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Abstract. In order to improve the approximation of spatial derivatives without meshes, a set of meshfree numerical 
schemes for derivative terms is developed, which is compatible with the coordinates of Cartesian, cylindrical, and 
spherical. Based on the comparisons between numerical and theoretical solutions, errors and convergences are 
assessed by a posteriori method, which shows that the approximations for functions and derivatives are of the 
second accuracy order, and the scale of the support domain has some influences on numerical errors but not on 
accuracy orders. With a discrete scale h=0.01, the relative errors of the numerical simulation for the selected 
functions and their derivatives are within 0.65%. 

Keywords: Meshfree method; Smoothed particle hydrodynamics; Physics evoked cloud method; Approximation of spatial 
derivative; Verification and validation. 

1. Introduction 
  Approximate calculation of the function and its spatial derivative is the key to solving the partial differential equation for 
meshfree numerical method [1-3]. This technique is mainly concerned with the compatibility, stability, and convergence of the 
numerical schemes, and its credibility can be evaluated in conjunction with code verification process. The main purpose of 
code verification is to verify the correctness of the numerical algorithm and its corresponding code. Since the mathematical 
model involved in the numerical calculation is usually more complex, a priori analysis method based on mathematical theory 
would encounter great difficulties; therefore, code validation of the numerical simulation is often completed by means of a 
posteriori analysis method with resort to the contrast information of numerical solution and high confidence reference solution 
[4-5]. As for the existing meshfree algorithm based on kernel estimation, the derivatives involved are mostly limited to 
Cartesian coordinates or relatively simple derivative forms. The posterior evaluation is also based on qualitative or semi-
quantitative comparison analysis [6 -17]. 
  With the continually expanding application field of meshfree method, the entity model concerned may have different 
symmetry characteristics, so it requires numerical calculation to be able to handle different coordinate system types. 
Calculation ability of first order spatial derivatives such as gradient, divergence, and rotation, and second order spatial 



  Zhibo Ma and Yazhou Zhao, Vol. 4, No. 3, 2018  

Journal of Applied and Computational Mechanics, Vol. 4, No. 3, (2018), 231-244 

232
derivatives such as Laplacian and dissipative terms for the meshfree numerical schemes is necessary in the numerical 
simulations of complex processes involving fluid, solid, and heat transfer. In terms of reliability assessment of numerical 
simulation, the continuous development of verification and validation (V&V) technique has also provided more and more 
technical support for the comprehensive evaluation based on qualitative and quantitative analysis. Among them, the 
quantitative evaluation of the convergence accuracy level has become an important technical content of convergence analysis 
[18-20]. 
  There are three aspects in the engineering application of the meshfree numerical calculation of the function and its derivative: 
First, compatibility, convergency, and has the required precision degree; Second, has the ability to adapt to different coordinate 
systems; and Third, simple, efficient, and easy to program. The SPH (Smoothed Particle Hydrodynamics) method, proposed by 
Gingold and Monaghan, constructs the numerical approximation scheme based on the kernel estimation idea, its structure is 
simple and independent of the form of the approximated function. Also, it is helpful to quickly solve the differential equations 
containing multiple unknowns [1]. Liu proposed the RKPM (Reproducing kernel particle method) method to correct the SPH 
kernel function so as to improve the kernel estimation accuracy of the boundary or interior point based on the volume and 
position information of the neighboring particles in the supporting domain [8]. Using the first order derivative of the kernel 
function to approximate the unknown first order derivative, it is generally possible to give a better approximation accuracy. 
But, if the second order derivative of the kernel function is used directly to estimate the unknown second order derivative, 
whether using SPH or RKPM kernel function, the approximation accuracy is significantly decreased [16]. 
  For the second order derivative of arbitrary function, inspired by the finite difference idea, Brookshaw proposed an 
approximation method with comparatively high accuracy based on the first derivative of kernel function and gave the kernel 
estimation algorithm of the Laplacian operator in Cartesian coordinates [21]. On the basis of similar ideas, Cleary, Zhang, and 
Basa gave the kernel estimation algorithm for the second order derivatives in the Cartesian coordinates framework including 
dissipation term in the simulation of heat transfer and viscous flow [22-24]. In order to extend the meshfree method to simulate 
complex physical processes involving multiple types of materials, using the numerical approximation method of kernel 
estimation, the author Ma proposes a meshfree method called PECM (Physics Evoked Cloud Method) and illustrates the 
designing ideas and numerical schemes of this method in the paper [25]. Among them, a meshfree algorithm which is simple, 
efficient, and adaptable to the Cartesian, cylindrical, and spherical coordinates for the common first and second order 
derivative form is presented. In addition, based on these new algorithms, a meshfree numerical simulation software HAUC 
(How Are Universes Cuddling) applicable to complex multi-physics process is developed [25]. 
  In this paper, first of all, the calculation scheme of derivatives in HAUC software is deduced theoretically, then, the 
compatibility, convergence, and the accuracy grade of convergence of the scheme are evaluated by posterior analysis. Based on 
the arbitrary given function type, the convergence of the numerical scheme is evaluated qualitatively and semi-quantitatively 
by the consistency of the numerical and the exact solution and the observation of the error norm decreasing with the discretized 
scale according to power law. Moreover, on the basis of the error norm, the quantitative evaluation of the accuracy level of the 
numerical scheme is performed followed by the evaluation results of the code verification given in the conclusion. 

2. Meshfree approximation of function and its spatial derivative 
2.1 Meshfree numerical scheme 
  The meshfree method estimates the functions and their derivatives at a certain spatial position by the function information of 
discrete elements in the support domain. In the field of computational mathematics and applied physics, the commonly used 
derivatives are generally not higher than the second order, and their meshfree approximate estimation can be expressed as: 
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  The above three formulas also apply to the function of the vector form  jf ξ , where the input information on the right hand 
of the terms are the function values carried by the material points scattered in the space. Here we note that for the discrete 
element i, there are N neighbor particles in the support domain, j is the label number for them, vector ξ is the coordinate of the 
discrete element, and   and   are the components representing the coordinate. For the Cartesian coordinate system 1, the 
three coordinate components 1ξ , 2ξ  and 3ξ  are x, y, and z, respectively. While the three corresponding coordinate components 
for the cylindrical or spherical coordinate system are r, z and  , (0 , , 0 2 )r z           and r,  and   
(0 , 0 2 , 0 )r           , respectively. 
  According to the technical specifications of V&V, the purpose of code validation is to test whether the meshfree method 
chooses the correct j , j , and 

j  and correctly represents the discrete expression in the code to ensure that the 
approximate calculation of the function and derivatives satisfies the expected demand. The original function and derivative 
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types involved in this paper are scalar functions  ξf ,  ξ , and  ξ , respectively; and the vector functions  ξV  whose three 
coordinate components are  ξ1V ,  ξ2V , and  ξ3V ，gradient function  ξf , rotation function  ξV , divergence function 

 ξV , Laplacian operator  ξf , and dissipation term     ξξ   . For the above functions and derivative forms, Ma in 
HAUC proposes the following calculation schemes as: 
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  where “ : ” is a specific vector operator in the formulas (7-9); for example, if ],,[ 321 aaaa  and ],,[ 321 bbbb , then: 

 332211 ,,: babababa  (10) 

  Each variable is defined the same as in [25], where jiij rrr   
is the vector difference between the two discrete elements i and 
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  Formula (11) applies to one-dimensional, two-dimensional, and three-dimensional problems in Cartesian coordinate systems, 
one-dimensional and two-dimensional problems under cylindrical coordinates, and one-dimensional problems under spherical 
coordinates. Under cylindrical or spherical coordinates, 1  corresponds to the radial coordinates and satisfies  10  . 

2.2 Derivation of the numerical scheme 
2.2.1 Theoretical basis 
  Derivation of the first order derivative approximation of the gradient, divergence, and rotation in the SPH formulation has 
been completed in the early literature. The basic idea is to transform the derivative of the objective function into the derivative 
of the known kernel function by integral by part and Gaussian formula, combined with the compactness of the kernel function 
in the support domain. When the RKPM kernel function is used, the corresponding divergence numerical scheme is: 
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  For operators involving second order derivative, the more accurate Brookshaw scheme can be expressed as: 
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  Formulations (4-6) do not change with the type of coordinate system; the derivation can be seen in the early literature [1, 8]. 
Equations (7-9) involve the calculation of divergence, Laplacian operator, and dissipation term. The numerical scheme is 
related to the type of the selected orthogonal coordinate system. If only the direction of the cylindrical coordinates 1 is 
considered, we have: 
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  If only the direction of the spherical coordinates 1 is considered, we have: 
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  When the numerical simulation of practical problem is performed, it is possible to avoid the calculation of the derivative in 
the direction of 3 under the cylindrical coordinates and in the direction of 2 and 3 under the spherical coordinates by 
selecting the appropriate coordinate system. Therefore, based on the derivative form in the direction of 1 and 2 under the 
cylindrical coordinates and in the direction of 3 under the spherical coordinates, the numerical scheme of the coordinates (7-
9) under the cylindrical coordinates and the spherical coordinates are deduced. 

2.2.2 Deduction of the numerical scheme under the cylindrical coordinates 

  For the divergence terms, by combining (12) and (15), we have: 
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  For the Laplacian operator, by using the approximate relation of first order small quantity (the approximate error is the second 
order small), we have: 
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  By combining (14) and (16), we get: 
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  For the dissipation term, ignore the second order small quantity    - /j i j i i      ξ ξ ξ ξ ξ and approximate the coefficient in 

front of the first order small quantity as follows (the resulting approximation error is second order small): 
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  Considering that the derivative calculation of 2  under the cylindrical coordinates is the same as the one under the Cartesian 
coordinates, and the derivative of 3  is not involved, the specific expressions (7-9) corresponding to the cylindrical coordinates 
can be further obtained on the basis of (21), (23), and (25). 
 

2.2.3 Deduction of the numerical scheme under the spherical coordinates 
  For the divergence terms, by combining (12) and (18), we have: 
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  For the Laplacian operator, also using the approximate relation of first order small quantity (the approximate error is the 
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(28) 

  For the dissipation term, by combining (14) and (20) and following the derivation of equation (25), we get: 
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(29) 

  Considering that the derivative calculation of 2 and 3  is not involved, the specific expressions (7-9) corresponding to the 
spherical coordinates can be further obtained on the basis of (26), (28), and (29). 

 
3. Convergence analysis method 
  Since the approximation of the function and its derivative does not require iterative computation and time advance solution, 
there is no instability problem in the computational process. Therefore, the compatibility and convergence of the numerical 
scheme are equivalent here. Convergence analysis is the main content validated by this method. The algorithm involved in this 
paper does not include the complete solution to the differential equations. Therefore, convergence of the numerical scheme 
here means that the exact solution of the discrete equation can be approximated to the exact solution of the mathematical 
model with the discrete scale tending to zero. If h refers to the discrete scale, hu  represents the exact solution of the numerical 
scheme, and *u  be the exact solution of the mathematical model, then, the discrete error h  is: 

*uu hh   (30) 

  Convergence of the numerical scheme can be expressed as: 
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0
lim 0hh




  (31) 

  Numerical schemes of this paper don't involve iterative calculations, and rounding errors are negligible. Therefore, the 
calculation results in accordance with the numerical scheme and mathematical model are referred to as numerical solution 

hu and exact solution *u . According to the literature [4], the numerical solution can be based on the convergence limit for 
Taylor expansion: 

 
2 2 3 3

4
0 0 0 02 32 6h h h h h

u u h u hu u h O h
h h h   

  
    

  
 (32) 

  For the convergent numerical scheme, 0 *hu u  , assuming that the convergence accuracy level is p, and the error term below 
p is zero, then: 

 1p p
h pg h O h    (33) 

  For the coarse and fine discrete scale, the scale ratio is: 

finecoarse / hh  (34) 

  The posteriori of the convergence accuracy level can be obtained from Eq. (33) as: 

   ˆ ln / / lnh hp     (35) 

  Assume is the maximum absolute value of the objective function or derivative in the computational domain. The error 
magnitude and the accuracy level are evaluated by the error norm h  and the relative error /h h    in this paper. If 
there are M discrete elements in the computational domain, then: 

*
1

1 M
i i

h h
i

u u
M




   (36) 

  In the asymptotic convergence region, the approximate linear relationship can be obtained from Eq. (33) by substituting h  
for h  and subtracting the higher order term as: 

ln ln lnh pg p h    (37) 

  By using the error norm instead of the discrete error in the above formula, a general expression of convergence accuracy level 
is obtained as:  

   ˆ ln / / lnh hp     (38) 

  Only when the discrete scale is small to a certain extent to assure that the numerical calculation is performed in the 
asymptotic convergence region, and the main extension on the right end of the equation (32) does not change in the sign, the 
analytical results based on Equations (37) and (38) may be reasonable. 
  Convergence analysis can be performed by the following three technical ways: 
  1) Select the different function form and the appropriate discrete scale, and verify the correctness of the algorithm by the 
consistency of the numerical solution and the exact solution. 

2) The convergence of the calculation scheme is judged by the linear relationship between ln h  and ln h  when the 
discrete scale is small enough. 
3) Obtain the convergence accuracy level based on the error norms and scale ratio of the two discrete scales in the 
asymptotic convergence region. 

  During code validation process, it is necessary to try a variety of functions so that sufficient evidence could be got to illustrate 
the correctness of the numerical algorithm and the program code. Due to paragraph constraints, only the quantitative analyses 
of specific functions are listed in the paper. 

4. One-dimensional model validation of the code 
4.1. Original function and calculation parameters 
  For a one-dimensional model, the value of the coordinate variable is ranged between 0.10.0 1   , and the selected original 
function is as follows (39-42): 

   1
2

11 5.2sin  f  (39) 

   11 6sin    (40) 

   11 5.2cos    (41) 

   1
2

111 5.2sin  V  (42) 
  where  11 V  represents the first component of the vector function  1 2 3, ,  V  in the one-dimensional case. In this paper, 
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the kernel estimation meshfree method is used to apply the lowest order correction function to the kernel function; that is, the 
correction order n = 0. The discrete scales of the numerical calculation h1, h2, h3, and h4 correspond to the discrete numbers of 
50, 100, 200, and 400, respectively; l1, l2, l3, and l4 are the corresponding support domain scales. A smaller support domain 
scale factor 0.1/  ii hl , i=1~4 is adopted here, and only two adjacent elements fall into the support region on the left 
and right. The calculation parameters are shown in Table 1. 

 
Table 1. Computation parameters for 1-dimensional models 

n   h1 h2 h3 h4 l1 l2 l3 l4 
0 1.0 0.02 0.01 0.005 0.0025 1h  2h  3h  4h  

 

4.2. Consistency evaluation 
  Figures (1-3) depict the numerical results based on the selected original function in addition to the discrete scale 
corresponding to h1 and other calculation parameters in Table 1. Numerical experiments for any original function show that the 
numerical solution and the exact solution of the one-dimensional model agree well at the appropriate discrete scale. 
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Fig. 1(a). Numerical results of  rf  Fig. 1(b). Numerical results of  rV  
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Fig. 1(c). Numerical results of  rf  Fig. 1(d). Numerical results of     rr    

Fig. 1. Numerical results with Cartesian coordinates 
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Fig. 2(a). Numerical results of  rf  Fig. 2(b). Numerical results of  rV  
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Fig. 2(c). Numerical results of  rf  Fig. 2(d). Numerical results of     rr    

Fig. 2. Numerical results with cylindrical coordinates 
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Fig. 3(a). Numerical results of  rf  Fig. 3(b). Numerical results of  rV  
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Fig. 3(c). Numerical results of  rf  Fig. 3(d). Numerical results of     rr    

Fig. 3. Numerical results with spherical coordinates 

4.3. Convergence evaluation 
  Convergence evaluation consists of two basic aspects: one is to evaluate whether the numerical scheme converges, and the 
other is to evaluate the convergence accuracy level. The discrete scale of the numerical calculation can never be zero, but if the 
discrete scale is small enough to a certain degree, and the numerical calculation is in the asymptotic convergence region, 
logarithm of the error norm and the discrete scale would show the linear relationship as shown in Eq. (37); therefore, 
convergence of the computational scheme can be judged, and the accuracy level of the numerical convergence is quantified by 
Eq. (38). 
  As can be seen from Fig. 4, the error norm and the discrete scale of the one-dimensional model are approximately linear in 
logarithmic coordinates. Table 2 lists the quantization results for the error norm h  and the convergence accuracy level p̂ , 
where the calculation information comes from 0.005h  , 0.0025h  , and 2  . 
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Fig. 4(a). Cartesian Fig. 4(b). Cylindrical Fig. 4(c). Spherical 

Fig. 4. Error norms vs. discretization scales in 1-dimensional models 

Table 2. Discretization errors and accuracy orders of 1-dimensional models 

Object Coordinates 0.02h   0.01h   0.005h   0.0025h   0.01h   p̂  

f  
Cartesian 9.925e-4 2.493e-4 6.234e-5 1.559e-5 0.025% 1.99954 
Cylindrical 9.925e-4 2.493e-4 6.234e-5 1.559e-5 0.025% 1.99954 
Spherical 9.925e-4 2.493e-4 6.234e-5 1.559e-5 0.025% 1.99954 

f  
Cartesian 4.398e-2 1.103e-2 2.759e-3 6.900e-4 0.019% 1.99948 
Cylindrical 5.551e-2 1.424e-2 3.646e-3 9.328e-4 0.025% 1.96667 
Spherical 7.855e-2 2.077e-2 5.469e-3 1.435e-3 0.038% 1.93023 

V  
Cartesian 1.091e-2 2.728e-3 6.821e-4 1.705e-4 0.046% 2.00021 
Cylindrical 1.425e-2 3.567e-3 8.919e-4 2.230e-4 0.055% 1.99984 
Spherical 1.985e-2 4.940e-3 1.231e-3 3.072e-4 0.070% 2.00258 

   
Cartesian 2.075e+0 5.212e-1 1.304e-1 3.262e-2 0.359% 1.99912 
Cylindrical 2.286e+0 5.848e-1 1.492e-1 3.794e-2 0.377% 1.97546 
Spherical 2.806e+0 7.482e-1 1.978e-1 5.199e-2 0.438% 1.92773 

 

5. Two-dimensional model validation of the code 
5.1. Original function and calculation parameters 
  The two-dimensional model selects the original function shown in (43-47), and the range of the coordinate variables 
are 0.10.0 1   and 5.00.0 2   .Two kinds of coordinate systems, Cartesian and cylindrical, are involved in the 
numerical calculation. The calculation parameters are shown in Table 3. 

     1 2 1 2, cos 2 sin 6f      (43) 

   1 2 1 2, sin 4           (44) 

   1 2 1 2, cos 2      (45) 

     21211 2cos2sin,  V  (46) 

     2 1 2 1 2, cos 2 sin 6V      (47) 

  where  211 ,V and  212 ,V  represent the first two components of the vector function  321 ,, V  in the two-dimensional 
case.  
 

Table 3. Computation parameters for 2-dimensional models 

n   h1 h2 h3 h4 l1 l2 l3 l4 
0 1.5 0.02 0.01 0.0067 0.005 1h  2h  3h  4h  

 

5.2. Consistency evaluation 

  Figures (5-6) present the numerical results based on the selected original function in addition to the discrete scale 
corresponding to h1 and other calculation parameters in Table 3. In the case of two-dimensional model, consistency of the 
numerical solution and the exact solution could be represented by the approximation degree of the contour. Numerical 
experiments for any original function show that the numerical solution and the exact solution of the two-dimensional model 
agree well at the appropriate discrete scale. 
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Fig. 5(a). Numerical results of  yx,V  Fig. 5(b). Numerical results of  yxf ,  Fig. 5(c). Numerical results of  yx,V  

   

Fig. 5(d). Numerical results of 
  zyx,V  Fig. 5(e). Numerical results of  yxf ,  Fig. 5(f). Numerical results of 

    yxyx ,,    

Fig. 5. Numerical results with Cartesian coordinates 
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Fig. 6(a). Numerical results of  yx,V  Fig. 6(b). Numerical results of  yxf ,  Fig. 6(c). Numerical results of  yx,V  

   

Fig. 6(d). Numerical results of 
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Fig. 6(f). Numerical results of 
    yxyx ,,    

Fig. 6. Numerical results with cylindrical coordinates 

5.3. Convergence evaluation 
  As can be seen from Fig. 7, the error norm and the discrete scale of the two-dimensional model are approximately linear in 
logarithmic coordinates. Table 4 lists the quantization results for the error norm h  and the convergence accuracy level p̂ , 

where the calculation information comes from 0.0067h  , 0.005h   and 1.34  . 
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Fig. 7(a). Cartesian Fig. 7(b). Cylindrical 

Fig. 7. Discretization scales vs. error norms in 2-dimensional models 

6. Three-dimensional model validation of the code 
6.1. Original function and calculation parameters 
  The three-dimensional model selects the original function shown in (48-53), and the range of the coordinate variables are 

0.10.0 1   , 0.10.0 2   , and 0.10.0 3   .Only Cartesian coordinate system is involved in the numerical 
calculation, and the calculation parameters are shown in Table 5, where there are two support domain scale factors. 

   1 2 3 1 2 3, , sin 2f        (48) 

   1 2 3 1 2 3, , sin 2              (49) 

   1 2 3 1 2 3, , sin 2        (50) 

   1 1 2 3 1 2, , sin 2V            (51) 

   2 1 2 3 2 3, , sin 2V            (52) 

   3 1 2 3 1 3, , sin 2V            (53) 
  where  3211 ,, V ,  3212 ,, V , and  3213 ,, V  represent the three components of the vector function  321 ,, V  in 
the three-dimensional case. 

Table 4. Discretization errors and accuracy orders of 2-dimensional models 

Object Coordinates 0.02h   0.01h   0.0067h   0.005h   0.01h   p̂  

f  
Cartesian 2.234e-2 5.792e-3 2.539e-3 1.428e-3 0.597% 2.00045 

Cylindrical 2.234e-2 5.792e-3 2.539e-3 1.428e-3 0.597% 2.00045 

f  
Cartesian 8.113e-0 1.169e-0 4.385e-1 2.438e-1 0.296% 2.04049 

Cylindrical 9.461e-0 1.364e-0 5.116e-1 2.893e-1 0.314% 1.98165 

V  
Cartesian 4.829e-1 1.296e-1 5.933e-2 3.340e-2 0.516% 1.99722 

Cylindrical 5.288e-1 1.537e-1 6.184e-2 3.494e-2 0.489% 1.98472 

 
3

V  
Cartesian 1.581e-1 2.929e-2 1.203e-2 6.765e-3 0.233% 2.00097 

Cylindrical 1.581e-1 2.929e-2 1.203e-2 6.765e-3 0.233% 2.00097 

      Cartesian 1.892e-0 3.649e-1 1.638e-1 9.121e-2 0.369% 2.03519 
Cylindrical 2.137e+0 6.469e-1 2.939e-1 1.664e-1 0.650% 1.97751 

Table 5. Computation parameters for 3-dimensional models 

nc 1  2  3  h1 h2 h3 h4 l1 l2 l3 l4 

0 1.5 2.0 2.5 0.02 0.0125 0.01 0.008 1h  2h  3h  4h  

6.2. Consistency evaluation 
  Figures 8(a-k) show the comparison results of numerical and accurate solutions based on the selected original function in 
addition to the discrete scale corresponding to h=h1,  = 1 , and other calculation parameters in Table 5. Numerical 
experiments for any original function show that the numerical solution and the exact solution of the three-dimensional model 
agree well at the appropriate discrete scale.  
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 (a). Numerical results of  zyx ,,V   (b). Numerical results of  zyxf ,,  (c). Numerical results of  zyx ,,V  

   
(d). Numerical results of   xzyxf ,,  (e). Numerical results of

 
  yzyxf ,,  (f). Numerical results of

 
  zzyxf ,,  

   
(g). Numerical results of   xzyx ,,V  (h). Numerical results of   yzyx ,,V  (i). Numerical results of

   zzyx ,,V  

    
                      (j). Numerical results of

  zyxf ,,  (k). Numerical results of
     zyxzyx ,,,,    

Fig. 8. Numerical results with Cartesian coordinate 
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Fig. 9. Discretization scales vs. error norms in 3-dimensional models 

Table 6. Discretization errors and accuracy orders of 3-dimensional models 

Object   0.02h   0.0125h   0.01h   0.008h   0.01h   p̂  

f  2.0 1.997e-003 7.809e-004 4.999e-004 3.200e-004 0.050% 1.99910 
2.5 3.119e-003 1.220e-003 7.814e-004 5.002e-004 0.078% 1.99907 

f  2.0 3.888e-002 1.542e-002 1.001e-002 6.486e-003 0.012% 1.94466 
2.5 5.744e-002 2.469e-002 1.593e-002 1.024e-002 0.019% 1.98035 

 if  2.0 7.582e-003 3.043e-003 1.993e-003 1.276e-003 0.032% 1.99831 
2.5 9.824e-003 3.344e-003 2.168e-003 1.398e-003 0.035% 1.96628 

  V  2.0 1.197e-001 4.748e-002 3.071e-002 1.966e-002 0.163% 1.99872 
2.5 1.703e-001 5.842e-002 3.233e-002 2.079e-002 0.172% 1.97865 

 iV  2.0 7.604e-002 3.014e-002 1.950e-002 1.249e-002 0.311% 1.99641 
2.5 8.502e-002 3.308e-002 2.053e-002 1.324e-002 0.327% 1.96575 

   2.0 5.363e-001 2.132e-001 1.375e-001 8.809e-002 0.127% 1.99542 
2.5 7.929e-001 2.961e-001 1.788e-001 1.155e-001 0.165% 1.95837 

6.3 Convergence evaluation 
  As can be seen from Fig. 9, the error norm and the discrete scale of the three-dimensional model are approximately linear in 
logarithmic coordinates. Table 6 lists the quantization results for the error norm h  

and the convergence accuracy level p̂ , 
where the calculation information comes from 0.01h  , 0.008h   and 1.25  . 

7. Conclusion 
  There are three factors influencing the reliability of the calculation results when applying the meshfree method to 
approximate the function and its derivative: the first is the numerical calculation scheme, the second is the discrete scale, and 
the third is the support domain scale factor. Numerical experiments show that the code can lead the calculation results to be 
consistent with the original function and its first and second order derivative functions for arbitrary function form. Moreover, 
the correctness of the calculation scheme and the program code is verified. In the case of different coordinate systems and 
spatial dimensions, when the discrete scale is selected as h = 0.01, the relative errors of the selected function and its first and 
second order derivative values are not more than 0.65%. According to the analysis of the varying trend of numerical results 
under different discrete scales, the result of observation with second order convergence accuracy is obtained. Numerical 
experiments also show that both the order of the RKPM correction function and the value of the support domain scale factor 
have an effect on the error of the derivative estimation, but not on the convergence accuracy level. There is an optimal range of 
values for the support domain scale factor in terms of different function forms and spatial dimensions, the larger one can 
provide more profound function distribution information, while the convergence of the calculation scheme can be better 
displayed when the discrete scale is further reduced. Although smaller support domain scale factor corresponds to smaller 
error, if the discrete scale is small enough to a certain extent, the error may not be decreasing in accordance with the 
convergence order, and the convergence block is found in the discrete scale of a certain range. The calculation scheme in this 
paper only applies the zero-order correction function of the RKPM method.  
  Since the method constructs the correction function based on the function rather than the derivative estimation principle of the 
derivative, when the support domain scale factor is smaller, neighborhood particles in the support domain are less, and 
approximate estimation of the spatial derivatives may deviate from the conditions required for strict compatibility which 
results in convergence block. By improving the approximation method of the kernel function gradient term, the convergence 
accuracy level can be further improved, and the convergence block phenomenon would also be eliminated.  
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