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Abstract. In this paper we develop a numerical procedure using finite element and augmented Lagrangian meth-
ods that simulates electro-mechanical pull-in states of both cantilever and fixed beams in microelectromechanical 
systems (MEMS) switches. We devise the augmented Lagrangian methods for the well-known Euler-Bernoulli 
beam equation which also takes into consideration of the fringing effect of electric field to allow a smooth transi-
tion of the electric field between center of a beam and edges of the beam. The numerical results obtained by the 
procedure are tabulated and compared with some existing results for beams in MEMS switches in literature. This 
procedure produces stable and accurate numerical results for simulation of these MEMS beams and can be a useful 
and efficient alternative for design and determining onset of pull-in for such devices. 

Keywords: Microelectromechanical switch, Pull-in, Microbeam, Finite element solutions, Augmented Lagrangian methods. 

1. Introduction 

    It is well-known that the beam-shaped microelectromechanical systems (MEMS) switches have many important 
applications, see, e.g., [1]. Sensors used in measuring blood pressure gradients in-vivo, in controlled micro robotic joints, in 
inkjet printers and in optical scanners are some examples of applications of such kind of switches, see e.g., [2] and [3] and the 
references therein. It is well known that the microbeams are susceptible to an instability known as pull-in. When the applied 
voltage is increased beyond a critical value, which is called the pull-in voltage, stable equilibrium positions of the microbeam 
cease to exist. This kind of instability greatly limits the range of stable operation of microbeams, see e.g., [4] and [5]. It is 
highly desirable to delay the onset of pull-in for better performance of the beams. The pull-in voltage depends on factors 
including the structural stiffness and the geometry of the microbeam and the residual stress etc. For a survey of such pull-in 
stability analysis of various MEMS devices, see, e.g., [6]. Researchers have also investigated the MEMS pull-in phenomenon 
using methods such as the penalty method [7], the normal flow algorithm [8], and the finite element methods [9, 10, 11]. More 
recently, see [12], in which finite element procedures based on commercial codes are presented for similar problems. 
It is the goal of this work to provide a useful and efficient alternative procedure for numerical simulations of the beam devices 
studied in [4] and [5]. For completeness, we present the mathematical model considered in these two papers in the following. 
We begin with Table 1, listing the mechanical properties and the geometric quantities involved in the modelling and then we 
state the mathematical problems. 
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Table 1. Definitions of symbols. 

Symbol Definition 

Ê  effective modulus in [Pa]= 
2/ (1 ),

,

E

E

 



 
if 5w t  (wide beams) 

if 5w t  (narrow beams) 

I  

moment of inertia of cross-section of rectangular microbeam where origin of coordinates is the centroid of the cross-

section A. 
3

2 42

3 2A

w t
I y dydz m           

v  deflection of the rectangular microbeam switch in [m], range= [0; g]  
x  independent variable indicating beam location, range= [0; L] 

aT  axial force in microbeam =  wt N  

rT  residual force of fixed-fixed microbeam=  ˆwt N  

0  vacuum permittivity in [F/m] 
w  width of microbeam in [m] 
U  voltage applied to the microbeam switch in [V] 
g  initial gap between the microbeam and the center conductor in [m] 

[0, L] endpoints of the microbeam, L is the length of microbeam in [m] 
E  Young’s modulus in [Pa] 
  Poisson’s ratio 
t  thickness of microbeam in [m] 
  axial stress in [Pa] 
̂  residual stress= (1 )r   [Pa], equals zero for cantilever beam 

L  
beam elongation/compression in [m] due to axial stress

2

0

1

2

L dv
dx

dx
    
   

r  biaxial residual stress in [Pa] 
 

Sadeghian, et al. [5] used a generalized differential quadrature method (GDQM) for the numerical simulations of microbeams 
governed by the Euler-Bernoulli beam equation: 

2
0

2
ˆ( ) ( ) ,0 ,

2( ( ))t a

wU
EIv T T v x L

g v x

      


 (1) 

Where aT = wt
2

0

ˆ( / (2 )) .
L

Ewt L v dx   The boundary conditions considered are: 

(0) 0, (0) 0, ( ) 0, ( ) 0v v v L v L       (2) 

For fixed-free cantilever beams, and 

(0) 0, (0) 0, ( ) 0, ( ) 0v v v L v L      (3) 

For fixed-fixed beams. The above boundary value problems are considered by many as standard models for simulation of 
the microbeams in MEMS switches made of elastic materials. We adopt the standard notations and symbols appeared in the 
mathematical terms throughout this paper and list them in Table 1 with their definitions and explanations. 

Zhang and Zhao [3], Sadeghian, et al. [5], and Ghazavi, et al. [11] also considered the socalled Fringing effect of electric 
field to allow a smooth transition of the electric field between center of a beam and edges of the beam. That effectively changes 
Eq. (1) into: 

2
0

2

(1 )ˆ( ) ( ) ( ),
2( ( ))

0.65( ( )) / ,0 .

f
r a

f

wU f
EIv T T v f v

g v x

f g v x w x L

 
     


   


 (4) 

According to the pioneering work by Ghoussoub and Guo [13], the pull-in voltage for a microbeam described by Eq. (4) 
may be defined as a finite value U * such that: 

1. if *0 U U  there exists at least one solution for Eq. (4); 
2. If U > U 

*, there is no solution for Eq. (4). 
Due to nonlinearity involved in coefficient aT  and in function  f v  for Eq. (4), we’ll estimate the pull-in voltage U  

* 

using the augmented Lagrangian methods introduced in this paper. We will use augmented Lagrangian methods with Hermite 
cubic finite element for Euler beams to simulate the pull-in deflections by solving Eq. (4) with the two standard boundary 
conditions stated in Eqs. (2) and (3), respectively. The algorithm and the code developed based on these methods can provide 
maximum deflections and maximum stresses which are important data for designing stronger and more reliable devices of this 
type. The pull-in simulations of both cantilever and fixed–fixed beam MEMS switches have been implemented by using the 
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data investigated by Hu, et al. [2], and by Sadeghian, et al. [5]. These results obtained from the simulations are expected to be 
useful in the optimum design of MEMS switches or other actuators. Because the three terms in Eq. (4) are quantities of 
different magnitudes, it is necessary to non-dimensionalize the equation before we begin numerical computations of its 
approximate solutions. 

2. Formulation of Augmented Lagrangian Methods for Microbeams 

We’ll convert the problem in Eq. (4) into an appropriate Lagrangian in this section. 

2.1 Non-dimensionalization of the Euler-Bernoulli Beam Equation 

Since v is the deflection of the microbeam from the stationary position that is expected to have a range in [0; g], and x is the 
coordinate in domain [0; L], we may non-dimensionalize Eq. (4) by introducing the following variables. 

( )
, ( ) ( ) ( ).

x v x
x L and v x g

L g
            (5) 

By definition,   [0, 1] and   [0, 1] are both dimensionless. As a result, the non-dimensionalized Euler-Bernoulli beam 

equation becomes: 

1 3( ) ( ) ( ), 0< <1,f            (6) 

where 
2

2 2
0

12
( ) ( ) ,

(1 ( ))
ffg

f f v
wU


  


 


  (7) 

( ) 0.65
0.65 (1 ),f

g v x g
f

w w
     

 (8) 

2 22 2 2 21

1 0

( )
( ) ,

ˆ ˆ ˆ ˆ 2
r a ar rT T L T LT L T L wtg

y y d
IEI EI EI EI

 


       (9) 

2 4
0

3 3
.

ˆ2

wU L

EIg


   (10) 

The boundary conditions in Eqs. (2) And (3) become: 

(0) 0, (0) 0(plus (1) 0, (1) 0 for fixed-fixed beams)         (11) 

2.2 The Associated Minimization Functional 

With standard manipulations, we can derive a minimization problem whose stationary point corresponds to a solution 
to the non-dimensionalized Euler–Bernoulli beam Eq. (6). 

Minimize
22 21 1 1 12

1 2 30 0 0 0

1
( ) ( ) ,

2
I d d d F d                  

      (12) 

where 
2

1 ,
ˆ2

rT L

EI
   (13) 

2

2 ,
8

wtg

I
   (14) 

subject to boundary conditions (11). Here, ( )F  is defined in Eq. (15). 

2

2

( )
( ) ( ),

1
( ) ( )

(1 ( ))
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1 (1 ) 1 0.65

(1 ).
1(1 ( ))

f
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F f

d

f
F f d d

g
gw d ln

w

  


   
 


 

 

 


 



 
   



 



 
(15) 

Parameter 1  (y) as defined in Eq. (9) can also be expressed in terms of 1  and 2 : 
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21

1 1 2 0
( ) 2 4 .y y d       (16) 

Notice that 1  (through rT ) is the coefficient for a term associated with longitudinal forces on the beam. We can model 

cantilever beams using the minimization problem (12) by assuming that 1  is zero. 

2.3 Formulating the Associated Lagrangians 

Straightly based on algorithms proposed by Fortin and Glowinski [14], we can develop a Lagrangian shown in Eq. (17) that is 
associated with the minimization functional (12). 

22 21 1 1 12

1 2 30 0 0 0

1 1

0 0

1
( , , , , ) ( )

2

( ) ( ) .

p q q d p d p d F d

p d q d

          

     

     
 

    

   

 


 (17) 

Here, p and q are supplementary variables that are linked to  by the linear equality relations 

0, 0,p q       (18) 

And ,  are Lagrangian multipliers. An associated augmented Lagrangian of (17) is 

1 12 2
, 0 0

( , , , , ) ( , , , , ) ( ) ( ) ,
2 2r s

r s
L p q p q p d q d                 (19) 

Where r > 0 and s > 0 are two pre-chosen constants. We require that 
2 0 0 0(0,1), (0,1), (0,1), , (0,1),H p H q H H       (20) 

In order for Lagrangian (17) and the augmented Lagrangian (19) to exist, along with the appropriate boundary condition 
requirements. Here, H0(0, 1), H1(0, 1), and H2(0, 1) are Sobolev (Hilbert) spaces [14] consist of square–integrable functions 
over [0; 1] having 0-th, 1st and 2nd weak derivatives that are also square–integrable over [0; 1] , respectively. With simple 
manipulations, we can show that a saddle point of augmented Lagrangian (19) corresponds to a weak solution to Eq. (6). For 
brevity, we omit the derivation here. However, requirement (20) is too demanding on   for numerical simulations. A slightly 

different Lagrangian with a weaker requirement on   is proposed next. Alternatively, based on algorithms proposed by Fortin 

and Glowinski [14], we can also develop a Lagrangian shown in Eq. (21) that is associated with the minimization functional 
(12). 

22 21 1 1 12

1 2 30 0 0 0

1 1

0 0

1
( , , , , ) ( )

2

( ) ( ) .

p q q d p d p d F d

p d p q d

          

    

     
 

   

   

 


 (21) 

Here, p and q are supplementary variables that are linked to   by the linear equality relations 

0, 0,p q p       (22) 

And ,  are Lagrangian multipliers. An associated augmented Lagrangian of (21) is: 

1 12 2
, 0 0

( , , , , ) ( , , , , ) ( ) ( ) ,
2 2r s

r s
L p q p q p d p q d                (23) 

where r > 0 and s > 0 are two pre-chosen constants. We require that 
1 1 0 0(0,1), (0,1), (0,1), , (0,1),H p H q H H       (24) 

Table 2. Boundary conditions for augmented Lagrangian 

   p  q  

Cantilever beams  (0)=0,  (0)=0 p (0)=0 None 

Fixed-fixed  (0)=0,  (0)=0 p (0)=0 None 

beams  (1)=0,  (1)=0 p (1)=0 None 
 

in order for Lagrangian (21) and the augmented Lagrangian (23) to exist. We also enforce boundary conditions as listed in Eq. 
(11), summarized in Table 2. With simple manipulations, we can again show that a saddle point of augmented Lagrangian (23) 
corresponds to a weak solution to Eq. (6). For brevity, we omit the derivation here. Notice that requirement (24) is weaker on 
  than in requirement (20). Augmented Lagrangian (23) is therefore preferred over augmented Lagrangian (19) for the 

purpose of numerical simulations. 
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Table 3. ALG1: Finding a saddle point of augmented Lagrangian (23). 

1. Choose arbitrary initial guess  (0) and  (0). 

2. For k ≥ 0, calculate ( ) ( ) ( )( , , )k k kp q V  , by 

(1) ( ) ( ) ( ) ( ) ( ) (1) ( ) ( )
, ,

( , , )

( , , , , ) ( , , , , ),mink k k k k k k
r s r s

p q V

L p q L p q


     


  (25) 

subject to boundary conditions in Table 2, where 1 1 0(0,1) (0,1) (0,1),V H H H   and calculate ( 1) ( 1) 0, (0,1)k k H    by 

( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )
1 2(( ) ), (( ) ),k k k k k k k kq p q               (26) 

Where 1 and 2 are two pre-chosen positive constants. 

3. Check for convergence. Repeat the above procedure when needed. Convergence is reached when the following conditions 
are met 

( 1) ( ) ( )

( 1) ( ) ( ) ( 1) ( ) ( )

,

, ,

k k k
r

k k k k k k
r rp p p q q q

   

 



 

  


   
 (27) 

For a pre-chosen relative tolerance r . 

In Table 3, we introduce the algorithm that finds a saddle point of augmented Lagrangian (23), based on the algorithm 
proposed by Fortin and Glowinski [14] (page 108, ALG1). Fortin and Glowinski [14] (page 110, ALG2) further propose to use 
another iteration (inner iteration) to find the stationary point in Eq. (25), as shown in Table 4. A computational flow chart that 
illustrates the augmented Lagrangian methods applied to Eq. (6) is shown in Fig. 1. It is possible but highly unlikely that one 

would be able to solve for  ,k m ,  ,k mp  and  ,k mq  exactly from Eqs. (28) and (29), respectively. In practice, we use the 

standard finite element methods with cubic Hermite shape functions to find approximate solutions to ( . )k m , ( . )k mp  and 
( , )k mq . Details of finite element approximations are therefore omitted here. 

Table 4. ALG2: Finding ( ) ( ),k kp and ( )kq with an inner iteration. 

1. For a fixed k, ( ,0) ( 1) ( ,0) ( 1), .k k k kp p q q    

2. For 1m  , 
1( ) (0,1)a H  that satisfies boundary conditions in Table 2, solve Eq. (28) for  ( , ) ,k m   

(1) ( . ) ( , 1) ( , 1) ( ) ( )
,

0

( ( ) , , , , ) 0,lim k m k m k m k k
r s

t

L t p q
t

     




 


 (28) 

subject to boundary conditions in Table 2. 

(b) Using ( . ) ( )k m  calculated in the previous step, 1
1 (0,1)H  that satisfies p -boundary conditions in Table 2, and 

0
2 (0,1)H  that satisfies q -boundary conditions in Table 2, solve system of Eq. (29) for ( , ) ( )k mp  and ( , ) ( )k mq  , 

(1) ( . ) ( , ) ( , ) ( ) ( )
, 1 2

, 0

( ( ), , , , ) 0,
( , )lim k m k m k m k k

r sL p q
 

     
 


  


 (29) 

subject to boundary conditions in Table 2. 
3. Repeat for a certain number of times, or until convergence. Then 

( ) ( . ) ( , ) ( . ) ( ) ( . )

1 1 1

, , .lim lim limk k m k m k m k k m

m m m

p p q q 
  

    (30) 
 

 
Fig. 1. Computational flow chart of augmented Lagrangian methods. 
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3. Further Discussions 

In the previous section, we’ve demonstrated that the augmented Lagrangian methods may be used to formulate a numerical 
algorithm that finds approximate solutions to the Euler-Bernoulli beam equation. The new approach takes advantage of a 
reformulation of the Euler-Bernoulli beam equation into an optimization problem. It then applies the augmented Lagrangian 
methods that introduce additional variables in place of derivatives of the deflection function u. As it is well-known, there are 
many more beam theories besides the Euler-Bernoulli theory. One of the widely used beam theory is the Timoshenko beam 
theory. Unlike the Euler-Bernoulli beam theory where only the effects of bending moment were considered, the Timoshenko 
beam theory takes into account shear deformation and rotational bending effects. See [15, 16] for introductions, and [17, 18, 19, 
20, 21] for some of the more recent applications of the theory. As indicated by Fortin and Glowinski [14], the augmented 
Lagrangian methods may be applied to all kinds of optimization problems where the functionals involved are dependent of 
derivatives of the variable function(s). For Timoshenko beams, at least in the case of static Timoshenko beam equations [17, 
21], the authors believe that the augmented Lagrangian methods may be helpful in providing a reliable and stable algorithm for 
finding numerical solutions to Timoshenko beam equations, since the beam equations can be reformulated as optimization 
problems too. We plan to investigate applications of the augmented Lagrangian methods to Timoshenko beam equations in our 
future studies. 

4. Numerical Results 

In the current section, we present numerical results obtained by applying augmented Lagrangian methods to solve the Euler-
Bernoulli beam Eq. (6), subject to boundary conditions (11) using Lagrangian (23). The test problems are one case of 
cantilever beam studied by Hu, Chang and Huang [2], and one case of fixed-fixed beams studied by Sadeghian, Rezazadeh and 
Osterberg [5]. 
We list common geometric and material properties of the beams under study in Table 5. Our numerical results from augmented 
Lagrangian methods match with those from [2] and [5] very well, as shown in Tables 6 and 7. 

Table 5. Geometric and material properties of beams. 

Parameters beam in [2] beam in [5] 
Width w 5mm 50 μm 
Length L 20mm 250/350 μm 

Thickness t 57μm 3 μm 
Initial gap g 92μm 1 μm 

Young’s modulus E 155.8GPa 169 GPa 

The vacuum permittivity is 0 = 8:854 pF/m for all beams. Poisson’s ratio   = 0.06 is used for the beam in [5] because the 

effect of residual stress is incorporated. Because of parameters 1  and 2 in ALG1 of Table 3, as well as parameters r and s 

in ALG2 of Table 4, the augmented Lagrangian methods are highly flexible.  
 

Table 6. Numerical results for the cantilever beam by ALM. 

Voltage (V) End gap (μm) [2] End gap (μm) by ALM Relative error 

1 2 0.00208, 458.0r s      

20 90.50 90.29 -0.23% 
40 84.60 84.56 -0.05% 
60 70.00 71.04 1.48% 
65 64.00 63.81 -0.30% 
67 59.00 58.81 -0.32% 

1 2 1.0, 615.0r s      

20 90.50 90.24 -0.29% 
40 84.60 84.34 -0.31% 
60 70.00 70.54 -0.78% 
65 64.00 63.44 -0.87% 
67 59.00 59.01 0.02% 

 
Table 7. Numerical results for fixed-fixed beams by ALM. 

 Beam length  L = 250 μm Beam length L = 350 μm 

Stress(MPa) Pull-in voltage [5] 
Pull-in voltage 

by ALM 
Relative 

error 
Pull-in voltage 

[5] 
Pull-in voltage 

by ALM 
Relative error 

0 40.10 39.80 -0.75% 20.30 20.15 -0.74% 
100 57.60 57.50 -0.17% 35.80 35.70 -0.28% 
-25 33.60 33.66 0.18% 13.70 13.68 -0.15% 

In other words, there are “four degrees of freedom” that one can use to fine-tune algorithms ALG1 and ALG2 to produce 
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the best results possible. This is demonstrated in Table 6 where results from two different sets of parameters were calculated 
with different degrees of accuracy. Fortin and Glowinski have also given out recommendations on how parameters should be 
chosen in [14]. Generally speaking, an augmented Lagrangian method is an iterative method as shown in Table 3. However, it 
incorporates an inner iterative process as indicated in Table 4 as well as in Fig. 1. The number of inner iterations is a parameter 
to be chosen for each problem the method solves. Our numerical results have demonstrated that even though using one inner 
iteration may be acceptable in certain cases, using two inner iterations will improve results dramatically. Furthermore, using 
more than two inner iterations for each inner loop does not seem to affect much of the outcomes. See Table 8 for details. 

5. Conclusion 

An algorithm is developed based on the Augmented Lagrangian Methods for numerical simulation of the pull-in 
phenomenon in design of MEMS beam switches. The algorithm is implemented by using finite elements to create a computer 
code which is run successfully using some standard data and parameters in literature. It has provided stable and accurate 
solutions comparing with those in literature. This algorithm can be useful, stable, and efficient alternative for design and 
simulation of such devices. 

Table 8. Effects of inner iterations of ALM. 

Voltage (V) Error with 1 iter. Error with 2 iter. Error with 5 iter. 
20 -0.12% -0.23% -0.23% 
40 0.50% -0.05% -0.05% 
60 4.03% 1.48% 1.48% 
65 4.59% -0.30% -0.30% 
67 7.76% -0.32% -0.33% 
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