
On Designing a Content Management System for the Documents related
to Past Civil Engineering Projects or Call-For-Tender Responses

Christian Esposito1 a, and Oscar Tamburis2 b

1Department of Electrical Engineering and Information Technology (DIETI), University of Naples “Federico II”,
via Claudio 21, 80125 Napoli, Italy

2Department of Veterinary Medicine and Animal Production (DMVPA), University of Naples “Federico II”,
Via Federico Delpino 1, 80137 Napoli, Italy
{christian.esposito, oscar.tamburis}@unina.it

Keywords: Content Management System, Data Storage & Retrieval, Civil Engineering Industrial Practice, Access Control

Abstract: The progressive dematerialization of paper-based documents in favour of digital ones held within servers, and
processed/exchanged by means of the ICT technologies have massively revolutionized several aspects of our
daily lives and industrial practice. The large volume of data handled by the companies has an undeniable value
for their business and must be exploited so as to strengthen their competitiveness. In certain domains, such as
the healthcare or manufacturing, this is nowadays an accepted practice within the context of Big data Analytics,
but in other domains this is not the reality. As an example, we can see the case of the civil engineering
companies, where a large volume of digital documents on past projects or response to public/private tender
procedures are stored, but not efficiently used. The main obstacle for the effective use of such data is related to
their storage approach, which is mainly considered as an archive rather than the company’s knowledge to be
inferred and effectively used in the business. The driving idea of this paper is to devise a content management
system within the context of civil engineering to pave the way for a better use of the data held by such a kind
of companies.

1 INTRODUCTION

The current industrial practice encompasses
computer-based communications and the production,
processing or exchange of digital documents. This is
the foundation of our digital society and the current
fourth industrial revolution, where ICTs and comput-
ers play the main role in our daily activity and busi-
ness. Such a revolution reached also the civil engi-
neering, where at the beginning we have witnessed
the proliferation of Computer-Aided Drafting (CAD)
tools (Luzadder, 1992) able to substitute manual with
electronic drafting when designing building, mainte-
nance system or interior design. The next step has
been represented by the arrival of the Building In-
formation Modeling, or BIM (Eastman et al., 2018),
which targets the creation and management of digital
representations of artefacts and support the plan, de-
sign, construction, and maintenance of diverse physi-
cal infrastructures. By its definition, such a standard
provides architects and civil engineers with a shared

a https://orcid.org/0000-0002-0085-0748
b https://orcid.org/0000-0002-0130-7915

knowledge resource for information about any kind of
facilities, thus forming a reliable basis for decisions
during its life-cycle. At the moment, another revo-
lution in Europe is undergoing with the EU Direc-
tive 2014/24/EU on public procurement (EUR-Lex,
2014), and the relative regulation issued by the State
Members, as of the adoption of digital representations
in open formats, like BIM, for the design of civil in-
frastructure and the submission of responses to call-
for-tenders by means of certified emails. This is con-
siderably boosting the dematerialization of all civil
engineering documents for public procurement and
augmenting the volume of digital data held by such
a kind of companies.

When a call-for-tender is issued by a public au-
thority, the time left for writing a response is ex-
tremely limited. Starting by scratch likely means
starting to be ineffective, when it must instead be
viable to leverage on the past experience so that to
quickly draft the response, and to pay all the avail-
able efforts to refine such a draft. Currently, despite
the past documents are stored by the companies, all
the lesson learned from past projects and responses

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Università degli studi di Napoli Federico II

https://core.ac.uk/display/201589609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to call are not inferred from these documents, but
by interacting with the senior employees of the com-
pany. Leaving the company knowledge within the se-
nior employees is not a winning choice, as they may
be unavailable due to possible diseases, or have left
the company for retirement or new job offers. The
best solution should be to take advantage of the digi-
tal documents within the company archives and infers
the lessons learnt from them. However, currently this
is not possible as many storage approaches have not
been designed for retrieval but only for conversation
and historical reasons. Moreover, such documents are
not kept at a main server of the company or within the
cloud, but at the terminal of each employee so that
their existence is not well known by the rest of the
company and their accessibility is not guaranteed.

The driving idea of this work is to design and im-
plement a proper data management solution so that
all the documents produced during the company life-
cycle are centrally stored and accessible by all the em-
ployees of a civil engineering company. To this aim
we have implemented a series of RESTful Web Ser-
vices (Richardson and Ruby, 2007), so that the ex-
plicit use of the HTTP methods can be used to imple-
ment the ”create, read, update, and delete” (CRUD)
operations for the digital documents for past civil
engineering projects or tender responses. We have
found, as described in Section 2 that the best strategy
for the storage of such a kind of data set is a Con-
tent Management System (CMS) as Alfresco, on top
of which we have built our system, whose design and
implementation is detailed in Section 3. Such a work
represents only a starting point of our research, and
it does not have the ambition to resolve all the chal-
lenging imposed by our vision. Section 4 describes
our vision on the future research efforts needed to be
spent in order to cover all the demands of the modern
civil engineering companies. Section 5 concludes our
paper with the sum up on our research conducted so
far.

2 BACKGROUND AND RELATED
WORK

In their practice to respond to call-for-tender is-
sues by public administrations, employees at civil en-
gineering companies needs to collect a precise set of
documents describing the call of interest and to pro-
duce another set of documents to respond to the tender
itself. The first set describes the demands of the tender
issuer, and the second one is required to participate in
the selection to win the tender. The time needed to
write the documents in the second set is very limited,

and the related efforts can be considerable as many
details need to be considered so as to set up a suc-
cessful response and design. Such documents can be-
long to one of the following groups. The first doc-
uments contain the administrative description of the
company, its technical and managerial characteristics,
and a statement of satisfaction of the requirements in
the call. Mainly, the content of these documents is
always invariable despite of a specific call, so the ef-
fort to write them are very negligible by having sim-
ilar documents produced for past calls. The second
group contains the technical response to the call with
the design of a building, a maintenance plan or the fa-
cility management solution. The last group of docu-
ments are related to the economic-financial offer, and
the scheduling of the needed work to implement the
envisioned design. Such documents are particularly
demanding in terms of knowledge to collect, time for
their finalization or efforts to check their correctness.
Starting by scratch to approach them is not viable
and it should be possible to re-use past similar doc-
uments, according to a similar approach put in place
for the re-use within the context of software engineer-
ing (Land et al., 2009). Not all the documents share
the same format and structure, but the ones within the
first and third groups are mainly produced by using
Microsoft Office (Word is used to write DOCX doc-
uments for the administrative part, and Excel used
for datasheets containing the economic offer). Such
files can be archived as they are or in PDF or PNG
after being printed, signed and scanned. The doc-
uments for the technical part of the tender response
are made of digital representations of a given design
produced by a CAD tool, which can have a binary
encoding (each tool adopts a given format), a struc-
tured format derived from XML and so on. To this
end, a concrete example is provided by the DXF and
DWG formats (Çetiner, 2010) of files saved with AU-
TOCAD or the Initial Graphics Exchange Specifica-
tion (IGES) (Liewald, 1985) for the interoperability
among the available CAD tools. Image formats as
PNG or JPG or a vector graphics format such a HPGL
Plotter File (PLT) (Grabowski, 1999) with the render-
ing of a given design can be used as well. The BIM
standard has also its own format to represent the dig-
ital artefacts of a design, called Industry Foundation
Classes (IFC) (Venugopal et al., 2012).

Traditionally, such an heterogeneous set of files
and digital documents are stored in folders within the
file systems of their terminals and/or servers, with a
flat organization where each folder contains all the
documentation for a given project/tender response, or
a deep organization where the folders have a hierar-
chical structure (for example a first level divided in

years, a second one in classes of project/tender re-
sponses, and a third one distinguishing among won
and lost applications). This is a naive solution whose
main advantage is to be very simple to define, even
by operators within a computer science major. The
main drawback, on the other side, is related to the
difficulties when a specific document needs to be re-
trieved, as it demands to traverse the overall structure,
open each file and check if its content matches the
terms of interest. Moreover, all the data of interest
for a given project or tender response initiative are
not only contained in the produced documents, but
also in a set of contextual information and meta-data
within the employees’ notes and discussions. These
meta-data cannot be stored by using such a solution,
but on the contrary they can be easily kept within a
relational database. Such a solution is associated with
a well-structured and expressing query language that
helps to retrieve the data of interest by using a pre-
cise query expression, which requires operators hav-
ing a solid background in computer science. Within
the tables and tuples, the meta-data can find place,
but relational database are not suitable when dealing
with files, unless each tuple contains a pointer (such
as the file absolute path within the file system) to the
file related to the meta-data contained in such a tu-
ple. This requires the user to be aware to keep such a
pointer consistent in case of file movements. A Con-
tent Management System, on the contrary, represents
a hybrid solution among the previous ones: as the first
approach, files are contained within hierarchy of fold-
ers managed by the file system; while as the second
one a relational database with meta-data per each file
is defined. The CMS products keeps the two sides of
the systems consistent so that by querying the meta-
data it becomes possible to retrieve the files of inter-
est. In our envisioned system, we have used a CMS
product named Alfresco (Shariff et al., 2009), and on
top of it we have designed and implemented our solu-
tion.

3 PROPOSED SOLUTION

Figure 1 depicts the overall architecture of the en-
visioned system, where we have the file system with
the documents of the company, and the database hold-
ing the relative meta-data. The Alfresco solution is
provided as a war file executed by the web container
represented by Apache Tomcat. Such a product pro-
vides a management and user console represented by
the share.war, so that all the functionalities of the
product can be directly invoked by authorized admin-
istrators and users, while we have the DocMan.war

Figure 1: High-level architecture of the proposed system.

implementing all the operations of our system (such
as the CRUD operations for the kind of documents
managed by the system), exposing a RESTful web
services implemented within the .NET framework,
and providing a set of web pages as GUI for the web
clients. More details on key aspects of our system are
provided in the following subsections.

3.1 Alfresco Data Modelling

The user is not able to directly manipulate files and tu-
ples in Alfresco, respectively within the repository in
the file system or the tables of the relational database,
but these aspects are abstracted by proper modelling
the data of interest in types. More specifically, the
data managed by Alfresco are represented in terms of
nodes and links among them. A node can be any-
thing, such as an image, a fragment of XML, and so
on. A node can contain a set of other nodes, and in
this case, we represent a folder. Each node exhibits
a unique identifier and a set of properties, each char-
acterized by a name and a value. The containment is
not the only relationship among nodes: the other ones
are the specification (i.e., a child node inherits all the
property definitions of the father node in addition to
its specific ones) and the association (i.e., a node is se-
mantically related to another one and holds properties
with the identifier or the associated node, similarly to

Figure 2: Repository structure.

a foreign key among tuples in a relational database).
The property definition is done by assigning a type
to a node, in a similar way of classes on the Object-
Oriented programming languages. Alfresco provides
a set of predefined node types, but the user is able to
customize them by defined new types as well.

In our system, we have identified two types of
nodes: the documents describing the call-for-tender
and their annexes, and the documents related to the
tender response and/or project. To this aim we have
structured the repository in five folders, as depicted in
Figure 2:

• The folder holding the documents describing the
calls;

• The first part of the response documents with the
administrative details of the company;

• The second part of the response documents with
the technical design of the project;

• The third part of the response documents with the
economic and financial offer;

• All the feedback received for the submitted re-
sponses requested by the company.

Within each folder, a series of documents can be
stored, each exhibiting a different type such as Mi-
crosoft office documents, PDF or IFC, all modelled
as a Document with a unique identifier, a path (i.e.,
the pointer of the file within the file system), and its
byte content. We have envisioned two types in Al-
fresco: one for the documents of the calls, and one
for the documents of the responses. The first one has
the following properties:

• CIG represents the identification code of the call
as a string, and allows to trace the call within the
Italian public administration.

• CUG represents the identification code of the
public procurement as a string.

• Identifier specifies an internal identification code
for the company as a string.

• Contracting Entity specifies which entity of
the public administration has issued the call-for-
tender.

• Text contains a brief description of the call.

• Type is an enumeration of the specific type of the
call, such as building a new facility, maintain an
existing one and so on.

• Publication Year.

• Expiration Date.

• Place indicates where (in Italy) the project should
take place.

• Inspection Needed is a flag whose true value indi-
cates that an inspection of the work area is needed
before submitting the response.

• State is the state of the call and is an enumeration
with elements such as Open, Close or Forthcom-
ing.

The second type has the following properties:

• Identifier represents a local identifier of the doc-
ument within the company.

• Object is a string summarizing the content of the
document.

• Support characterizes the type of document as an
enumeration containing DOC, PDF, IFC, Image,
Binary, and so on so that all the possible formats
of the files are represented.

• Class is another enumeration for the specific role
of the document within the response and project,
such as Administrative, Technical, Financial, Call
Description and Feedback.

These two types are designed based on the Docu-
ment type offered by Alfresco, and share with it the
two properties of Creator, indicating the user that
has created the document in Alfresco, and Creation
Date. Moreover, some documents may be related
to a response that has been evaluated and for which
we know whether the response has been successful
or not. In this case, we have modelled such addi-
tional properties of an assessed document as an as-
pect, which is a type with properties to enhance exist-
ing content types. Our aspect is named Assessed and
features the following properties:

• Assessor - represents the identifier of the person
who made the evaluation or the entity in the public
administration that has made it.

• Assessment - represents the received mark as a
number or a letter.

• Positive Aspects - indicates what has been evalu-
ated as positive within the document.

• Negative Aspects - indicates what has been evalu-
ated as negative within the document.

• Distance from the Winner - represents how far the
received rank is with respect to the one obtained
by the winning response (this is 0 if the specific
response was the successful one).

• Won - a Boolean value indicating if this document
belongs to a response that has obtained the tender.

3.2 RESTful API of DocMan.war and
its Interconnection with Alfresco

The API we offer contains a series of functionalities
to create, modify and infer files and their meta-data
according to the previous modelling:

• Loading new files, within the repository and set-
ting their properties based on the above model.

• Change the values given to the properties for a
document that exists within the repository.

• Removal of one or more documents from the
repository, uniquely identified by means of an id
or belonging to a specific call-for-tender.

• Search for one or more documents. The search
methods can be of two types:

– Free search, where a search string is passed to
the engine, so as to give the users the freedom
to express their own search criteria, but requir-
ing them to have an ICT background. There-
fore, this operation will be offered only to ad-
ministrators or IT technicians in service at the
company.

– Pre-coded searches, meaning a series of meth-
ods for which the search strings are already
coded within the engine. The users can easily
recall them by selecting the value of the search
parameters. Examples can be:
∗ Return documents of a specific type (admin-

istrative, technical or other) for a given set of
calls;

∗ Return the winning responses in a given time
period, that is an adjacent set of years;

∗ Return the winning responses for a certain
type (design of buildings, maintenance or
other);

∗ Return documents for which the object meets
a certain regular expression if applied to its
content;

∗ Return call-for-tenders for one or more spe-
cific contracting authorities.

Each of these functionalities is offered by means of
an HTTP method, such as the POST method (used to
create a new instance of the Call type or the Document
type), and the GET method (used to obtain a node
with a given identifier), and so on.

The interaction between Alfresco and our soft-
ware can occur by means of Alfresco’s API, but
we have preferred to use the standard interface of-
fered by the Content Management Interoperability
Services (CMIS) (OASIS, 2015), which is a stan-
dard for the interoperability with CMS, so that if we
decide in the future to substitute Alfresco with an-
other similar product we do not have to make any
changes to our system. CMIS defines in fact an ab-
straction layer for controlling diverse document man-
agement systems and repositories using web proto-
cols, such as REST, AtomPub and so on, which
any product like Alfresco implements. CMIS pro-
vides a query language whose syntax is based on
SQL-92, with its clauses such as SELECT, FROM,
JOIN and so on. When the user needs to express a
query string for the free search, they must be com-
pliant to the CMIS Query Language. For exam-
ple, to have all the documents in the folder Part A
the command should be: SELECT ∗ FROMcmis :
f older WHERE IN FOLDER(′Part A′). Within
our work, we have used a library so as to in-
teract with Alfresco by means of CMIS, called
Apache Chemistry (specifically its distribution for
.NET named DotCMIS), where the binding endpoint
for the Alfresco repository was http://localhost:
8080/open/service/CMIS.

3.3 Security Aspects

The interactions of the user with the RESTful web
services of our solution needs to be protected. One
level of protection is to implement an authentication
and authorization mechanism so that only legitimate
users can invoke the operations of our system. Within
the context of the web services, the WS-Security stan-
dard (Atkinson, B. et al., 2002) indicates the mecha-
nisms to be used in such a case. Specifically, we have
preferred to use JSON Web Token (JWT) (Jones et al.,
2015) given its simplicity and stateless nature. The
users provide its credential as username and password
to the server, which checks if they are present in its
identity storage and returns a token in case of success.
The adopted model is, therefore, the Access Control
List (ACL) (Barkley, 1997), where we can find which
users are granted access to objects/functionalities of
the system. It is possible to have a more complex
model, even by integrating JWT within the context
of the eXtensible Access Control Markup Language

Figure 3: Client-Server interactions with JWT.

(XACML) (OASIS, 2017) and its architecture with
the standardized authorization flow. Later on, when
requesting a HTTP method, the token is inserted in
the SOAP header of the request. The server grants
the access to the incoming requests with valid tokens.
Figure 3 shows such interaction. To this aim, we have
extended the architecture in Figure 1 by adding an ad-
ditional war hosting the functionalities of managing
the identities, requesting token by giving a valid cou-
ple of username and password, checking the validity
of a given token, revoke the grant for a given user. It
is evident that all our services strongly interact with
such an additional set of RESTful web services so as
to decide to grant or deny a received request.

3.4 Prototype

We have implemented our solution within the context
of the .NET framework, and run a set of unit tests
to verify the correct behaviour of the invoked oper-
ations by using the GUI offered by the share.war of
the Alfresco product. Figure 4a shows the realized
web pages as GUI of our implemented web services,
and Figure 4b shows the form for the insertion of a
new document filled with some testing text. Figure 4c
shows that the new document is eventually available
within the repository managed by Alfresco.

4 FUTURE RESEARCH
DIRECTIONS

The proposed system is just the starting point for
further speculations and research on the addressed
topic. Several open challenges are still open, among
which the most interesting one is how to improve the
search expressiveness. Specifically, CMIS and Al-
fresco support a SQL-like query language, consist-
ing in SQL-92 SELECT statements. This exhibits a
twofold drawback. On the one hand, operators are re-

(a) Implemented GUI for the implemented RESTful web
services.

(b) Example of the use of the prototype to insert a new
document.

(c) Check the presence of the new document in Alfresco.

Figure 4: Prototype testing (local GUI in Italian).

quired to have a background on databases and SQL,
which is not always the case as in civil engineering
companies it is more reasonable to have users not
skilled on computer science basic concepts. On the
other hand, the expressiveness of the query is lim-
ited as it is performed on the term-matching. In the
WHERE clause, the user indicates some terms upon
which the search must be done. Such a query term
must be found in the meta-data of the documents in
order to have such documents returned by the query.
Slight changes (such as the query term expressed in
its singular form, while some documents have it as

plural) imply a lower number of documents being re-
trieved. Moreover, semantic-based queries may be
needed as various synonymous can be used within
the documents that we want to be returned as a re-
sult of a query. To this aim more advanced solutions
need to be coupled with Alfresco, without recurring
to ontologies and their supporting framework, as their
effectiveness is questionable and their usability has
a huge learning trend (Durán-Muñoz and Bautista-
Zambrana, 2017; Schulz et al., 2009).

Another aspect worth deepening may be how to
transfer such a system within the cloud, so that it
becomes accessible even in case of companies that
have multiple premises spanning around the world.
However, a change like that implies that the sensi-
tive company data may be stored outside the secu-
rity domain and control of the company, thus vulner-
able to possible leakage and misuses. To this aim,
it is crucial to protect its confidentiality and integrity
by means of proper cryptographic primitives (Singh
et al., 2016), without having to pay the cost of a re-
duced processing and retrieval capacity offered by the
system (Fu et al., 2016). Moreover, our security only
means allowing the management of the authentication
and authorization when interacting with the system,
but other security-related issues, such as protecting
the SOAP messages exchanging, detecting a possible
misbehaviour and managing the trust degree of the in-
teracting users, are not minor concerns and need to be
properly investigated. Last, JWT applies a very sim-
ple access control model, while more advanced and
dynamic models are available in the literature, such
as in (Esposito, 2018) and may be integrated within
the solution by extending what provided by JWT. This
may allow to achieve a more fine-grained control over
the access requests and to implement more resilient
solutions when companies encompasses multiple con-
sultants on specific projects.

5 CONCLUSIONS

The present work intended to provide some in-
sights as to the challenging and novel issue of storing
and managing all the documents that a civil engineer-
ing company may produce in its life time when par-
ticipating to a project and/or responding to a call-for-
tender issues by a public administration. Our starting
point was represented by a content management sys-
tem tailored to this application domain built on top of
Alfresco, by implementing a set of RESTful web ser-
vices within the .NET framework. We have indicated
the possible research direction on improving the eas-
iness and expressiveness of the query language and

dealing with the key security demands in the system,
especially in the case of its cloudification. We be-
lieve that similar issues arise in other domains, from
the healthcare to the manufacturing industry, where
unstructured documents must be stored and queried.
Apart from the details of the properties described in
Section 3 and the repository structure in Figure 2, all
the design and relative implementation can be easily
adapter for other domains.

Acknowledgment

The described work has been partially supported
by the PROBIM research project, funded by the Ital-
ian Ministry of Economic Development within the
context of Horizon 2020 - PON I&C 2014-20.

REFERENCES

Atkinson, B. et al. (2002). Web services secu-
rity (ws-security). specification. In Avail-
able at https://www.it.iitb.ac.
in/˜madhumita/research_topics/
authentication/WS\%20Security.pdf.

Barkley, J. (1997). Comparing simple role based access
control models and access control lists. In Proceed-
ings of the second ACM workshop on Role-based ac-
cess control.

Çetiner, O. (2010). A review of building information model-
ing tools from an architectural design perspective. in:
Handbook of research on building information model-
ing and construction informatics: Concepts and tech-
nologies. In IGI Global.

Durán-Muñoz, I. and Bautista-Zambrana, M. R. (2017).
Applying ontologies to terminology: Advantages and
disadvantages. In HERMES-Journal of Language and
Communication in Business, 26(51):65-77.

Eastman, C., Teicholz, P., Sacks, R., and Liston, K. (2018).
Bim handbook - a guide to building information mod-
eling for owners, managers, designers, engineers and
contractors. In John Wiley & Sons Inc, 3rd edition.

Esposito, C. (2018). Interoperable, dynamic and privacy-
preserving access control for cloud data storage when
integrating heterogeneous organizations. In Journal of
Network and Computer Applications, 108: 124-136.

EUR-Lex (2014). Directive 2014/24/eu of the eu-
ropean parliament and of the council of 26
february 2014 on public procurement and re-
pealing directive 2004/18/ec text with eea rel-
evance. In D. Available on line at https:
//eur-lex.europa.eu/legal-content/
EN/TXT/?uri=celex\%3A32014L0024.

Fu, Z., Ren, K., Shu, J., Sun, X., and Huang, F. (2016). En-
abling personalized search over encrypted outsourced
data with efficiency improvement. IEEE Transactions

on Parallel and Distributed Systems, 27(9):2546–
2559.

Grabowski, R. (1999). Hpgl overview. In Available at
cstep.luberth.com.

Jones, M., Bradley, J., and Sakimura, N. (2015). Json web
token (jwt). no. rfc 7519. In Available at https:
//jwt.io/.

Land, R., Sundmark, D., Lüders, F., Krasteva, I., and Cau-
sevic, A. (2009). Reuse with software components-a
survey of industrial state of practice. In International
Conference on Software Reuse, 150-159.

Liewald, M. H. (1985). Initial graphics exchange specifica-
tion: successes and evolution. In Computers & graph-
ics 9.1.

Luzadder, W. J. (1992). Introduction to engineering draw-
ing: The foundations of engineering design and com-
puter aided drafting. In Prentice Hall PTR.

OASIS (2015). Content management interoperability
services (cmis) - version 1.1. In Available at
http://docs.oasis-open.org/cmis/
CMIS/v1.1/CMIS-v1.1.html.

OASIS (2017). extensible access control markup lan-

guage (xacml) v3.0 approved as an oasis standard. In
Available at https://www.oasis-open.org/
committees/xacml/.

Richardson, L. and Ruby, S. (2007). Restful web services.
In O’Reilly Media.

Schulz, S., Stenzhorn, H., Boeker, M., and Smith, B.
(2009). Strengths and limitations of formal ontolo-
gies in the biomedical domain. In Revista electronica
de comunicacao, informacao & inovacao em saude:
RECIIS, 3(1):31.

Shariff, M., Bhandari, A., and V. Choudhary, P. M. (2009).
Alfresco 3 enterprise content management implemen-
tation. In Packt Publishing.

Singh, S., Jeong, Y.-S., and Park, J. H. (2016). A survey
on cloud computing security: Issues, threats, and so-
lutions. Journal of Network and Computer Applica-
tions, 75:200 – 222.

Venugopal, M., Eastman, C., Sacks, R., and Teizer, J.
(2012). Semantics of model views for information ex-
changes using the industry foundation class schema.
In Advanced Engineering Informatics, 26(2).

