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Abstract. In the present study, the effect of temperature-dependent heat sources on the fully developed free 
convection flow of an electrically conducting micropolar fluid between two parallel porous vertical plates in the 
presence of a strong cross magnetic field is analyzed. The micropolar fluid fills the space inside the porous plates 
when the rate of suction at one boundary is equal to the rate of injection at the other boundary. The coupled 
nonlinear governing differential equations are solved using the differential transform method (DTM). Moreover, the 
Runge-Kutta shooting method (RKSM), which is a numerical method, is used for the validity of DTM method and 
an excellent agreement is observed between the solutions of DTM and RKSM. Trusting this validity, the effects of 
Hartmann number, Reynolds number, micropolar parameter, and applied electric field load parameter are discussed 
on the velocity, microrotation velocity, and temperature. The skin friction, the couple stress, and Nusselt numbers at 
the plates are shown in graphs. It is observed that the Hartmann number and the micropolar parameter decreases the 
skin friction and the couple stress at both plates for suction and injection. 

Keywords: Free convection, Micropolar fluid, Porous channel, Differential Transform method. 

1. Introduction 

  The concept of micropolar fluid deals with a class of fluids that exhibit certain microscopic effects arising from the 
micromotions of the fluid elements. These fluids contain dilute suspension of rigid macromolecules with individual motions 
that support stress and body moments, and are influenced by spin inertia. Micropolar fluids are those which contain micro-
constituents that can undergo rotation and the presence of which can affect the hydrodynamics of the flow so that it can be 
distinctly non-Newtonian. Eringen [1] developed a theory based on which the local effects arising from the microstructure and 
the intrinsic motion of the fluid elements should be taken into account. The theory is expected to provide a mathematical model 
for the non-Newtonian fluid behavior observed in certain man-made liquids such as polymers, lubricants, fluids with additives, 
paints, animal blood, colloidal and suspension solutions, etc. The presence of dust or smoke, particularly in a gas, may also be 
modeled using micropolar fluid dynamics. Later, Eringen [2] extended the theory of thermo-micropolar fluids and derived the 
constitutive laws for fluids with microstructures. Interesting aspects of the theory and applications of micropolar fluids are 
addressed in the books by Lukasazewicz [3] and Eringen [4] in addition to the review article by Ariman et al. [5].  Agarwal 
and Dhanapal [6] analyzed the effect of temperature dependent heat sources on the fully developed free convection micropolar 
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fluid flow when a constant suction (or injection) is applied on the plates and the fluid. Srinivasacharya et al. [7] studied the 
effects of microrotation and frequency parameters on an unsteady flow of micropolar fluid between two parallel porous plates 
with a periodic suction. El-Amin [8, 9] obtained numerical solutions for problems of the steady free convection and the mass 
transfer flow in a micropolar fluid with a constant suction and studied the combined effect of internal heat generation and 
magnetic field. The problem of convective heat transfer for a micropolar fluid in the presence of uniform magnetic field was 
investigated by Emad et al. [10]. Joneidi et al. [11] discussed the micropolar fluid in a porous channel using Homotopy 
analysis method. Prathap Kumat et al. [12] studied the fully-developed laminar free-convection flow in a vertical channel with 
one region filled with a micropolar fluid and the other region with a viscous fluid. Recently, Mahmood and Sajid [13] studied 
the numerical solution for a steady flow of a micropolar fluid between two porous plates using the finite element method. 
  When the magneto-hydrodynamic effects are added to the microrotation, an interesting new problem arises due to several 
engineering applications such as in MHD generators, designing cooling system for nuclear reactors, flow meters, etc. where the 
microconcentration provides an important parameter for deciding the rate of heat flow; by simulating it, one can obtain the 
desired temperature in such equipment. Several investigations have been conducted on the theoretical and experimental studies 
of the micropolar flow in the presence of a transverse magnetic field during the last four decades. El-Haikem et al. [14] studied 
the Joule heating effects on magnetohydrodynamic free convection flow of a micropolar fluid. El-Amin [15] studied the 
magnetohydrodynamic free convection and the mass transfer flow in the micropolar fluid with a constant suction. Bhargava et 
al. [16] obtained a numerical solution for a free convection MHD micropolar fluid flow between two parallel porous vertical 
plates using the quasi-linearization method. The study conducted by Zueco et al. [17] addressed the unsteady free convection 
flow of an incompressible electrically conducting micropolar fluid bounded by two parallel infinite porous vertical plates 
applied to an external magnetic field and the thermal boundary condition of the forced convection. Umavathi et al. [18] 
investigated the magnetohydrodynamic Poiseuille-Couette flow and heat transfer in an inclined channel.  Recently, Akinshilo 
et al. [19] have investigated the flow and heat transfer analysis of the Sodium Alginate Conveying Copper Nanoparticles 
between two parallel plates. Akinshilo and Sobamowo [20] also studied perturbation solutions for the study of MHD blood as 
a Third Grade Nanofluid transporting Gold Nanoparticles through a porous channel. The effect of variable thermal expansion 
coefficient and nanofluid properties on a steady natural convection in an enclosure was discussed by Ghahremani et al. [21].  
Aminreza et al. [22] analyzed the partial slip boundary condition of nanofluids past a stretching sheet. The entropy analysis for 
nanofluid over a stretching sheet was also studied by Aminreza et al. [23].  In another study by Zargartalebi et al. [24], the 
effects of variable thermo physical properties on the convection boundary layer flow over a horizontal plate embedded in a 
porous medium and saturated with a nanofluid were observed.  A new approach to the electrostatic pull-in instability of 
nanocantilever actuators using the ADM–Padé technique was published by Aminreza et al. [25]. 
  One of the semi-analytical methods which does not need small parameters is the differential transform method (DTM). The 
concept of DTM was first presented by Zhou [26] for solving linear and nonlinear problems in electrical circuit problems. 
Chen and Ho [27] expanded this method for partial differential equations and Ayaz [28] applied it to the system of differential 
equations. This method constructs an analytical solution in the form of a polynomial, which is different from the traditional 
higher-order Taylor series method. The Taylor series method is computationally expensive for large orders. The differential 
transform method is an alternative procedure for obtaining an analytic Taylor series solution of differential equations. This 
method is well considered by many researchers [29-35]. 
  In the present study, the effect of temperature-dependent heat sources on the fully developed free convection electrically 
conducting micropolar fluid between two parallel porous vertical plates in the presence of a strong cross magnetic field is 
analyzed using differential transformation method. The velocity, microrotation, and temperature functions are shown 
graphically and the effects of magnetic field and micropolar parameter are studied. The Runge–Kutta shooting method is used 
for the validation of the solutions obtained by DTM. 

2. Mathematical formulation 

  Considering the fully developed steady, the laminar free convection flow of an incompressible micropolar fluid flows 
between two infinite parallel porous flat plates, kept at a distance h , through which fluid is uniformly injected or removed 
with speed 0V . The schematic diagram is shown in Fig. 1. The plates are maintained at constant temperatures, 1T  and 2T , in 

the presence of a strong magnetic field 0B applied normal to the plates and an electric field 0E  applied parallel to the porous 

plates. The X -axis is taken along the plates and Y -axis is normal to them. Since the boundaries in the X -direction are of 
infinite dimensions, without any loss of generality, we assume that the physical quantities such as velocity, microrotation, and 
temperature depend on only Y . The velocity field is taken to be ( , ,U V  0) and microrotation as (0, 0, N ).  

  It is assumed that the fluid possesses constant properties except the density variation due to temperature difference in the 
buoyancy term. The relevant equations governing the conservation of mass, momentum, microrotation, and energy are as 
follows [6, 16]: 
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2
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 (3) 

where the elements are defined as follows:  , the density;  , the viscosity of the fluid; K , the gyroviscosity; g , the 

acceleration due to gravity; P , the pressure; e , the electrical conductivity of the fluid; j , the micro-inertia density;  , 

material constant; pC , the specific heat at constant pressure; fK , the thermal conductivity; 0 , the constant of 

proportionality;  0 0 0V T T   the amount of heat generated per unit volume in unit time as a linear function of temperature; 

0T , the temperature in hydrostatic state. 

 

Fig. 1. Physical model and the coordinate system 

  Compared with Newtonian fluids, the governing equations include the microrotation or the angular velocity N  whose 
direction of rotation is in the XY -plane and the material parameters j  and  . In order to be consistent with other 

micropolar studies, all material parameters are considered as independent and constant. The body force term is expressed as a 
buoyancy term, 

 0 X

P
g T T f

X
 

  


 (4) 

where Xf g   and   is the coefficient of volumetric expansion. The boundary conditions are given by: 

0U  , 0N    at 0,Y h  (5) 

1T T  at 0Y  , 

  2T T  at Y h  
(6) 

As the plates are infinitely long, the pressure P  can be considered as equal to the hydrostatic pressure. Using Eq. (4), Eqs. (1-
3) can be written as: 
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2

3
0 0 0 0 02

0X e

dvd U dU
K V K T T f B U E B

dY dYdY
            (7) 

2
3 3

0 32
2 0

d v dv dU
jV K v

dY dYdY
       

 
 (8) 

       
222

0 0 23
0 3 3 0 0 02

2 0f p

d T T d T T dvdU dU
K C V K K v v V T T

dY dY dY dYdY
   

                      
 (9) 

Introducing the dimensionless flow variables leads to: 
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where M  is the Hartmann number, E  is the electric load parameter, Pr  is the Prandtl number, R  is the micorpolar 
parameter, A  and B  are the micropolar material constants. By substituting Eq. (10) in the governing Eqs. (7-9) and after a 
little simplification, the following ordinary equations in the dimensionless form are obtained: 

 
2 2

2
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1 1 1 1
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 (13) 

As Re 0 , the problem corresponds to the injection at both walls and as Re 0 , it corresponds to the suction at both walls. 
The boundary conditions (5) and (6) for Eqs. (11-13) in the dimensionless form can be written as: 

           0u  , 0N    at 0, 1y   (14) 

q   at 0y  , 

   q   at 1y   
(15) 

where Pr /X pq Gr f h C  is the dimensionless parameter,  2 3 2
1 0 /XGr f h T T     is the Grashof number, and 

2 0 1 0( ) / ( )T T T T     is the non-dimensional heating parameter. The physical quantities of interest in this problem are the 

shear stress   and the couple stresses wm on the walls of the channel, which are defined as: 
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The other physical quantities of interest are the Nusselt number Nu  at the walls of the channel, which can be defined as: 
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3. Method of solution 

3.1 Basic concepts of the differential transform method 
  The differential transformation of an analytical function  U k  is defined as follows (Zhou [26]): 
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0

1

!

k

k

y

d u y
U k

k dy


 
  

  
 (19) 

and the inverse differential transformation is given by 
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Combining Eqs. (10) and (20) yields 
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It can be seen in Eq. (20) that the differential transformation method is derived from Taylor’s series expansion. In real 

applications, the sum   k

k n

U k y



  is very small and can be neglected when n  is sufficiently large. Therefore,  u y  can 

be expressed by a finite series, and Eq. (21) is written as 
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   
0

n
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u y U k y


  (22) 

where the value of n  depends on the convergence requirements in real applications and  U k  is the differential transform 

of  u y . Table 1 lists the basic mathematics operations frequently used in the following analysis. Taking differential 

transform of Eqs. (11-13) into account, one can obtain the transformed equations as 
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1 for 0
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


  

,  U k ,  N k ,  and  k  are the transformed notations of  u y ,  N y , and 

 y , respectively. The following relations are the transformed initial conditions: 

 0 0U  ,   11U c  

 0 0N  ,   21N c  

        0 q  ,   31 c   

(26) 

Table 1. The operations for the one-dimensional differential transform method. 
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Using the boundary condition (11), we can evaluate 1c , 2c  and 3c . Recurrence relations used in finding the solutions using 

DTM are as follows: 
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(27-cont.) 

Higher order recurrence relations can be obtained easily by using Eqs. (23) to (25). By utilizing DTM and the transformed 
boundary conditions, the above-mentioned equations finally lead to the solution of a system of algebraic equations. For 

5M  , 1E  , Re 2 , 3R  , Pr 0.733 , 1A  , 0.001B  , 1 1  , 1q  and 1  , we have found 1 0.41281159c   , 

2 0.201898003c  and 3 0.659387681c  .  

4. Results and Discussion 

  In the present study, the effect of temperature dependent heat sources on the fully developed free convection electrically 
conducting micropolar fluid between two parallel porous vertical plates in a strong cross magnetic field is analyzed. The 
governing equations are solved using DTM. The case of 0E   corresponds the short circuit case and 0E   corresponds to 
the open circuit case. To study the physical situation of this problem, we have computed the numerical values of the velocity, 
microrotation, and temperature in the channel and also find the skin friction, couple stress, and Nusselt number at the walls. 
The material constant 1  and the micropolar material constants A  and B  are taken to be constant as 1.0, 1.0, and 0.001, 

respectively. Whereas the effect of other important parameters, namely micropolar parameter R, Reynolds number Re, 
Hartmann number 2M , and Prandtl number Pr  has been studied for these parameters and the corresponding profiles are 
shown in Figs. 2–10. 

Table 2a. Values of  '' 0u  for different values of the Hartmann number M  and micropolar parameter R  for 0E  , 1A  , 

0.001B  , 1q  , Pr 0.733 , 1  , 1  . 

Re 2   

2M  3R   Bhargava et al.[16] R  2 5M   Bhargava et al.[16] 

0 0.271355 0.270853 0 1.834443 1.744551 

1 0.271052 0.268153 1 0.700700 0.648696 

5 0.269979 0.260610 3 0.269979 0.260610 

10 0.268881 0.254872 5 0.147928 0.152236 

Re 2  

0 0.135410 0.146179 0 0.411415 0.418457 

1 0.138005 0.153360 1 0.284084 0.313665 

5 0.147191 0.172302 3 0.147191 0.172302 

10 0.156548 0.184977 5 0.083764 0.108876 

 
Table 2b. Values of  ' 0  for different values of the Hartmann number M  and micropolar parameter R  for 0E  , 1A  , 

0.001B  , 1q  , Pr 0.733 , 1  , 1  . 

Re 2   

2M  3R   Bhargava et al.[16] R  2 5M   Bhargava et al.[16] 

0 -0.796134 -0.777345 0 -0.782739 -0.768676 

1 -0.796600 -0.778835 1 -0.641478 -0.777926 

5 -0.798150 -0.782115 3 -0.798150 -0.782115 

10 -0.799568 -0.783783 5 -0.800194 -0.783436 

Re 2  

0 0.639558 0.623848 0 0.644231 0.628725 

1 0.638955 0.621962 1 0.637290 0.622106 

5 0.636947 0.617790 3 0.636947 0.617790 

10 0.635104 0.615644 5 0.634592 0.616200 

Validity of the Differential Transform Method is shown in Tables 2a and 2b and 3. On the other hand, the present results for 
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the limiting case of 0E   in addition to the DTM solution used herein are validated by comparing the values with previous 
results.  Fifteen terms are taken into consideration while evaluating the solutions using DTM. Tables 2a and 2b show the 
comparison of the present study results with those of Bhargava et al. [16]. The results given in Tables 2a and 2b show an 
agreement to one decimal places. Moreover, the values of velocity u , microrotation *N , and temperature   obtained by 
DTM and RKSM solutions are shown in Table 3. 

Table 3. Comparison results of velocity, microrotation, and temperature with RKSM for 2 5M  , Re 2 , 3R  , and 0E   

Velocity 

y 
DTM 

RKSM 
Error 

5 terms 10 terms 15 terms RKSM-DTM 

1 0 0 0 0 0.00E+00 

0.9 0.01417910 0.01263415 0.01263506 0.01263506 0.00E+00 

0.8 0.02454914 0.02234027 0.02234088 0.02234088 0.00E+00 

0.7 0.03136758 0.02903311 0.02903320 0.02903320 0.00E+00 

0.6 0.03487777 0.03272158 0.03272125 0.03272125 1.00E-08 

0.5 0.03531561 0.03348893 0.03348836 0.03348836 0.00E+00 

0.4 0.03291628 0.03147736 0.03147672 0.03147672 0.00E+00 

0.3 0.02792090 0.02687650 0.02687592 0.02687593 0.00E+00 

0.2 0.02058328 0.01991536 0.01991495 0.01991495 0.00E+00 

0.1 0.01117658 0.01085763 0.01085742 0.01085742 0.00E+00 

0 0 0 0 0 0.00E+00 

 
Microrotation 

1 0 0 0 0 0.00E+00 

0.9 0.00484160 0.00425377 0.00425295 0.00425295 0.00E+00 

0.8 0.00610238 0.00539152 0.00539042 0.00539043 1.00E-08 

0.7 0.00495977 0.00438114 0.00438006 0.00438006 0.00E+00 

0.6 0.00241174 0.00207147 0.00207055 0.00207055 0.00E+00 

0.5 -6.87025E-4 -7.81598E-4 -7.82292E-4 -7.8229E-4 2.00E-09 

0.4 -0.00358896 -0.00348943 -0.00348990 -0.00348989 1.00E-08 

0.3 -0.00561741 -0.00540507 -0.00540533 -0.00540533 0.00E+00 

0.2 -0.00613052 -0.00589716 -0.00589728 -0.00589728 0.00E+00 

0.1 -0.00448501 -0.00432304 -0.00432306 -0.00432306 0.00E+00 

0 0 0 0 0 0.00E+00 

 
Temperature 

1 1.00000000 1.00000000 1.00000000 1.00000000 0.00E+00 

0.9 1.08867693 1.09066824 1.09057882 1.09057897 1.50E-07 

0.8 1.15075402 1.15360852 1.15350203 1.15350218 1.50E-07 

0.7 1.18899285 1.19200093 1.19190311 1.19190324 1.30E-07 

0.6 1.20607232 1.20882105 1.20873922 1.20873932 1.00E-07 

0.5 1.20457358 1.20685547 1.20679053 1.20679061 8.00E-08 

0.4 1.18696492 1.18870783 1.18865879 1.18865885 6.00E-08 

0.3 1.15558664 1.15680031 1.15676573 1.15676577 4.00E-08 

0.2 1.11263593 1.11337317 1.11335156 1.11335159 3.00E-08 

0.1 1.06015182 1.06048310 1.06047301 1.06047302 1.00E-08 

0 1.00000000 1.00000000 1.00000000 1.00000000 0.00E+00 

It can be found in Table 3 that an excellent agreement has been achieved between DTM and RKSM methods solutions. 
Table 3 also demonstrates the convergence rate of DTM. In general, fifteen terms of DTM approximation are sufficient to give 
a match with the numerical results to eight decimal places. This table shows that regarding these problem types, DTM 
converges more easily. The close correspondence between the present and numerical results lends further credibility to the 
methodology used in this study. Therefore, in summary, based on the aforementioned comparisons, DTM can achieve more 
satisfying results in predicting the solution of these types of problems. The present investigation is completed by depicting the 
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effects of some important parameters to evaluate how these parameters influence the fluid. 
Figure 2 illustrates the effect of Hartmann number 2M  on the velocity for the short circuit  1E    and the open circuit 

 0E  . Profiles are shown for both positive  Re 2  (i.e. for injection at 0y   and suction at 1y  ) and negative 

 Re 2   (i.e. for suction at 0y   and injection at 1y  ). As the Hartmann number increases, the velocity decreases 

when 0E   and 1, whereas velocity increases when 1E    for both suction and injection. The effect of a negative E  is 
to add the flow while the effect of a positive E  is to oppose the flow as compared to the case when 0E  . It is observed 
that the velocity is more for suction and less for injection for both open and short circuits. In particular for 0E  , velocity is 
more in the channel when there is injection at 0y   and suction at 1y   when compared to suction at 0y   and 

injection at 1y  . 

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.0 0.2 0.4 0.6 0.8 1.0
-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

5

1

M2 = 10

5

1

Re = -2 
Re = 2 
E = -1
R = 3

M2 = 0

u

y

10

5

0

Re = -2 
Re = 2 
E = 0

10

5

1

1

M2 = 0

u

y

Re = -2 
Re = 2 
E = 1

10

5

1

M2 = 0

u

y
 

Fig. 2. Velocity profiles for different values of Hartmann number, electric load parameter, and Reynolds number with 3R  , 1A  , 
0.001B  , 1q  , Pr 0.733 , 1  , 1  . 
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Fig. 3. Microrotation for different values of Hartmann number, electric load parameter, and Reynolds number with 3R  , 1A  , 
0.001B  , 1q  , Pr 0.733 , 1  , 1  . 
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  The effect of Hartmann number 2M  on the microrotation velocity N  for the fixed 3R   is shown in Fig. 3. The 
microrotation velocity increases as the Hartmann number increases at 0y   and decreases at 1y   for the short circuit. 

But for the open circuit, the microrotation velocity decreases at 0y   and increases at 1y   when 1E   , whereas 

reversal effect is observed when 1E  . It is also observed in Fig. 3a that the microrotation velocity enhances for injection and 
suppresses for suction when 1E   . But when 1E   the microrotation velocity enhances for suction and suppresses for 
injection as shown in Fig. 3b. The similar effect is noticed when 0E  . 

  Figure 4 depicts the temperature profiles for different values of the Hartmann number 2M  and the electric load parameter 
E . For the open circuit, the effect of increasing Hartmann number is to decrease the temperature and for the short circuit the 
effect of Hartmann number is invariant on temperature. It is also observed that the effect of magnetic field for injection on 
temperature shows an increase in the upward direction, whereas for suction, it shows reduction in the downward direction of 
temperature distribution for the open circuit. 
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Fig. 4. Temperature for different values of Hartmann number, electric load parameter, and Reynolds number with 3R  , 1A  , 

0.001B  , 1q  , Pr 0.733 , 1  , 1  . 
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Fig. 5. Velocity profiles for different values of micropolar parameter, electric load parameter, and Reynolds number with 2 5M  , 

1A  , 0.001B  , 1q  , Pr 0.733 , 1  , 1  . 
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  The behavior of velocity field on the micropolar parameter and the electric load parameter for both suction and injection is 
shown in Fig. 5. As the micropolar parameter increases, the velocity decreases for 1E    and 0 whereas it increases in 
downward direction for 1E  . It is observed in Fig. 5 that the velocity is the same for injection and suction when 1E    
whereas the velocity is higher for suction as compared to injection for the short circuit  0E   as shown in Figs. 5(a, b). It is 

observed in Fig. 4c that when 1E  , the velocity is higher for injection and lower for suction. 
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Fig. 6. Microrotation for different values of micropolar parameter, electric load parameter, and Reynolds number with 2 5M  , 1A  , 
0.001B  , 1q  , Pr 0.733 , 1  , 1  . 
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Fig. 7. Temperature for different values of micropolar parameter, electric load parameter, and Reynolds number with 2 5M  , 1A  , 
0.001B  , 1q  , Pr 0.733 , 1  , 1  . 

  The effect of micropolar parameter and the electric load parameter on the microrotation velocity is shown in Fig. 6. As the 
micropolar parameter increases, the microrotation velocity decreases in the left half of the region and increases in the right half 
of the region for 1E    and 0 m, whereas the microrotation velocity increases in the left half of the region and increases in 
the right half of the region. The microrotation velocity is higher in the left half of the region and lower in the right half of the 
region for suction as compared to injection for both open and short circuits.  
  The effect of micropolar parameter and electric load parameter on the temperature is shown in Fig. 7. As the micropolar 
parameter increases, the temperature decreases for both injection and suction. Moreover, in this case, the temperature is higher 
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for suction as compared to injection. It is observed in Fig. 6 that the temperature is invariant for the short circuit as compared 
to the open circuit. Since the temperature distribution depends upon  , therefore, for Re 0 , it increases and attains a 
maximum and then decreases. 
The skin friction and couple stresses have been given for Re 2   and 2 in Figs. 8a and 8b, respectively, which show their 
variation with respect to the Hartmann number 2M  for a fixed value of the micropolar parameter. From the Fig. 8, it is 
noticed that the skin friction and couple stresses decrease with the increase in Hartmann number at both walls for both 
injection and suction. Moreover, it is observed that at the left wall, the skin friction is predominating for suction whereas at the 
right wall, the injection is predominating. The effect of micropolar parameter on the skin friction and couple stresses is shown 
in Fig. 9 for fixed Hartmann number 2 5M  . As the micropolar parameter increases, the skin friction at the right wall 
decreases whereas the skin friction at the left wall increases as can be seen in Fig. 9a. It is observed that the skin friction is 
more effective for suction as compared to injection. The micropolar parameter decreases the couple stresses at both walls for 
injection and suction as can be seen in Fig. 9b. 
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Fig. 8. Skin friction and couple stresses for different values of Hartmann number and Reynolds number with 2 5M  , 1E   , 1A  , 

0.001B  , 1q  , Pr 0.733 , 1  , 1  . 
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Fig. 9. Skin friction and couple stresses for different values of micropolar parameter and Reynolds number with 2 5M  , 1E   , 
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  Figures 10a and 10b show the effect of Hartmann number 2M  and micropolar parameter R  on Nusset number on both 
walls. It is observed that as the Hartmann number increases, the Nusselt number  0Nu  at the left wall decreases whereas 

Nusselt number  1Nu  at the right wall increases for both injection and suction as can be seen in Fig. 10a. It is also seen in 

Fig. 10a that the Nusselt number is more effective for injection as compared to suction. As the micropolar parameter R  
increases, the Nusselt number  0Nu  at the left wall increases whereas the Nusselt number  1Nu  at the right wall 

decreases and become constant at 4R   for injection as can be seen in Fig. 10b. Moreover, in this case, the Nusselt number 
is more effective for injection when compared to suction. 
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Fig. 10. Nusselt number for different values of (a) Hartmann number (b) micropolar parameter and Reynolds number with 2 5M  , 
1E   , 1A  , 0.001B  , 1q  , Pr 0.733 , 1  , 1  . 

5. Conclusion 

  In this study, the effect of temperature-dependent heat sources on the fully developed free convection electrically conducting 
micropolar fluid between two parallel porous vertical plates in a strong cross magnetic field was investigated. The solutions 
were obtained from DTM, and indicated what these solutions mean in terms of the relative importance of the various 
micropolar parameters on this kind of flow prediction. Complementary numerical solutions were obtained via Runge – Kutta 
shooting method and a very excellent agreement between the solutions obtained from DTM and the computations was 
observed for suction. Moreover, the results of velocity and temperature gradient were compared with Bhargava et al. [16] and a 
good agreement between the results was observed for both suction and injection in the absence of applied electric field. After 
ensuring the validity, results were given for the velocity, microrotation, and temperature for various values of governing 
parameters. It was found that the increase in the Hartmann number had different effects on velocity, microrotation, and 
temperature. The micropolar parameter reduced the velocity and the temperature whereas enhanced the microrotation in the 
half of the region. The Hartmann number and the micropolar parameter decreases the skin friction and couple stresses. The 
Nusselt number increased with the Hartmann number on the right wall and decreased on the left wall whereas the micropolar 
parameter decreased the Nusselt number on the right wall and increases on the left wall. The results were in good agreement 
with Bhargava et al. [16] and the existing numerical results and therefore elucidated the reliability and efficiency of DTM. The 
comparisons made suggested that the DTM could be a useful and effective tool in solving systems of nonlinear differential 
equations of the micropolar flow through the porous channel walls with applied electric and magnetic fields. 
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