RigorousNeuralNetworkSimulations
9https://web.gin.g-node.org/INM-6/network_validation
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FIGURE 5 | Model verification and substantiation workflow as it was conducted. The figure depicts in a condensed form the instantiation of the model verification and

substantiation workflow (Figure 2) introduced in section 2.3 and carried out in this study.

3.4.1.1. C model
The poly_spnet.cpp source code hides the algorithms—
which seem to be derived from MATLAB programming
paradigms—behind hard-to-read source code. To improve
the readability, understand the algorithms, and find potential
programming and implementation errors, we subjected
the source code to a refactoring10 and code inspection
task.

We fully reworked the source code by following clean
code heuristics (Martin and Coplien, 2009). Code sections
concerned with the analysis and not part of the model
itself were removed from the source code, kept separately
and were only used for functional testing. Whilst going

10Refactoring—a software engineering method from the area of software

maintenance—is source code transformation which reorganizes a program

without changing its behavior. It improves the software structure and the

readability, and so avoids the structural deterioration that naturally occurs when

software is changed Sommerville, 2015.

through this iterative refactoring and code inspection
process, we made sure that the model remained bit-
identical after every iteration, i.e., ensuring replicability
(see section 2).

In order to support the experimental setup and make the
substantiation activities possible, we added functionality that
allows network states to be saved and reloaded. For producing
the network activity data for use in substantiation, i.e., the
quantitative comparisons of statistical measures, we also switched
off STDP (see also section 3.2.1). For convenient functional
testing and debugging purposes, the implementation was adapted
to allow the polychronization model to be down-scaled to a 20
neuron test network. This size was selected to be small enough
for convenient manual debugging, whilst large enough to exhibit
spiking behavior and have a non-trivial connectivity matrix.

Performing the refactoring task not only helped understand
the Cmodel implementation and algorithms, which is essential, it
also laid the foundation for the implementation of the SpiNNaker
model.
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FIGURE 6 | Model verification and substantiation iterations and activities conducted. The activities carried out as part of the model verification and substantiation

process, which we briefly outlined in Figure 5, can be further broken down to a more detailed view. The diagram represents this iterative process in a linear fashion,

where three iterations have been conducted. The model substantiation activity performed at the end of each iteration is marked with I, II, and III, which corresponds to

the results summary shown in Figure 7.
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FIGURE 7 | Model substantiation assessment based on spike data analysis. Histograms (70 bins each) of the three characteristic measures computed from 60 s of

network activity after the fifth hour of simulation: Left, firing rates (FR); middle, local coefficients of variation (LV); right, pairwise correlation coefficients (CC). For FR and

LV, each neuron enters the histogram, for CC each neuron pair. Results are shown for three iterations (rows) of the substantiation process of the C model (dark colors)

and SpiNNaker model (light colors), cf. Figure 6. On the far right, the difference between the respective distributions is quantified by the effect size: the graph shows

the mean and standard deviation effect size calculated for each of the five network states (after 1, 2, 3, 4, and 5 h of simulation).

3.4.1.2. SpiNNaker model
For the initial iteration of the SpiNNaker model, we used
the Explicit Solver Reduction (ESR) implementation of the
Izhikevich model provided by the SpiNNaker software stack
(Hopkins and Furber, 2015). For network creation, simulation
control and execution as well as for functional testing, we
developed PyNN scripts that allowed us to conveniently
perform the simulation, the verification tasks, and substantiation
activities. Additional development work was required to
circumvent a few restrictions of the SpiNNaker system and its
software stack, namely:

The SpiNNaker framework does not allow external current

injection: During each 1 ms simulation time-step, an external
current of Iext = 20 pA is injected into a randomly selected
neuron. This current injection is emulated by two spike source
arrays forming one-to-one connections to the two populations
of the polychronization network. Those connections use static
synapses, translating an external spike event into an injected
current.

The amount of data that needs to be held on the SpiNN-3

board during simulation may become too large for 60 s

simulation time: To limit the amount of data, we divided a
single simulation run into 60 cycles. At the end of each cycle, the
simulation is halted for data exchange, and then resumed.

We used three approaches to functionally test the PyNN
scripts and to verify the implementation of the neuron
model:

Manual low level debugging on the SpiNNaker system to

verify the correctness of state variables, program flow and

algorithms: The SpiNNaker system offers a low level command
line debugging tool called ybug and the SpiNNaker kernel
also allows log information to be sent to an internal i/o-
buffer. The buffer is read at simulation termination and
accessible with ybug. We used this basic debugging technique
to verify the internal states of the neuron model, the
correctness of injected current values as well as to verify the
correctness of the program flow of the algorithms that we
implemented.

Verification of the neuron dynamics using a PyNN test script

applying an external constant current to individual neurons

and recording the state variables: We recorded the dynamics of
individual neurons resulting from an injected constant current
and compared the data with the results obtained from a
stand-alone C console application that implements the same
algorithms.

Functional testing with a small (20 neuron) version

of the polychronization network: We used a down-scaled
version of the polychronization network (16 excitatory and
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4 inhibitory neurons) to verify the functional correctness
of the simulation setup. As the connectivity matrix was
derived from simulations of the C model, it further served
for testing the functionality added to support the activities
carried out during the substantiation process, e.g., the
export of the connectivity matrix created by simulation
runs of the C model and its import into the SpiNNaker
simulation.

3.4.1.3. Substantiation
We simulated the models to generate the data for the quantitative
comparisons of the statistical measures, as described in sections
3.2.1 and 3.2.2, respectively. The results are summarized in
the top row of Figure 7. This reveals a substantial mismatch,
most dominantly visible in the distribution of the firing
rates (FR) and the pairwise correlation coefficients (CC). This
mismatch, as quantified by the effect size, is consistently observed
for all five reference network states. Therefore, we conclude
that the models do not show an acceptable agreement and
the substantiation assessment failed at the end of Iteration
I. Although the effect size is a very simple measure which
only takes into account the means and standard deviations
of the distributions, it provides an intuitive quantification of
differences which is unbiased by the sample size. However,
since the effect size can not detect discrepancies in the
distribution shape, a visual inspection is essential and additional
comparison methods, such as hypothesis tests, may be needed.
In Figure 7 we only show the measures computed from 60 s
of network activity after the fifth hour. For a visual inspection
of the computed measures from the network states after 1,
2, 3, 4, and 5 h of simulation, see Figures S1–S5 in the
Supplementary Material.

3.4.2. Iteration II
The substantial discrepancies revealed by the model
substantiation assessment performed in Iteration I suggests
that there are numerical errors in one or both of the executable
models. In the second iteration, we therefore focus on calculation
verification. To this end, monitoring functionality was included
to record the minimal, maximal, and average values of the
model state variables. We find that the largest contributors
to error are the choice of solver for the neuronal dynamics,
the detection of spikes, and the fixed-point arithmetic on
SpiNNaker.

3.4.2.1. Numeric integration scheme and precise threshold

detection
When working with systems of ordinary differential equations
(ODEs), it is important to make sensible decisions regarding
the choice of a numeric integration scheme. To achieve accurate
approximations of their solutions one must take into account
not only the form of the equation but also the magnitude of
the variables occurring in them (Dahmen and Reusken, 2005).
Depending on these parameters, some ordinary differential
equations can become stiff, i.e., requiring excessively small time
steps for an explicit numerical iteration scheme (i.e., one that
only uses the values of variables at preceding time-steps) to

FIGURE 8 | Above threshold evolution of the state variable v(t). The

approximation in the evolution of v(t) in the Equation (1) when using the

semi-implicit symplectic Forward Euler method with a fixed-step size of

h/2 = 0.5 ms (the red dotted line), where h refers to the 1 ms simulation

time-step, causes v(t) values to be well above the threshold and, thus,

producing a propagating error over time. This is expressed in delayed spike

times. The black solid line shows the evolution of v(t) around threshold for a

regular-spiking type Izhikevich neuron stimulated with a constant current of

Iext = 5 pA. For integration, the same Forward Euler method was used but

with an integration step size of h/100 = 0.01 ms. The steep slope at threshold

requires a precise threshold detection to prevent a numeric overflow.

achieve acceptable accuracy and avoid numeric instabilities. Such
equation systems require the use of an implicit scheme (i.e.,
one that finds a solution by solving an equation involving
both the current values of variables and their later values).
However, this method is computationally more expensive,
entailing unnecessarily long run-times when applied to non-
stiff systems (Strehmel and Weiner, 1995). The ODEs used
to model neuronal behavior are often non-stiff, so that an
explicit numerical iteration scheme is sufficient (Lambert,
1992).

The Izhikevich ODE system (Equations 1–3) is an example
of such a non-stiff model, see Blundell et al. (2018b). Thus, in
principle, the choice of an explicit method, namely the Forward
Euler method, albeit in a semi-implicit symplectic variant,
which is used in the C model, is correct. Nevertheless, the
numerical integration scheme must be applied correctly, i.e., the
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step size must be chosen according to the desired maximum
error. The (relatively large) selected step sizes of h = 0.5 ms for
the integration of the membrane potential (Equation 1), and
h = 1.0 ms for the recovery variable are not only questionable
because nomotivation is given for why two different step sizes are
chosen for the same system of equations, but more importantly
because no error estimate is implemented to guarantee that the
integration scheme does in fact give a reasonable approximation
of the solution of the ODE system. The algorithm of the
original C model implementation is shown in Listing 1. Note
the symplectic, or semi-implicit Forward Euler scheme, i.e.,
the update of u is based on an already updated value for
v. In an unorthodox approach, the variable v is integrated
in two 0.5 ms steps whilst u is integrated in one 1 ms
step.

EVERY MILLISECOND:
{

NEURON STATE UPDATE:
{
// for numerical stability
// 2 integration steps within 1 ms
v = v + 0.5 * (( 0.04 * v + 5.0 ) * v

+ 140.0 - u + I )
v = v + 0.5 * (( 0.04 * v + 5.0 ) * v

+ 140.0 - u + I )
u = u + a * ( b * v - u )

}

THRESHOLD DETECTION:
{
IF( v >= 30.0 )
{

v = c
u = u + d

}
}

}

Listing 1 | C model: algorithm of updating the neuronal dynamics (given as

pseudocode) as implemented in the original C model. The algorithm

implements a fixed-step size semi-implicit symplectic Forward Euler method.

The spike onset of a regular-spiking Izhikevich neuron appears
as a steep slope at threshold, and, due to the grid-constrained
threshold detection in the C model, leads to values of v(t)
which can be two orders of magnitude higher than the threshold
value θ = 30 mV (Equation 3). In the C model, we observed
values of v(t) ≤ 1700. Figure 8 graphically illustrates the error
caused by this approximation. The value of u(t) (Equation 2),
which describes the threshold dynamics, evolves continuously,
thus, verror will induce an error to the threshold dynamic
which propagates over time delaying all subsequent spike
events.

Moreover, for efficiency, SpiNNaker uses fixed-point
numerics. Numbers are held as 32-bit fixed-point values in a
s16.15 representation, limited in range. Large values of v(t)
can lead to a fixed-point overflow, as discussed in greater
detail below, which may then produce spike artifacts. The
likelihood of this is even further increased by the fact that
this value appears as a power of two in Equation (1). To
demonstrate this, we adapted the algorithm shown in Listing
1 and added an additional integration step (see Listing 2).
The neuronal activity, shown in Figure 9, exhibits spiking
artifacts in the form of bursts of spikes with high spike
rates.

EVERY MILLISECOND:
{
NEURON STATE UPDATE:
{

REPEAT 3 TIMES:
{

v = v + 0.333 * (( 0.04 * v + 5.0 ) * v
+ 140.0 - u + I )

u = u + 0.333 * a * ( b * v - u )
}

}

THRESHOLD DETECTION:
{

IF( v >= 30.0 )
{

v = c
u = u + d
deliverSpikeEvent()

}
}

}

Listing 2 | SpiNNaker model: an algorithm of updating the neuronal dynamics

(given as pseudo code). The algorithm is similar to the implementation shown

in Listing 1 but uses three fixed size integration steps. The additional step

increases the likelihood that large values of v(t) are squared. This

implementation may cause a numeric overflow.

The SpiNNaker software stack (Rowley et al., 2017b) provides
an Izhikevich neuron model implementation optimized for
efficiency for fixed-point processors, such as ARM. The
implementation follows a new approach called Explicit Solver
Reduction (ESR), described in Hopkins and Furber (2015): “for
merging an explicit ODE solver and autonomous ODE into one
algebraic formula, with benefits for both accuracy and speed.”
The SpiNNaker system is designed for simulations in biological
real-time. The real-time capability is achieved at an integration
step size of h = 1 ms which then corresponds to the simulation
time-step, i.e., the same integration step size as the C model.
At higher resolution, i.e., smaller integration time-steps, the
simulation time increases accordingly. The SpiNNaker ESR
implementation, at the same integration step size, does not
exhibit such artifacts, but fails in in adequately reproducing
the network states, as can be seen in the model substantiation
assessment for Iteration I (top row of Figure 7).

In general, higher accuracy can be obtained by using smaller
step sizes. However, for this model, using smaller steps to
integrate whilst restricting spike detection and reset to a 1 ms
grid results in a steep slope in the evolution of the membrane
potential above threshold which rapidly reaches values that can
not be represented with double precision (compare red dotted
curve and black solid curve in Figure 8). We therefore propose
a solution that combines a simple fixed-step size symplectic
Forward Euler ODE solver and an exact off-grid threshold
detection, while a spike event is still forced to a grid point.
To be more specific, within each 1 ms simulation time-step h,
the equations evolve in steps of h/16. The number of internal
integration steps was chosen for two reasons. First, as a power
of two, it can be represented in s16.15 without numerical error.
Second, it represents a good compromise between the increased
computational cost of smaller steps, and the increased overshoot
in the membrane potential for larger steps. The algorithm is
given as pseudo code in Listing 3. Please note the multiplication
with 0.0625, avoiding a costly division. Spikes can be detected
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FIGURE 9 | Spike artifacts caused by fixed-point overflow. Large values of v(t) can cause an overflow of the fixed-point data type, which may result in short

spike-trains with higher rates (marked by blue boxes). Simulations on SpiNNaker using fixed-step size symplectic Forward Euler with an integration step size of

h/3 = 0.333 ms and without precise threshold detection. (h refers to the simulation time-step of 1 ms).

(and the dynamics reset) after every internal step, however,
as with the C model, spikes are emitted on the simulation
grid with a resolution of 1 ms. Multiple spike events within
one simulation time-step are thus potentially possible, but are
merged into a single event. However, this seems to be a
very rare event. Pauli et al. (2018) demonstrated that there
was only a very slight change in average firing rate for this
network model between a simulation locked to a 1 ms grid,
as used here, and one carried out at a higher resolution of
0.1 ms. We thus consider this effect to be negligible in the
following.

EVERY MILLISECOND:
{

NEURON STATE UPDATE:
{
REPEAT 16 TIMES:
{

v = v + 0.0625 * (( 0.04 * v + 5.0 ) * v
+ 140.0 - u + I )

u = u + 0.0625 * a * ( b * v - u )

IF( v >= 30.0 )
{

v = c
u = u + d
SET spikeEventHasOccurred

}
}

}

THRESHOLD DETECTION:
{
IF( spikeEventHasOccurred )
{

deliverSpikeEvent()
}

}
}

Listing 3 | SpiNNaker model: an improved algorithm of updating the neuronal

dynamics (given as pseudo code) that uses a fixed-step size symplectic

Forward Euler method and precise threshold detection.

To assess the accuracy of our proposed solver and that of
the implementation provided by the SpiNNaker framework, we
performed single neuron simulations and compared the resultant
membrane potentials to that produced by a Runge-Kutta-
Fehlberg(4, 5) (rkf45) solver implementation from the GNU

Scientific Library (GSL)11. The explicit Runge-Kutta-Fehlberg(4,
5)method is a good general-purpose integrator, and, compared to
a simple Forward Euler, of a higher order. To serve as a reliable
reference, the rkf45 algorithm was parametrized to integrate with
an absolute error of 10−6. The results are shown in Figure 10.
Note that not only do the spike times for both the fixed-step
size Euler and the ESR solvers lag behind the rkf45 solver, but
due to the accumulation of verror, the lag becomes larger during
the course of the simulation, here reaching around 20 ms in a
simulation of 500 ms duration containing five spikes. As the
errors occur at spike times, higher spike rates lead to larger
deviations. Thus, the course of the membrane potential of the
fast-spiking type neuron is less accurate than for the regular-
spiking type neuron. This applies also to an increasing injected
current I, as this also leads to higher spike rates (data not shown).
As the firing rate increases, the ESR lags more, such that fewer
spikes are generated in the given time window. Our results show
that even though the fixed-step size Euler scheme is simpler than
ESR, it is a more accurate match to the single neuron dynamics.

3.4.2.2. Fixed-point numeric precision
Hardware floating point units are expensive in chip area, and
thus lower the power efficiency of the system. Consequently,
SpiNNaker stores numbers, i.e., membrane voltages and other
neuron parameters, as 32-bit signed fixed-point values (Furber
et al., 2013). Since the meaning of an n-bit binary word depends
entirely on its interpretation, we can divide an n-bit word into an
integer part i and a fractional part f by defining a binary point
position. Calculations are then performed as if the numbers are
simple two’s complement integers. SpiNNaker uses a so called
s16.15 representation, that is, a 32-bit signed fixed-point format
with i = 16, f = 15 and a sign bit. The value range is small in
comparison to a single or double precision data type. For the si.f
data types the value range is defined by:

−2i ≤ x ≤ +2i − 2−f . (5)

11https://www.gnu.org/software/gsl/
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A B

FIGURE 10 | Spike timing: comparison of different ODE solver implementations. Membrane potential v(t) recorded for a regular-spiking (A) and fast-spiking (B)

Izhikevich neuron, stimulated with a constant current of Iext = 5 pA. The dynamics are solved by the original SpiNNaker ESR ODE solver implementation (blue dashed

curves); a fixed-step size symplectic Forward Euler approach with precise threshold detection (h/16 = 0.0625 ms) (green solid curves); and, for comparison, a

reference implementation of the GSL rkf45 ODE solver with an absolute integration error of 10−6 (black dotted curves). Both the SpiNNaker ESR and the fixed-step

size Forward Euler implementations show considerable lags in the spike timing compared to the rkf45 reference implementation. While for the regular-spiking neuron

(A) the SpiNNaker implementations have much the same accuracy, the fixed-step size Forward Euler approach with precise spike timing shows a substantial

improvement over the ESR implementation for the fast-spiking neuron (B).

The SpiNNaker s16.15 data type therefore ranges from
−216 = −65536 to 216 − 2−15 = 65535.999969482.

This data type does not saturate on SpiNNaker (Hopkins and
Furber, 2015). This means that in case of a fixed-point overflow,
the value wraps around producing a negative number. In
neural network simulations this might be seen as spike artifacts,
as demonstrated in Figure 9. Another aspect of fixed-point
arithmetic and an additional source of numerical inaccuracy
is that not every number can be accurately represented. For
example: although small, the error in the s16.15 representation
of the constant value 0.04 in Equation (1) induces a noticeable
delay in the spike timing.
To represent a number in si.f , its value is shifted f bits to the left,
i.e., multiplied by 2f . For the constant value 0.04 in Equation (1)
this yields:

0.04 · 215 = 1310.72(s16.15)

The compiler stores the value as a 32-bit word while truncating
the fraction:

0x0000051E

If the value is converted back, this leads to:

1310(s16.15) · 2
−15
= 0.03997802

This loss in precision is significant. At the level of the dynamics
of individual neurons, this difference is expressed in terms of
delayed spike times. The following example may illustrate this:
for the sake of simplicity we assume a membrane potential of

v(t0) = −75 mV while u(t0) = 0 and I(t0) = 0. The expected
value for v(t1) in the Equation (1) is:

0.04 · 75 · 75+ 5 · (−75)+ 140 = −10.0000000

The same calculation in s16.15 leads to:

0.03997802 · 75 · 75+ 5 · (−75)+ 140 = −10.1236357

This slightly more negative value of v(t) causes the threshold
crossing to occur later and affects the dynamics on the network
level.

The effect can be mitigated if critical calculations are
performed with higher precision numbers, whereby the order of
operations also plays a role. If, for example, the constant value
0.04 in Equation (1) is represented in s8.23, the numerical error
can be reduced.

0.04 · 223 = 335544.32(s8.23)

If the value which is truncated by the compiler is converted back,
we then get:

335544(s8.23) · 2
−23
= 0.039999962

If now the same calculation as in the beginning is performed, the
result is significantly more precise.

0.039999962 · 75 · 75+ 5 · (−75)+ 140 = −10.00021375
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The disadvantage, however, is the limited value range of the s8.23
representation which is:

−28 = −256 to 28 − 2−23 = 255.999999881

The simple fixed-step size symplectic Forward Euler method
together with a precise threshold detection presented above
ensures that values stay within limits. Furthermore, we point
out that a s8.23 data type is not available on SpiNNaker, i.e.,
it is not supported by the ARM C compiler. To let the value
335544.32(s8.23) appear as a s16.15 constant we can write:

335544.32(s16.15) = 10.24 · 215

In order to return to the original value, a right-shift operation of
8 bits is then required.

10.24 · 2−8 = 0.04

In this context, the order in which the operations are carried out
is also very important. For example, multiplying 10.24 with the
power of two of the membrane potential may cause an overflow
of the s16.15 data type. Combining all this leads to the following
sequence of operations for the Equation (1).

v̇ = ((10.24 · v) · 0.00390625)) · v+ 5 · v+ 140− u+ I (6)

In order to prevent the compiler from optimizing the code and
perhaps arranging the operations in an inappropriate order, the
critical calculations in the Equation (6) are placed in separate
lines. This is shown as pseudo code in Listing 4. Note that
suppressing optimization in this way works for the ARM C
compiler, but can not be generalized. We verified this through
an analysis of the generated assembler source code.

EVERY MILLISECOND:
{

NEURON STATE UPDATE:
{
REPEAT 16 TIMES:
{

A = 10.24 * v
A = A * 0.00390625
A = A * v
B = 5.0 * v + 140.0 - u + I

v = v + 0.0625 * ( A + B )
u = u + 0.0625 * a * ( b * v - u )

IF( v >= 30.0 )
{

v = c
u = u + d
SET spikeEventHasOccurred

}
}

}

THRESHOLD DETECTION:
{
IF( spikeEventHasOccurred )
{

deliverSpikeEvent()
}

}
}

Listing 4 | SpiNNaker model: the same algorithm (given as pseudo code) as

shown in Listing 3, but adds fixed-point conversion to the constant 0.04.

The above also applies to the Izhikevich neuron model
parameters a and b which add an error to u(t). Further, the
example ignored that the state variables v(t) and u(t) are
themselves fixed-point values that add numerical inaccuracy.

In the course of the implementation of the SpiNNaker
Izhikevich neuron model, and the adaptations of the model
during the verification and substantiation process, we added
fixed-point data type conversion to all constant values involved
in critical calculations, that is the constant value 0.04 in the
Equation (1) and the neuron model parameters a and b.

To investigate the consequences of data type conversion
for critical parameters on the accuracy of the solution
of the dynamics, we simulated regular-spiking and fast-
spiking Izhikevich neurons with and without fixed-point
data type conversion, and compared the development of the
membrane voltages to a Runge-Kutta-Fehlberg(4, 5) (rkf45)
solver implementation of the GNU Scientific Library (GSL), thus,
using the same verification method as before when choosing
the integration scheme. The results are shown in Figure 11.
For both neuron parameterizations, we achieved a substantial
improvement in the spike timing. Compared to results for
the regular-spiking neuron, in which the solver employing
data type conversion is very close to the rkf45-reference, our
implementation still lags behind the rkf45-reference for the fast-
spiking neuron. This can be explained by the overshoot in v(t)
at threshold crossing, that, even if it is small, still exists, and
propagates over time—and the more spikes emitted, the larger
the error becomes.

3.4.2.3. Substantiation
As the C model was adapted during Iteration II, we can no
longer speak of a replication. Therefore, before performing the
model substantiation assessment, we needed to check whether
the results of the modified model are compatible with the
original, i.e., whether or not result reproducibility is preserved.
We evaluated the development of polychronous groups in the
modified C model using the analysis provided in Izhikevich
(2006). We found that the number of polychronous groups was
reduced by about 34%. Thus the network still shows the behavior
reported in the original manuscript (Izhikevich, 2006), albeit in a
weakened form. As it was demonstrated in Pauli et al. (2018) that
the number of groups developed by the C model varies strongly
with implementation details, including the solver algorithm of
the neuron model, we consider this result to be within our
acceptance criteria.

We then performed the model substantiation assessment
as described in section 3.2 for the C and SpiNNaker models
incorporating the refined neuron model implementations
described above. Note that this included re-generating the
reference data, due to the changes in the neuron model
implementation.

The result of the network activity data analysis and its
comparison is shown in the middle row of Figure 7. Our new
ODE solver, implemented in both models, leads to a good match
in the firing rates (FR) and the pairwise correlation coefficients
(CC). We note, though, that the distributions are shifted from
those expressed by the C implementation in Iteration I. The
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A B

FIGURE 11 | Spike timing: with and without fixed-point data type conversion. The graphs show the development of the membrane voltages v(t) with (green solid line)

and without (red dashed line) fixed-point data type conversion for a regular-spiking type (A) and a fast-spiking type (B) Izhikevich neuron, that is stimulated with a

constant current of Iext = 5pA. For the ODE solver, the fixed-step size symplectic Forward Euler implementation with precise threshold detection was used

(h/16 = 0.0625 ms). This is shown in comparison to a reference implementation of the GSL rkf45 ODE solver with an absolute integration error of 10−6 (black dotted

line). For both neuron types, a substantial improvement in the spike timing can be seen.

shift of cross-correlation to lower values may well account for
the smaller number of polychronous groups developed. Both the
firing rates and the cross correlations also show small effect sizes
after this iteration. In case of the CC distributions, the effect
size has to be interpreted with care, as it assumes Gaussian-
like distributions which is clearly violated by the bimodality of
the CC distributions. Nevertheless, in combination with visual
inspection and additional comparison measures, its application
here provides a useful discrepancy quantification.

A discrepancy can still be seen between the distributions
of the coefficients of variation (LV). The distribution for the
SpiNNaker model is shifted toward lower values, indicating a
higher degree of regularity than that of the C model. This is
confirmed by the consistently high effect size obtained for the
five reference network states. Therefore, we conclude that there
is still a disagreement in the executable models, and that model
substantiation assessment has not been achieved at the end of
Iteration II.

3.4.3. Iteration III
The slight discrepancy in regularity observed in Iteration II
allowed us to identify systematic differences in spike timing
between the two models, hinting at an error in the numerical
integration of the single neuron dynamics. Indeed, the visual
comparison of the dynamics of individual neurons on SpiNNaker
with a stand-alone C application that implements an identical
fixed-step size symplectic Forward Euler ODE solver, revealed
a small discrepancy in the sub-threshold dynamics, leading to
a fixed delay in the spike timing. We identified an issue in the
precise threshold detection algorithm as to be the cause.

3.4.3.1. Substantiation
The result that we achieved after resolving the issue and
repeating the SpiNNaker simulations is shown in the bottom
row of Figure 7. We observe a close match of all three
distributions, consistently across the five reference network
states. The comparison is not perfect, with the distribution of
firing rates showing the largest discrepancy with only a subtle
shift toward higher firing rates for the SpiNNaker simulation.
The small discrepancies between the two implementations are
quantified by the effect size, and demonstrate that we have
achieved a considerable reduction of the mismatch as a result of
the model verification and substantiation process. All effect sizes
are classified in the range of small to medium according to Cohen
(1988). While further iterations of the model implementation
in the verification and substantiation process (see section 4
for suggestions) may further improve the effect size scores, for
our purposes, we find the remaining mismatch in the range of
acceptable agreement. We therefore conclude that the executable
models are in close agreement at the end of Iteration III.

4. DISCUSSION

In this study, we introduced the concept of model verification
and substantiation. In conjunction with the work presented
in Gutzen et al. (2018), we demonstrated the application of
a rigorous workflow assessing the level of agreement between
the C implementation of the spiking network model proposed
by Izhikevich (2006) and a reproduction of its underlying
mathematical model on the SpiNNaker neuromorphic system.
The choice of this network was motivated by its unorthodox
implementation choices, examined in greater detail in Pauli et al.
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(2018). These issues make it a particularly illustrative example
for a reproduction on the SpiNNaker neuromorphic system and
to demonstrate various aspects of source code and calculation
verification.

After three iterations of the proposed workflow we concluded,
on the basis of the substantiation assessment, that the executable
models are in acceptable agreement. This conclusion is
predicated on the domain of application and the expected level
of agreement that we defined for three characteristic measures of
the network activity. We emphasize that these definitions are set
by the researcher: further iterations would be necessary, if, for
example, we set a level of agreement requiring a spike-by-spike
reproduction of the network activity data, as applied by Pauli et al.
(2018).

We speculate that the remaining mismatch in the statistical
measures at the end of Iteration III can be explained by the
reduced precision in the representation of the synaptic weights
on the SpiNNaker system. This source of error is introduced by
the conversion of the double precision weight matrix exported
from the Cmodel and converted into a fixed-point representation
when imported into the simulation on the SpiNNaker system.
The absolute values of the synaptic weights after conversion are
always smaller than its double origin, thus, negative weights
increase, contributing to larger firing rates on SpiNNaker (see
Iteration III in Figure 7). Another potential source of error,
in terms of calculation verification, is related to the grid
based simulation paradigm, i.e., the simulation time-step, with
which spike events are delivered. Both the original C model
implementation and the SpiNNaker system use a simulation
time-step of 1 ms, which is larger than commonly used in spiking
neural network simulations. Since both models are affected, the
substantiation assessment can not give us further insight.

Although some of the verification tasks we applied, such
as functional testing, are closely tied to model implementation
details, the methodology presented in this work is transferable
to similar modeling tasks, and could be further automated.
The quantitative comparison of the statistical measures carried
out in the substantiation was performed using the modular
framework NetworkUnit12 (NetworkUnit, RRID:SCR_016543),
an open source Python module, presented in the companion
study to this work (Gutzen et al., 2018). NetworkUnit facilitates
the formalized application of standardized statistical test metrics
that enable the quantitative validation of network models on the
level of the population dynamics.

The model substantiation methodology we propose has
a number of advantages. Firstly, from the point of view
of computational neuroscience, simulation results should be
independent of the hardware, at least on the level of statistical
equivalence. In practice, implementations may be sensitive to
issues such as 32/64-bit architecture or compiler versions. Thus,
the underlying hardware used to simulate a model should be
considered part of the model implementation. Applying our
proposed model substantiation methodology allows a researcher
an opportunity to discover and correct such weaknesses in
the implementation. Secondly, in the case of new types of

12https://github.com/INM-6/NetworkUnit

hardware, such as neuromorphic systems, the methodology used
here can help to build confidence and uncover shortcomings.
In the particular example investigated here, we were able to
demonstrate that the numerical precision is a critical issue
for the model’s accuracy. Integrating the model dynamics at
1ms resolution using 32-bit fixed-point arithmetic available on
SpiNNaker (Furber et al., 2013) does not adequately reproduce
the dynamics of the corresponding C model with floating
point arithmetic. We propose an alternative integration strategy
that does adequately reproduce the dynamics, but the more
general point is that this study demonstrates how the use of
a rigorous model substantiation methodology can contribute
to fundamental open questions in neuromorphic computing,
such as the required level of precision in the representation
of variables. Finally, in neuroscience, models often function
as discovery tools and hypothesis generators in cases where
experimental data, against which amodel could be validated, does
not exist. Performing a substantiation assessment is an option
to accumulate circumstantial evidence for a model’s plausibility
and self-consistency, although it cannot reveal whether a model
reflects reality.

Beyond our introduction of the term substantiation, we have
adopted the ACM (Association for Computing Machinery, 2016)
terminology for reproducibility and replicability, as it seemsmost
appropriate for our purposes. Alternative definitions exist, and
terminology for research reproducibility is an ongoing theme of
a controversial debate. The application of methodologies from
model verification and validation (Thacker et al., 2004) to the
field of neural network modeling and simulation can be of great
value, but we have suggested some adaptations that, in our
view, fit the domain better. In particular, the termsmathematical
model and executable model, that we propose instead of using the
terms conceptual model and computerized model, are intended
to yield better separation of the entities they describe, so that,
for example, implementation details are not falsely understood
to belong to the mathematical model. This is important, as the
classic “one model—one code” relationship does not typically
apply to spiking neuron network models. Instead, they are
implemented using general purpose neural simulation tools such
as NEURON (Hines and Carnevale, 1997), Brian (Goodman and
Brette, 2008), or NEST (Gewaltig and Diesmann, 2007), which
can run many different models. In addition, model simulation
codes may be partially generated by other tools (Blundell et al.,
2018a). This scenario abstracts the implementation details away
from the modeler, who can focus on analysis and modeling,
and has the further advantage that individual components
(such as neuron models) can be separately verified, and may
subsequently serve as reliable references. We hope that our
proposed terminology will help to pave the way to a more
formalized approach for model verification and validation in the
domain of neural network simulation.

In this study, we applied a number of standard methods
from software engineering. This discipline is concerned with the
application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software
(Bourque and Fairley, 2014). Such methods include, for example,
the application of clean code heuristics, test driven development,
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continuous integration and agile development methodologies,
with the common goal of building quality into software. The
formalized model verification and substantiation workflow that
we presented in this work should be seen in this context.

We note that software engineering methods, whilst critical
for developing high quality software, are underutilized in
computational science in general, and in computational
neuroscience in particular. For the network model investigated
here, it is important to emphasize that the awareness of software
engineering methodology was even less widespread at the
time of publication, and so the yardsticks for source code
quality applicable by today’s standards should be considered
in their temporal distance. Credit must in any case be given
for the unusual step of publishing the source code, allowing
scientific transparency and making studies such as the current
one, and that of Pauli et al. (2018), possible. Following
formalized processes, such as the one described here, further
aids transparency and comprehensibility, and reduces the risk
of incorrect conclusions. Moreover, simulation tools as well as
neuromorphic hardware platforms can benefit from formalized
and automated verification and validation procedures, such
that their reliability can be inherited by user-developed models
that are simulated using those tools and frameworks. Most
importantly, such standardized procedures are designed not to
place an additional burden on researchers, but rather to open up
simple avenues for computational neuroscientists to increase the
rigor and reproducibility of their models.

In conclusion, we argue that the methods of software
engineering, including the model verification and substantiation
workflow presented here, as well as verification and validation
methodologies in general, need to become a mainstream
aspect of computational neuroscience. Simulation and analysis
tools, frameworks and collaboration platforms are part of
the research infrastructure on which scientists base their
work, and thus should meet high software development
standards. The consideration of the application of software
engineering methodologies to scientific software development
should start at the funding level, such that an assessment of the
software engineering strategy is part of the evaluation of grant
applications. Likewise, journals should become more selective
with their acceptance of studies, and reject those for which
no demonstration has been made of an attempt to verify the
calculations. The use of standard tools goes a significant way

to fulfilling this criterion, to the extent that the standard tools
themselves are developed with a rigorous testing and verification
methodology.
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