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Abstract. In the present study, some perturbation methods are applied to Duffing equations having a displacement 
time-delayed variable to study the stability of such systems. Two approaches are considered to analyze Duffing 
oscillator having a strong delayed variable. The homotopy perturbation method is applied through the frequency 
analysis and nonlinear frequency is formulated as a function of all the problem’s parameters. Based on the multiple 
scales homotopy perturbation method, a uniform second-order periodic solution having a damping part is 
formulated. Comparing these two approaches reveals the accuracy of using the second approach and further allows 
studying the stability behavior. Numerical simulations are carried out to validate the analytical finding. 

Keywords: Homotopy perturbation method, Multiple scales method, Frequency analysis, Periodic nonlinear solution, Stability 
analysis, Displacement delay Duffing oscillator. 

1. Introduction 

   This paper concerns with the effect of a displacement time-delayed Duffing type oscillator. The purpose is to find nontrivial 
solutions and investigate the stability analysis. The corresponding system consists of a strong nonlinear time-delayed Duffing 
oscillator which is governed by the following second-order nonlinear differential equation: 

   
2

2 3
2

, 0 1; (0) 1,
d y dy

y Qy y t y y
dtdt

            (1) 

where , , ,Q   , and   are real physical quantities describing the damping, coefficient of delay, coefficient of nonlinearity, 

time delay, and the natural frequency, respectively. The Duffing equation is used to model the nonlinear dynamics of special 
types of electrical and mechanical systems. This differential equation, named after the studies of Duffing in 1918 [1], has a 
cubic nonlinearity and describes an oscillator. It has drawn extensive attention due to the richness of its chaotic behavior with a 
variety of interesting bifurcations. Some of its applications are in electronics, mechanics, electromechanics, and biology. On 
the other hand, the brain is full of oscillators at micro and macro levels [2]. In addition, it has many applications in neurology, 
ecology, secure communications, cryptography, and chaotic synchronization. 
   Equation (1) may serve as the simplest model for describing the dynamic of various controlled physical and engineering 
systems [3–5]. Other works have been devoted to study the dynamic of a Duffing oscillator under a delayed feedback control 
[6]. In addition, Eq. (1) has been considered in a study [7] as a simple model for a vibration problem in turning machine for 
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modelling the nonlinear generative effect in metal cutting [3] or for exploring the control of a flexible beam in a simple mode 
approach [8]. 
   Nonlinear oscillation problems are important issues in engineering, physical science, applied mathematics, mechanical 
structures, nonlinear circuits, chemical oscillation, and many real world applications. Nonlinear vibrations of oscillation 
systems are modeled by nonlinear differential equations. In most of these cases, it is often more difficult to get exact solution 
of these nonlinear problems. To solve this problem, many researchers developed analytical approximate solutions using various 
analytical techniques. One of the most important methods of solving nonlinear differential equations is the homotopy 
perturbation method [9–19]. The homotopy perturbation is a technique that allows obtaining solutions without the restriction of 
small parameter. The homotopy perturbation method is a relatively new method [20-26] which is still evolving similar other 
methods and has theoretical and application limitations. The method was first introduced by He in late 1990s [9, 10]. The 
initial method has been developing very fast and it’s the main progress was the homotopy perturbation method with two 
expanding parameters [14] and the homotopy perturbation method with an auxiliary term [15]. Homotopy perturbation method 
with two expanding parameters was studied by He [15]. The parameterized homotopy perturbation method was addressed by 
Adamu and Ogenyi [24] as a modification of the homotopy perturbation method. El-Dib [25 & 26] applied the modulate 
method to the homotopy perturbation which allows studying the stability behavior of strongly nonlinear oscillators. In a study 
[26], El-Dib suggests a modified version of the homotopy perturbation method by adopting the multiple scales method. This 
modification works especially well for nonlinear oscillators. 
   Delay differential equations are considered as an important tool for the modeling of dynamical phenomena in various fields 
of science including neuroscience, optoelectronics, and biological or mechanical systems. They allow for the description of 
potentially high dimensional dynamical effects caused by a delayed feedback or control, aging, and finite transmission speed. 
From a mathematical point of view, they represent an important class of dynamical systems and can be studied by advanced 
mathematical methods, including bifurcation theory, singular perturbations, or semi-group theory. Delayed differential 
equations are used to describe many physical phenomena of interest in biology, medicine, chemistry, physics, engineering, and 
economics. Kruthika et al. [27] analyzed the local stability of a gene-regulatory network and immunotherapy of cancer. They 
are modeled as nonlinear time-delayed systems. 
   In recent years, much interest has been devoted to the study of the dynamics of circuits described by nonlinear equations 
with delay, which exhibit chaotic attractors; interesting applications in secure communications [28] have been found. The study 
of the dynamic behavior of such circuits is very difficult. 
   Recently, many authors have studied the existence of periodic solutions of the Duffing as given in Eq. (1) by using various 
methods and techniques. The effect of a high-frequency excitation on nontrivial solutions and biostability in a delayed Duffing 
oscillator with a delayed displacement feedback was investigated by M. Hamdi and M. Belhaq [29]. Rafa Rusinek et al. [30] 
presented the analytical and numerical investigation of externally forced Duffing oscillator with delayed displacement 
feedback. The constrained optimization harmonic balance method was applied by Liao and Sun [31].  Their study dealt with 
the time-delayed Duffing oscillator and the analytical formulation of the nonlinear equality constraints was derived. Therefore, 
the gradients of the nonlinear equality were obtained. On the other hand, the improved constrained optimization harmonic 
balance method was presented by Liao [32]. He solved the Duffing oscillator with time delayed term. S. Sah and R. Rand [33] 
studied the dynamics of nonlinear systems that were subjected to delayed self-feedback. They considered two approaches to 
analyze the Hop bifurcations in such slow flows. In the first approach, they replaced the delayed variables in the slow flow 
with non-delayed variables. In the second approach, they kept the delayed variables in the slow flow. The goal of the present 
study is to investigate the role of the displacement time-delay parameter on the stability of a strong Duffing equation.     
   Over the past two decades, more effort has been invested in the analysis and synthesis of time-delayed uncertain systems. 
Various results have been obtained such as providing finite-dimensional sufficient conditions of stability. Away from the 
classical linear perturbation technique which depends on small parameter, El-Dib [34] applied the multiple scale method to 
study the stability behavior for three coupled Mathieu equations having displacement delayed variables.  
   Since the introduction of the first delayed models, many publications have appeared to summarize theorems and Homotopy 
method into a solution that deals with the properties of delayed systems [35–38]. Alomari and coworkers [37] developed an 
algorithm to obtain approximate analytical solutions of the delayed differential equations by using the homotopy analysis and 
the modified homotopy analysis methods. They used their method to obtain an approximate solution for various linear and 
nonlinear differential equations, while their numerical predictions agreed with the numerical integration solutions.  Olvera et 
al. [38] applied the enhanced multistage homotopy perturbation method to solve delayed differential equations with constant 
and variable coefficients. This method was based on a sequence of subintervals that provided approximate solutions. This 
method cannot be applied to study the properties of stability.  
   The stability behavior of a Duffing equation having a displacement time-delayed variable is the aim of the present study. 
The perturbation methods for such systems give rise to flows which characteristically contains delayed variable. Two 
approaches are considered to analyze such strongly time-delayed Duffing oscillators. 

2. Basic Idea of the Homotopy Perturbation Method  

   In the homotopy perturbation method [9-15], a general nonlinear equation is considered as follows: 

( ) ( ) ( ),L y N y f t   (2) 

with initial condition: (0)y A  and (0) ,y B  where L  is an auxiliary linear operator, N is a nonlinear operator, and 
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( )f t  is the inhomogeneous part. The concept of homotopy is constructed in the following one-parameter family of equations: 

      0( , ) 1 ( ) ( ) ( ) ( ) ( ) 0, 0,1H y L y L u L y N y f t            (3) 

   0 0( , ) ( ) ( ) ( ) ( ) ( ) 0, 0,1H y L y L u L u N y f t          (4) 

where   is the embedding parameter called a bookkeeping parameter and 0u  is the initial guess. The embedding parameter 

is monotonically increases from zero to unity. It is obvious that when 0  , Eq. (2) becomes a linear differential equation, 

( ) 0,L y   for which an exact solution can be calculated. As 1,   it becomes the original nonlinear one. Therefore, the 

changing process of   from zero to unity is just that of Eq. (2) to Eq. (1). According to the standard homotopy perturbation 

method [9–15], the solution may be expanded in a power series of  as follows: 

2 3
0 1 2 3( , ) ( ) ( ) ( ) ( ) ... .y t y t y t y t y t         (5) 

Often, one iteration method cannot be done due to the complicated nonlinear equation. Therefore, an additional iteration 
method is needed. In such cases, the perturbed natural frequency   might be useful. Using the parameter   as an 

expanding parameter the following relation is obtained: 

 2 2 2
1 2 ...          (6) 

where   is known as a linear frequency and j  are unknowns determined from the solvability conditions that are arising 

by removing the secularity. This secularity is produced, in each order of perturbation, due to the inhomogeneity in equations 
describing the various perturbation orders.  
The complete solution of the nonlinear problem is obtained as 1,   therefore, the following relation is obtained: 

0 1 2 3
1

( ) lim ( , ) ( ) ( ) ( ) ( ) ...y t y t y t y t y t y t





       (7) 

Moreover, the frequency   is obtained as 1   at the final form. It is known as the approximate nonlinear frequency 

N : 

 2 2 2
1 2

1
lim ...N 

    


       (8) 

To study the stability behavior, El-Dib’s modification [26] for the homotopy perturbation method is needed to be applied. In 
this modification, the function ( )y t , for 0  , is replaced by 0 1 2( , , ,... )nY T T T T  with , 0,1,2,3,...n

nT t n   based on the 

previous studies [39, 40], the first and second derivatives might be replaced by the following expansions: 

2

0 1 2

...
d

dt T T T
   

  
  

 (9) 

2 2 2 2 2
2

2 2 2
0 1 0 20 1

2 2 ... .
d

T T T Tdt T T
 

     
            

 (10) 

The function ( , )y t   may be expanded as 

2
0 0 1 2 1 0 1 2 2 0 1 2( , ) ( , , ,..) ( , , ,..) ( , , ,..) ...y t Y T T T Y T T T Y T T T       (11) 

The above-mentioned relation represents one expansion and two perturbations; the first is the independent variable t  and the 

other is the dependent variable  y t  [39, 40]. One of the most important steps in the application of standard homotopy 

perturbation method is to construct a suitable homotopy equation, which can approximately describe the solution properties 
when homotopy parameter is zero. Therefore, the multiple-scales homotopy statement can be constructed with zero initial 
guess as follows: 

      0 1 2 0 1 2 0( , ) ( , , ,..; ) ( , , ,..; ) ( ) 0, 0,1 .H y L Y T T T N Y T T T f T          (12) 

The complete solution for the nonlinear problem is obtained as 1,   therefore, the following relation is obtained: 

0 1 2 0 1 2 3
1

( ) lim ( , , ,..; ) ( ) ( ) ( ) ( ) ...y t Y T T T y t y t y t y t





       (13) 

Frequency Response Analysis Using Homotopy Perturbation Method of Eq. (1). This section is concerned with the first 
technique which is known as the frequency responses analysis. In this method, an expansion of the dependent variable ( )y t  
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is taken into consideration. Moreover, the nonlinear frequency is perturbed around the linear frequency 2  [41, 42, & 43]. 
The application of the secularity conditions leads to determination of the unknown Eigen frequencies. Therefore, the uniform 
solutions should be obtained. The complete solution is formulated by setting the Homotopy parameter   to be a unity. This 

procedure is done as follows: 
Defining the two parts ( )L y  and ( )N y  as 

2 3( ) , ( ) ( ).
dy

L y y y N y Qy y t
dt

          (14) 

the homotopy can be built with zero initial guess as 

2 3( , ) ( ) 0; [0,1]
dy

H y y y Qy y t
dt

               
 

  (15) 

Expanding both the function ( , )y t   and the natural frequency 2  as defined by expansions (4) and (5) in addition to 

substituting (4) and (5) into (3) and setting them to zero like powers of  , the following relations are obtained: 

0 2
0 0 0 0: 0; (0) 1, (0) 1.y y y y        (16) 

1 2 3
1 1 1 0 0 0 0 1 1: ( ); (0) 0, (0) 0y y y y Qy y t y y               (17) 

2 2 2
2 2 1 1 2 0 1 0 1 1 2 2: 3 ( ); (0) 0, (0) 0y y y y y Qy y y t y y                 (18) 

Considering initial conditions, the solution of Eq. (16) yields 

0

1
( ) cos sin .y t t t   


 (19) 

Accordingly, 

   0

1
( ) cos sin .y t t t        


 (20) 

with the help of Eqs. (19) and (20), the first-order problem, Eq. (17), becomes 

2
1 1 1 2

2
1 2

2 2

3 1 1
1 cos sin cos

4

1 3 1
1 sin cos sin

4

3 1
1 cos3 3 sin 3 .

4 4

y y Q t

Q
t

Q Q
t t

     

     

                
                 
               



 (21) 

The investigation of Eq. (21) reveals that there is a source of secular terms. The secular terms are corresponding to  cos t  

and  sin t . The elimination of these secular terms yields 

 21 1
1 2 22

3 1 1
1 1 sin cos

4

Q                      
 (22) 

The solution of Eq. (21), away from secular terms, is given by 

     1 2 2 3 2

3 1
1 cos cos3 3 3sin sin 3

32 32

Q Q
y t t t t t

                      
 (23) 

Consequently, the following equation is obtained: 

         1 2 2 3 2

3 1
1 cos cos3 3 3sin sin 3 .

32 32

Q Q
y t t t t t                                     

 (24) 

Inserting Eqs.(19), (22), (23), and (24) into the second-order problem as given in Eq.(18) and removing the source of secular 
terms yields 

       

   

2
2 4 3 2 2

2 2 6 5

2 4 2
4 5

3 3
1 18 6 8 1 3 1 cos sin

16 128 64
3

3 1 cos 4 5 3 sin .
64 64

Q Q Q

Q Q

   

  

                 
  

         
 

 (25) 
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without secular terms, the uniform solution 2 ( )y t  is written as 
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(26) 

Therefore, the complete approximate solution is formulated by substituting Eqs. (19), (23) and (26) into Eq. (6) along with 
setting 1   to obtain the following equation: 

   

 

2 4 3 2 4 2
2 4 2

4

2 2 3 2

2
2 4

5

1
( ) cos sin

3
8 1 8 12 27 2 14 3

4 2cos

256 3 3 1 1
1 cos3 cos 1 sin 3 sin 3

2

1
24 3

4sin

256

y t t t

Q

Q t

Q

Q t



     

   

                        
                                    

       


   

 

   

4 3 2 4 2
2

2 2 2

2 4 2 2
2 2 3 2

4

3
47 120 10 40 9 3 14 1

2

1 3 1 1 3
3 3 3cos3 cos 3 sin 3 1 sin 3

2

3 3 3
8 1 14 3 3 8 9 1 cos

2 4cos3

256

Q

Q t



     

 

 
             

                                   

                           


   

 

2

2 4 3 2 4 2
2 4 2

5

2 2

2 2
4 3 2

8

3 1
1 sin

2

1 3
8 3 8 15 5 5 1 3 14 1

4 2sin 3

256 1 1 1
3 sin 3 cos

2

12 2 cos5
1024 1024

Q

Q t

Q Q
t



 



   

 
 
 
            
                       
                       

       


 

   

3 2
8

4 2 5 2

5 3 7 1 sin 5

3 1
1 cos3 3 sin 3 .

256 256

t

Q Q
t t

  

     


                   
 

(27) 

The above-mentioned approximate solution is formulated as a function of all parameters of the problem. It contains periodic 
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functions in the independent variable t  as well as the time-delayed parameter  , assuming that the nonlinear frequency   
has real values. The second-order approximation of the nonlinear frequency   can be formulated by substituting Eqs. (22) 
and (25) into  Eq. (5) along with setting 1   to obtain the following equation: 

   

    

   

2 2 2 21 1
2 22 2

2
4 3 2 2

6 5

2 4 2
4 5

3 1 1
1 1 sin cos 1

4 16

3 3
18 6 8 1 3 1 cos sin

128 64
3

3 1 cos 4 5 3 sin .
64 64

Q Q

Q Q

Q Q

     

  

  

                      

              
 

         
 

 (28) 

This relation shows that the approximate nonlinear frequency   is a function in each of the linear frequency , damping 
parameter  , coefficient of the delayed term , nonlinear coefficient Q , and the time-delayed parameter .  The nonlinear 

frequency appears as a periodic function in the time-delayed parameter. This is the nonlinear characteristic equation which has 
a transcendental form in the frequency  . Its Eigen values are impossible to obtain analytically, therefore, the stability 
criteria are very difficult to catch from this complicated equation. 

3. Numerical Illustration of Complete Solution by the Frequency Analysis 

       The nonlinear frequency (Eq. (28)) is plotted in three graphs as given in Figs. (1), (2), and (3) to show the distribution 
of the linear frequency 2 versus the variation of the nonlinear frequency   in the absence of the delayed part, while other 
parameters are kept fixed. As can be seen in Fig. (1), the relation between linear frequency and nonlinear frequency such as the 
exponential behavior is shown. When the delayed coefficient is included ( 7   and 10  ), the exponential profile has a 

period form as shown in Fig (2). In Fig (3), the frequency 2  is plotted versus the delayed parameter   at fixed  . This 
graph shows the periodic form of the nonlinear frequency with respect to the time delay. 

 

Fig. 1. The distribution of the linear frequency versus the variation of the nonlinear frequency. 
 

 

Fig. 2. The relation given in Fig. 1. when the delayed term has non-zero values. 

     The complete periodic solution, as given in Eq. (26), is illustrated graphically. Several numerical calculations are presented 
along with Figs. (4) to (9). In these figures, the function ( )y t  is plotted versus the variation of the independent variable t . 

The vertical axis represents the distribution of the function ( )y t , and the horizontal axis refers to the variations of the time t . 

In these figures, three different values of a specific parameter are considered, while the other parameters are kept fixed. 
The y curve , as shown in Fig. (4), is plotted for a system having the particulars: 2 2 20, 5, 10, 3        and 1,   

5, 2, 10.Q      These three cases are described as follows: At 0t  , the three curves are started from the same point on 

the y-coordinate. Moreover, it is observed that the curves have a periodic behavior of the same amplitude. Finally, the three 
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curves are corresponding to 2 0  , 2 5  , and 2 10  .  The solid curve indicates the case at which 2 0  , the dashed 

curve refers to the case of 2 5   and the dotted case stands for the case when  2 10  . This mechanism shows the 

increase of the linear frequency 2  which plays a stabilizing role. 

 

Fig. 3. The distribution of the frequency against the time-delay. 

 

Fig. 4. The distribution for the y-curve, as a function in 2 , against the variation in the time t . 

 

Fig. 5. The distribution for the y-curve, as a function in  , against the variation in the time t. 

 

Fig .6. This graph is the same as Fig. (5) except for large values in the time-delay. 

  As can be seen, Fig. (5) illustrates the influence of the variations of the damping parameter   on the  y t curve  for a 
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system having the fixed parameters 2 1, 3, 2, 10Q       and 3  . In these cases, the damped parameters are given 

as ( 3, 4,5).   It is observed that the length of segment between the started point and the first most upper point increased as 

  is changed from 3   to 4   and decreased when it is changed from 4   to 5  . This means that there is a 

destabilizing effect in the first case and a stabilizing influence in the other case. The increase in the time-delayed parameter 
from 10   to 11  , for the same system given in Fig. (5), leads to more changes in the profile of the graph as shown in 
Fig. (6). The most-upper point rises in the direction of increasing y-axis for the small time t. For increasing the time t, a rise in 
the upper point in the opposite direction is observed. As the time t is increased, the first role is changed.       
  The examination of the nonlinear coefficient Q  is shown in Fig. (7). It is shown that there are two roles depicted in the 
stability picture. Small destabilizing influence for increasing in the coefficient   is observed (Fig. (8)). This destabilizing 

influence is observed as t  increases. The examination of the time-delay   is the aim of the graph given in Fig. (9) in which 
the dual role is observed. 

 

Fig. 7. The distribution for the y-curve, as a function in Q , against the variation in the time t. 

 

Fig. 8. The distribution for the y-curve, as a function in  , versus the variation in the time t. 

 

Fig. 9. The distribution for the y-curve, as a function in  , versus the variation in the time t. 

4. Multiple-Scales Homotopy Perturbation Approach for Delayed Duffing Oscillator 

    The multiple scales method is a well-known method in the perturbation theory. It is effective for weakly nonlinear 
oscillators [39 & 40]. However, the combination of the homotopy perturbation method with the multiple scales method yields 
an unexpected result and allows studying the stability behavior for strongly nonlinear oscillators [26]. Two parts for the 
nonlinear Eq. (1) are described as: 
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2

2 3
2

( ) , ( ) .
d y dy

L y y N y Qy y t
dtdt

          (29) 

The homotop-multiple-scales statement is constructed in the following form: 

         
2

2 3
2

,
, , , , 0.

dy td
H y y t Qy t y t

dtdt


        

  
         
   

 (30) 

Therefore,  
1

lim , 0H y





  gives the original relation as given in Eq. (1). Consequently, the following relation is obtained: 

   
2

2
20

lim , , 0.
d

H y y t
dt

  


 
   
 

 (31) 

According to the expansion as given by Eq. (11) and considering three-time scales 0 1,T t T t  , 2
2 ,T t  the function 

 ,y t    becomes 

     2 2
0 0 1 2 1 0 1 2, , , , , ...y t Y T T T Y T T T                     (32) 

Using Taylor expansion, the following relation is obtained: 

     
 

22 2 2 21
0 1 2 1 2 1 2 0 1 22

2 2 21
1 1 2 0 1 22

, , 1 ... ... ( , , )

1 ... ( , , ),

n n

n

Y T T T D D D D Y T T T

D D D Y T T T

          

    

             
       

 (33) 

where /n nD d dT . Employing Eqs. (8-10) along with the homotopy Eq. (30), using Eqs. (32) and (33), and then rearranging 

the result in a power series of   yield 

2 3
0 1 2 3( , ) ... 0,H y H H H H          (34) 

where 

0 0 0

1 ( , )
lim ( , ), and lim .

!

n

n n

H y
H H y H

n 


 


 


 (35) 

Accordingly, the following equations are obtained: 

0 1 20, 0, 0,...,H H H    (36) 

2 2
0 0 0 0 0( ) 0,H y D y y    (37) 

 2 2 3
1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 2( , ) 2 , , 0,H y y D y y D D y D y Qy y T T T            (38) 

 
   

2 2 2 2
2 0 1 2 0 2 2 0 1 1 1 0 2 0 0 1 1 0 1 0

1 0 1 2 1 0 0 1 2

( , , ) 2 2 3

, , , , 0,

H y y y D y y D D y D D D y D y D y Qy y

y T T T D y T T T

  

   

       

    
 (39) 

These equations are inhomogeneous linear equations. The presence of the inhomogeneity produces secular terms. Solving 
theses equations and excluding the secular terms in each stage, uniform solutions  0 1 2, , ,...y y y  are obtained in the following 

forms: 

0 0
0 0 1 2 1 2 1 2( , , ) ( , ) ( , ) ,i T i Ty T T T A T T e A T T e    (40) 

   0 0

0 0 1 2 1 2 1 2( , , ) ( , ) ( , ) ,i T i Ty T T T A T T e A T T e          (41) 

 0 03 33 3
1 0 1 2 2
( , , ) ,

8
i T i TQ

y T T T A e A e 


   (42) 

    0 03 33 3
1 0 1 2 2
( , , ) ,

8
i T i TQ

y T T T A e A e   


      (43) 

   

   

0 0 0 0

0 0

2 2
5 5 3 35 5 3 3

2 0 1 2 4 4

3 33 3 3 3
4

3
( , , )

64 64

3 3 .
64

i T i T i T i T

i T i Ti i i i

Q Q
y T T T A e A e AA A e A e

Q
e e A e e e A e

   

    

 

 


 

 

   

     

 (44) 
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The above-mentioned analysis yields the following two solvability conditions: 

21
1 2

3
0,

2 2
i iQ

D A A i e A A A


 
     (45) 

2
2 3 2

2 1 1 1 2

3
2 0.

8
i Q
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      (46) 

The amplitude Eq. (45) results from the first-order perturbation. Meanwhile, Eq. (46) is obtained from the second-order 
perturbation. The later equation contains derivatives with respect to 1T  and 2T .  Removing the derivatives with respect to 

1T  with the help of Eq. (45) leads to 
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 (47) 

 The stability behavior is produced by solving Eqs. (45) and (47). For this purpose, integrate Eq. (45) with respect to 1T , and 

then integrate Eq. (47) with respect to 2T . Consequently, the integration of the amplitude equations is obtained in the original 

variable t  and Eqs. (45) and (47) are combined. This combination is achieved by multiply Eqs. (45) and (47) with   

and 2 , respectively. In this stage, the amplitude functions and the expansion of the derivative    2
1 2 1 2,D D A T T   

becomes  / [ ]d dt A t . Finally, the following equation that governs the amplitude equation is obtained: 
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 (48) 

This equation (Eq. (48)) is a nonlinear first-order differential equation having complex coefficients and is used to discuss the 
stability criterion of the problem. This equation is satisfied by using the following transformation: 

    ,i tA t B t e   (49) 

where  B t  is a time-dependent function, and   is given by: 
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 (51) 

To obtain the solution of Eq. (51), it is convenient to use the following polar form: 

     1
2 .i tB t t e   (52) 

The substitution of Eqs. (52) into (51) yields the following real and imaginary parts: 
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where   is given by 
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where Eq. (53) is a nonlinear first-order differential equation with real coefficients. It has a steady-state solution 0 , such that 

   
 

2 2 2
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4 sin 4 sin sin 2 2 cos 2
,

6 cos 2sinQ

          


    

     
    

 (56) 

where cos 2 sin .       If the amplitude function ( )t  is perturbed around the steady-state response, it yields 

0 1( ) ( ),t t     (57) 

where the function 1( )t  represents a small deviation from the steady-state response. Substituting Eq. (57) into (53), then the 

linearization of 1( )t yields 

  2
1 0 13

3
cos 2sin 0.

d Q
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       (58) 

This equation (Eq. (58)) is satisfied by 

1( ) ,tt ae    (59) 

 where 1,a   is a real constant.  Substituting Eq. (57) into Eq. (54) and linearizing 1  leads to 
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Integrating both sides of Eq. (60) with respect to t  yields 
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where b  is an arbitrary integration constant. Substituting Eqs. (57) and (61) into Eq. (52) and then into Eq. (49) yields 

     1
02 ,i ttA t ae e     (62) 

where the function  t  is given by 
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 (63) 

The complete primary solution 0 ( )y t  is formulated by inserting Eq. (62) into Eq. (40) and after setting 1  , the following 

relation is obtained: 

   0 0( ) cos ( ) .ty t ae t t      (64) 

where the arbitrary constants a  and b  are determined by applying the initial conditions  0 0 1y   and 0 (0) 1y   . These 

conditions lead to 
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(0)1 1
cos (0) and sin (0) 1 .
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 (65) 

where 1(0) ,a   1(0) ,a      10 ,m a b    and   2 30 .m a m    Squaring the first equation in (65) and adding to 

the square of the second equation yields the following relation, which determines the arbitrary constant a : 

       2 2 2 2

0 0 0 1 (0) .a a a a                (66) 

Since 1,a   the linearization of Eq. (66) yields 



Stability of a Time-Delayed Duffing Oscillator by Multiple Scales Homotopy Perturbation Method 

Journal of Applied and Computational Mechanics, Vol. 4, No. 4, (2018), 260-274 

271

   
       

22 2 2
0 0 3 0

24 2 2
0 3 0 0 2 0 0 3

1
.

2 1 1 2 1

m
a

m m m

   

       

  


         
 (67) 

The arbitrary constant b  is determine from Eq. (59), so that it is given by 
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where , 1, 2,3jm j   are given by 
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The investigation of the above-mentioned solution of the amplitude Eq. (48), reveals that the stability depends on the sign of 
the exponential  . Therefore, the stability occurs when 0,   which leads to the following condition: 

   3 2 24 4 sin sin 2 2 cos 2 0.              (69) 

This condition is satisfied at very small value of the parameter  . Therefore, small values of  2  implies that the last part 

of condition (69),  sin 2 2 cos 2 0    , has no implication. Large values of the parameter   lead the condition (69) 

to be false. Therefore, the above-mentioned condition shows that the amplitude of the delayed term   plays a stabilizing role 

the same as the coefficient of the damping term   at small  . On the other hand, large values in the time-delay parameter 

plays a destabilizing role. This conclusion is verified again after employing the numerical simulations. 
   To obtain the complete solution, Eqs. (64), (42), and (44) are substituted into Eq. (11) by using (62) and setting 1  . 

Finally, the following uniform valid solution is obtained: 
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 (70) 

The above-mentioned relation is the complete second-order approximate periodic solution having a damping part and affected 
by the time-delay parameter.                                                                                                             

5.  Numerical Estimation of Complete Solution by Multiple-Scale HPM 

   In the following section, numerical calculations are made to illustrate the complete solution as given by Eq. (70). These 
calculations are made for the examination of the influences of the parameters , ,Q   and   on the distribution function 

( )y t . In these graphs, the variation of time is represented on the horizontal axis, while the vertical axis represents the 

distribution function  y t . In each graph, three cases for one parameter are collected while the other parameters are kept 

fixed. 
   In Fig (10), three different values of the parameter   are plotted at the fixed parameters 2 1, 1, 4,Q     and 

5.   The dual role of the stability behavior is observed as shown previously in Fig. (5). The examination of the influence of 
the Duffing coefficient on ( )y t  is shown in Fig. (11). In this graph, three different values of Q are considered for a system 

having the particulars 2 1, 2, 3     , and 5.   This graph shows that the increase in the nonlinear coefficient has no 

implication in the stability plot. This conclusion was obtained theoretically in the stability analysis as presented in condition 
(69), while it was not observed in the previous calculations shown in Fig. (7).  
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Fig. 10. The illustration for the y-curve, as a function in   versus the variation in the time t.   

 

Fig. 11. The illustration for the y-curve, as a function in Q , versus the variation in the time t. 

 

Fig. 12. The illustration for the y-curve, as a function in  , versus the variation in the time t. 

 

Fig. 13. The illustration for the y-curve, as a function in  , versus the variation in the time t. 

   The above-mentioned figure (Fig (12)) indicates the influence of increasing in the parameter    on the ( ) .y t curve  

The calculations are made for the system having the following parameters: 2 1, 2, 1Q     and 2.   It is shown that 

the increase in   has a stabilizing influence. This stabilizing effect has not been observed before in Fig. (8). The examination 

of the influence of the time-delay   on the ( )y t curve  is shown in Fig. (13). The calculations are made for the system 
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having the following parameters: 2 1, 2, 1Q     and 3.   The inspection of this graph indicates that small changes in 

the parameter   leads to a more shifting in the ( )y t curve  in the direction of increasing the time t, which presents a 

destabilizing effect on the stability configuration. On the other hand, the dual role is observed in Fig. (9) in the frequency 
analysis. 

6. Concluding Remarks  

   In the present study, two analytical techniques for the homotopy perturbation method are adopted to investigate a strong 
delayed Duffing equation for the purpose of the comparison. The first technique is known as the frequency response analysis. 
In this approach, the nonlinear frequency is formulated which appears as a function of all parameters of the problem.  It 
contains periodic terms in the time-delay from which the second-order periodic solution is derived.  The corresponding 
numerical illustration shows that the nonlinearity has an exponential profile. This behavior has a periodic form in the time-
delay through which the periodic solution is derived. This technique cannot be used for catching stability conditions 
analytically since the stability behavior is only observed in the numerical illustration. The second approach is based on a 
modulation of the homotopy perturbation and is used to study the stability configuration analytically. This technique is known 
as a multiple-scales-homotopy perturbation method in which the secularity conditions impose a nonlinear amplitude equation 
whose solution leads to catch the stability criterion and consequently a uniform second-order periodic solution is formulated. 
Then, the periodic solution is derived that contain an exponential damping part. It is found both analytically and numerically 
that, the time-delay parameter has a destabilizing effect while the coefficient of the delayed variable has a stabilizing one. In 
addition, the time-delay parameter plays a dual role in the first approach and a destabilizing influence in the second one. 
Moreover, in both approaches, the damping parameter has a dual influence in the stability plot while the coefficient of the 
delayed variable plays a destabilizing role in the first approach. In contrast, it has a stabilizing influence in the second one. On 
the other hand, the stabilizing influence of   is observed numerically and theoretically in the stability condition (69). The 

increase in the Duffing coefficient Q has two roles in the first approach which are disappeared in the stability condition (69). 
Therefore, it has no implication in the stability configuration. It is concluded that the second method is more effective than the 
first one and it may be extended to various linear and nonlinear problems. The multiple-scales-homotopy method is used as a 
powerful mathematical tool for studying the stability of nonlinear oscillator systems arising in nonlinear sciences and 
engineering. 
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