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ABSTRACT
Branches and boles of trees in wet forests are often carpeted with lichens and bryophytes
capable of providing periodically saturated habitat suitable for microfauna, animals
that include tardigrades, rotifers, nematodes, mites, and springtails. Although resident
microfauna likely exhibit habitat preferences structured by fine-scale environmental
factors, previous studies rarely report associations between microfaunal communities
and habitat type (e.g., communities that develop in lichens vs. bryophytes).Microfaunal
communities were examined across three types of epiphyte and three sampling heights
to capture gradients of microenvironment. Tardigrades, rotifers, and nematodes were
significantly more abundant in bryophytes than fruticose lichen or foliose lichen.
Eight tardigrade species and four tardigrade taxa were found, representing two classes,
three orders, six families, and eight genera. Tardigrade community composition was
significantly different between bryophytes, foliose lichen, fruticose lichen, and sampling
heights. We show that microenvironmental factors including epiphyte type and
sampling height shape microfaunal communities and may mirror the environmental
preferences of their epiphyte hosts.

Subjects Biodiversity, Ecology, Taxonomy, Zoology
Keywords Tardigrade, Canopy, Epiphyte, Microfauna, Microclimate

INTRODUCTION
Tree canopies house a tremendous diversity of life and create horizontal and vertical
heterogeneity in forest ecosystems (Nadkarni, 1994; Lowman & Rinkner, 2004). Major
forms of life in temperate canopies include mammals, birds, and epiphyte mats. In
addition to large organisms, small organisms occupy canopy soil and epiphyte material
including the phyla Tardigrada, Rotifera, and Nematoda (collectively microfauna), which
are often overlooked in forest ecology and biodiversity studies (Glime, 2013; Voegtlin,
1982; Wilson, 2002). Microfauna living in bryophytes and lichens are affected by humidity
and condensation and will desiccate without regular precipitation and re-animate when
sufficient moisture returns (Kinchin, 1994; Nelson, 1982; Boothby et al., 2017). The global
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distribution of tardigrades, rotifers, and nematodes in ecosystems, and the roles they
play as primary and secondary consumers of canopy food webs, make them useful for
comparingmicro-scale community dynamics (Sánchez-Moreno, Ferris & Guil, 2008;Collins
& Bateman, 2001; Harada & Ito, 2006; Sohlenius, Boström & Jönsson, 2004). However, the
extent to which geographic variation in microfaunal communities is due to random
dispersal processes, or is a reflection of habitat suitability, remains an open question.
Relatively few ecological studies explore the impact of macro and micro environmental
factors impact on microfaunal communities (Guil et al., 2009; Mitchell, Miller & Davis,
2009; Chang et al., 2015; Porazińska et al., 2012; Zawierucha et al., 2015).

Forest canopies create vertical gradients of microclimate which can be characterized
by heterogeneity in humidity, sunlight, airflow, and nutrient availability (Geiger, 1967).
These forces result in stratified habitats with distinct microclimates and create an elegant
system for examining microclimate factors associated with canopy height, and differences
between epiphyte habitat (McCune, 1993; Donoso, Johnston & Kaspari, 2010). Gradients
of light availability, CO2 concentration, humidity, and desiccation rates occur along
vertical axes in tree canopies with tree tops experiencing higher light availability and lower
humidity (McCune, 1993; Geiger, 1967). The ‘‘similar gradients hypothesis’’ suggests that
drivers of epiphyte distribution such as forest age, regional precipitation, and the vertical
gradient of height could also impact other canopy organisms by creating similar habitat
attributes or dispersal methods via different causal mechanisms (McCune et al., 1997).
Furthermore, while previous studies suggest macro-environmental factors (e.g., elevation)
shape macrofaunal communities, this response may be elicited indirectly through changes
in vegetation communities or changes in habitat growth form which elicit microfaunal
community response, rather than altitude directly (Wright, 1991; Jönsson, 2003; Richardson,
Richardson & Soto-Adames, 2005; Guil et al., 2009; Zawierucha et al., 2016).

Studies report contrasting microfaunal responses to macro-environmental factors
(Dastych, 1987; Nelson, 1975; Kathman & Cross, 1991; Young & Clifton, 2015). The factors
governing small-scale distributions of microfauna remain elusive despite our awareness
of their global distribution (McInnes, 1994). Local micro-environmental factors such as
humiditymay bemore informative than regional factors such as elevation to explain species
distribution due to taxa-level micro-climate suitability (Collins & Bateman, 2001; Guil et
al., 2009; Degma, Katina & Sabatovicova, 2011; Zawierucha et al., 2015). For example,
studies conducted on mountain slopes show both positive and negative impacts of
altitude on tardigrade communities (Dastych, 1987; Beasley, 1988;Collins & Bateman, 2001;
Zawierucha et al., 2015) while laboratory based studies support groupings of tardigrade
species based on varying affinities for moisture (Ramazzotti & Maucci, 1983;Wright, 1989).
Additionally, in one of the few studies of tardigrade phenology, Schuster & Greven (2013)
tracked the body length and reproduction statistics including # of gravid females over
5 years and found that humidity was negatively correlated with # of oocytes and juveniles,
while # of hours of sunlight was negatively correlated with body length and the percentage
of juveniles present (Schuster & Greven, 2013). Field studies have an important place in
advancing research on tardigrada, specifically in directing efforts to better culture tardigrade
taxa in laboratory settings.
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Tardigrades, nematodes and rotifers exhibit differences in stress tolerant dormant
stages associated with dispersal strategies which support varying habitat suitability for
taxa that can persist after arrival (Bongers & Ferris, 1999; Fontaneto, Melone & Ricci, 2003;
Guil, Sánchez-Moreno & Machordom, 2008; Ramazzotti & Maucci, 1983; Wright, 1989).
Nematodes vary in their sensitivity to disturbance but have been shown to have higher
abundance with increasing soil porosity (Harada & Ito, 2006; Bongers & Ferris, 1999) and
increased mortality rates with higher soil salinity (Poage et al., 2008). Rotifers display
geographic distributions that suggest habitat preference, although species distributions
were highly variable (Fontaneto & Ricci, 2006). Tardigrades were linked to tree species
substrate and demonstrated higher abundance in the tops of trees in a mixed deciduous
forest in Kansas, U.S.A. (Mitchell, Miller & Davis, 2009; Miller, Gallardo & Clark, 2013;
Chappell et al., 2015; Chang et al., 2015). Also, tardigrade communities in leaf litter of
Beech forests in Modenese Apennine (Italy) and Roan Mountain (TN, U.S.A.) had similar
species composition (Guidetti, Bertolani & Nelson, 1999). Challenges to understanding
limno-terrestrial microfaunal ecology include their patchy distributions (Meyer, 2006) and
the difficulty of species identification which may be influenced by ontogeny, cryptic species
diversity, and a poor understanding of population clustering (Miller, Miller & Heatwole,
1994; Degma, Katina & Sabatovicova, 2011;Morek et al., 2015).

In this study, we document the density and diversity of tardigrades, rotifers, and
nematodes in a Douglas-fir forest canopy in Northern California, USA (Fig. 1). To test the
factors of epiphyte type and abiotic factors associated with height, we collected a factorial
combination of multiple epiphyte types at multiple sampling heights in nine Douglas-fir
trees. We expect microfaunal populations to respond to epiphyte type and sampling height
because of the differences in water availability which represent barriers tomicro-population
establishment.

METHODS
Site description
Field sampling took place in September, 2015 in Six Rivers National Forest of California,
USA (41.871, −123.846). The site has a Mediterranean climate with an annual average
annual precipitation of 200 cm. The soil is primarily composed of deep, well-drained soils
formed in material weathered frommetasedimentary rock (Natural Resources Conservation
Service, 2017). Nine mid-sized diameter at breast height (60–75 cm DBH) Douglas-fir trees
(average height 26 m, min: 20 m, max 35 m) were selected at random and spaced at least
500 m apart and within 30 m of unpaved access roads. Structurally unsound trees were
avoided. Trees were climbed using minimally invasive and safe climbing techniques (Miller
& Lowman, 2012; Anderson et al., 2015).

Where present, fist-sized (approx. 5 gram) or smaller patches of three epiphyte types
(foliose lichens, fruticose lichens, and bryophyte) were collected and stored in paper bags
(McCune et al., 1997). Sample collection was stratified into three sampling heights: below
any branches on the bole (low, ∼10 m), the middle canopy (mid, ∼15 m), and the top
8 m of the tree (top, ∼25 m). Where possible one patch of foliose lichen and fruticose
lichen were collected, and two bryophyte patches were collected from each tree at the three
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Figure 1 Amap of the study area.
Full-size DOI: 10.7717/peerj.5699/fig-1

vertical locations. Not all epiphyte types were present at each sampling location and not all
epiphytes were identified to species level.

Processing samples for microfauna
A portion (0.3–1.9 grams, mean 0.95 grams) of each epiphyte sample was hydrated with
20mL of commercially bottled spring water for 12 h to enablemicrofauna to become active.
For each sample, three 1 mL aliquots were visually searched with a dissecting microscope
at 20× magnification for nematodes, rotifers, and adult tardigrades. The abundance of
nematodes, rotifers, and tardigrades was counted for each epiphyte sample and divided by
the mass of the sample followingMitchell, Miller & Davis (2009) methodology.

Tardigrade specimens were deposited into a drop of polyvinyl alcohol media on a
microslide (Salmon, 1951) with an Irwin loop (Schram & Davidson, 2012). A glass coverslip
was placed over the medium, dried for three days, and nail polish was applied to seal the
PVA mounting media.
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Species identification
Epiphytes were identified using standard techniques (Brodo, Sharnoff & Sharnoff, 2001)
and identification guides (Norris & Shevock, 2004; McCune & Geiser, 2009) on a Zeiss
45–50–52 dissecting scope and a Leica ACT 2000 light microscope. Dominating genera
for Bryophyte were: Dicranum, Isothecium myosurides; for foliose lichens: Hypogymnia and
Platismatia; and for fruticose lichens: Usnea, Sphaerophorus (Table S1).

Tardigrades were identified using an Olympus BX60 DIC (differential interference
contrast) microscope at 1,000× magnification. Morphological features including claws,
buccopharyngeal apparatus, cuticle design, and other characteristics were used for species
identification (Ramazzotti & Maucci, 1983; Pilato & Binda, 2010; Kaczmarek & Michalczyk,
2017; Stec et al., 2018). Nomenclature was based on Guidetti & Bertolani (2005), Degma &
Guidetti (2007), Bertaloni et al. (2014) and Degma, Bertolani & Guidetti (2009–2018).

Statistical analysis
Univariate three by three factorial analyses of variance for tardigrade, rotifer, and
nematode density were blocked by tree with sampling height and epiphyte type as two
interacting factors. The density of tardigrade, rotifer, or nematode populations and
resulting microfaunal diversity per gram of epiphyte material was tested for differences
across sampling heights, epiphyte types, and for interaction between sampling height
and epiphyte type. Type III sum of squares was used for uneven replication and Tukey’s
honestly significant difference was used to determine the magnitude and direction of
statistical differences (α= 0.05). Pearson correlation coefficients of microfaunal density
and mass of the portion of each sample did not reveal significant relationship of sample
mass to microfaunal density (p > 0.98).

Tardigrade community composition was analyzed using a permutation multivariate
analysis of variance (PERMANOVA) with the R package vegan (Oksanen et al., 2015).
Dissimilarities in tardigrade community composition was visualized with non-metric
multi-dimensionally scaled (NMDS) ordination using the Bray-Curtis dissimilaritymethod
(Bray & Curtis, 1957; Dufrêne & Legendre, 1997). Ellipses representing 95% confidence
intervals were displayed around the centroid of each epiphyte type to visualize significant
differences in tardigrade composition. Tardigrade species richness was calculated as the
count of each tardigrade taxa found in a sample. Tardigrade diversity and microfaunal
diversity are reported using simpsons diversity index.

Additionally, each tardigrade species was tested for association with sampling heights or
epiphyte types with the R package indicspecies (De Caceres & Legendre, 2009). All statistical
analyses were performed with the program R ver. 3.3 (R Core Team, 2018), and visualized
with the R package ggplot2 (Wickham, 2009).

RESULTS
A total of 68 nematodes, 411 rotifers, and 231 tardigrades were found in 51 samples,
with 89% of samples containing at least one nematode, rotifer, or tardigrade (Table 1).
Analyzed epiphyte material included 18 lichen and bryophyte taxa (Table S1). Epiphyte
type was significant in explaining differences in nematode (p = 0.03), rotifer (p = 0.01),
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Table 1 Summary of microfauna density and epiphyte types. A summary of raw data that provides the % of positive samples, mean microfauna
density, and tardigrade community data including species richness and average Simpson’s diversity index for each epiphyte type and sampling
location.

Epiphyte type Height N %positive samples Density per sample Tardigrade Community

Tardigrade Rotifer Nematode Tardigrade Rotifer Nematode Species Diversity
mean, sd mean, sd mean, sd Richness mean

Foliose lichen Top 8 88% 88% 50% 15.4, 10.3 2.2, 2.6 0.6, 0.9 11 0.7
Mid 9 89% 89% 67% 8.1, 6.5 1.3, 1.0 0.7, 0.7 7 0.5
Low 7 29% 71% 14% 1.2, 1.1 2.7, 3.0 0.2, 0.4 7 0.3

Fruticose lichen Top 8 50% 38% 38% 2.6, 6.1 0.4, 0.8 0.2, 0.3 3 0.3
Mid 9 33% 56% 0% 0.9, 1.4 0.6, 1.0 0.0, 0.0 6 0.2
Low 8 38% 25% 38% 1.0, 1.9 0.0, 0.2 0.1, 0.2 1 0.2

Bryophytes Top 1 100% 100% 100% 14.3, NA 19.0, NA 3.3, NA 4 1.3
Mid 4 75% 100% 50% 10.7, 10.9 5.3, 1.9 1.5, 1.7 5 0.4
Low 9 100% 89% 67% 17.9, 12.2 11.2, 15.9 1.0, 1.2 4 0.3

and tardigrade density (p = 0.04). Nematode and rotifer density was higher in bryophytes
than foliose lichen or fruticose lichen (p < 0.01), while tardigrade density was higher in
bryophyte and foliose lichen than fruticose lichen (p< 0.01, p= 0.02).Microfaunal richness
was also significantly higher in bryophytes and foliose lichen than fruticose lichen (p <
0.01). The mass of the portion of epiphyte used in analysis did not impact the density of
nematodes, rotifers, or tardigrades (p= 0.98, p= 0.98, p= 0.99). Overall, nematodes were
less common than rotifers or tardigrades (Fig. 2).

Sampling height had a significant interaction with epiphyte type on nematode density,
with mid and top bryophytes having significantly higher nematode density than mid
and top fruticose lichen (p = 0.03, p< 0.01). However, rotifer and tardigrade density
were not significantly impacted by sampling height (p = 0.6, p = 0.63). Of the nine
trees accessed, only one bryophyte was found in the top sampling location which also
supported the highest nematode density in the collection (Fig. 2). Three tardigrade species
were significantly associated with the top sampling height (Pilatobius nodulosus, p >
0.01; Echiniscus quadrispinosus, p = 0.03; Milnesium sp. 2, p = 0.04), and Ramazzottius
oberhauseri significantly associated with the top and mid sampling heights (p = 0.05).
Epiphyte species richness was lowest in the top position (6 species), and similar at the
middle (11 species) and lowest sampling height (10 species).

Eight species of tardigrade and four tardigrade taxa were found, representing two classes,
three orders, six families and eight genera (Table 2). Tardigrade taxa in the Macrobiotus
hufelandi group comprised 31% of the collection, while the second most common species,
Echiniscus quadrispinosus compromised 22% of the collection. Tardigrade diversity was
significantly higher in fruticose lichen than bryophyte and foliose samples (p < 0.01).
Furthermore, tardigrade community composition was significantly impacted by epiphyte
type (p < 0.01, Fig. 3) and sampling height (p= 0.02). TheMacrobiotus hufelandi group was
significantly associated with bryophyte samples (p < 0.01). In contrast, tardigrade species
Echiniscus quadrispinosus and Ramazzottius oberhauseri were significantly associated with
foliose lichen, and fruticose lichen (p< 0.01, p= 0.02).
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Figure 2 Nematode, rotifer, and tardigrade density (animals per gram) from three epiphyte types, and
three canopy sampling locations within Douglas-fir trees. Square, triangle, circle data points represent
microfauna density for samples that came from top, mid, or low sampling heights. Orange, blue or gray
shapes represent bryophyte, foliose lichen, or fruticose lichen epiphyte types.

Full-size DOI: 10.7717/peerj.5699/fig-2
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Table 2 Tardigrade species found.

Class, Order, SuperFamily, Family Foliose Lichen Bryophytes Fruticose Lichen Total
Genus species n= 22 n= 14 n= 27 N = 63

mean, sd mean, sd mean, sd

Eutardigrada, Apochela, Milnesiidae
Milnesium eurystomum (Maucci, 1991) 0.1, 0.2 0 0.8, 1.5 4
Milnesium sp.1 0.1, 0.3 0.1, 0.3 0.3, 0.5 9
Milnesium sp. 2 0.3, 0.8 0.3, 0.9 0 4

Eutardigrada, Parachela, Hypsibiidae
Pilatobius nodulosus (Ramazzotti, 1957) 0.6, 1.2 0.3, 0.6 0 14

Eutardigrada, Parachela, Itaquasconinae
Itaquascon sp. 0.1, 0.2 0 0 1

Eutardigrada, Parachela, Isohypsibidea, Isohypsibioiidae
Ramazzottius sp. (Doyere, 1840) 1.0, 1.4 0.1, 0.3 1.0, 1.4 24

Eutardigrada, Parachela, Macrobiotoidea, Macrobiotidae
Macrobiotus hufelandii group 0.7, 1.4 4.9, 6.1 0 70
Mesobiotus harmsworthi (Murray, 1907) 0.9, 1.7 0.5, 0.9 0 22

Heterotardigrada, Echiniscoidea, Echiniscoididae
Echiniscus arctomys group (Ehrenberg, 1853) 0.6, 1.0 0.2, 0.4 0 12
Echiniscus horningi (Schuster & Grigarick, 1971) 0.8, 2.0 0 0 15
Echiniscus quadrispinosus (Richters, 1902) 2.4, 3.1 0.1, 0.3 1.3, 1.3 50
Multipseudechinisus raneyi (Grigarick, Mihelčič, &
Schuster 1964)

0.2, 0.6 0.1, 0.3 0 15

Notes.
Mean, average density of each species in each epiphyte type; sd, standard deviation; n, the number of epiphyte type samples; N , total samples.
All identifications are based on morphological approaches.

DISCUSSION
Tardigrades, nematodes, and rotifers had differential distributions across the three sampling
heights and epiphyte types studied, suggesting varying habitat suitability for different
phyla. These patterns may be due to epiphyte water-retention characteristics, secreted
secondary metabolites, light availability (Wright, 1991), or food availability and feeding
habit limitations (e.g., filter feeding rotifers require higher humidity to feed) (Guidetti et al.,
2012; Hallas & Yeates, 1972). While microfaunal populations varied substantially within
and between trees a general trend was that fewer nematodes, rotifers, and tardigrades
were found in the fruticose lichen. In contrast, overall microfaunal density was highest in
bryophytes growing in the low sampling height, suggesting that the consistently humid
habitat combined with optimal resource availability (e.g., photosynthetic cells) is sufficient
formicrofaunal communities to thrive and epiphyte growth form is relevant tomicrofaunal
communities (Jönsson, 2003).

Nematode, rotifer, and tardigrade density had contrasting responses to sampling
height, with nematode density increasing with sample height, while rotifer and tardigrade
density was not significantly different across sampling heights. The trend we report
has not been found for Nematoda, but previous studies document similar responses of
tardigrade density to tree height (Miller, Gallardo & Clark, 2013; Chang et al., 2015) and
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four tardigrade species significantly associated with top canopy positions suggests that
microfaunal communities are likely impacted by sampling height, in addition to epiphyte
type.

Although fruticose lichens were sparsely populated, Echiniscus quadrispinosus and
Ramazzottius oberhaeuseri were mainly found in fruticose lichens over bryophyte and
foliose lichen (Table 1). Two of the four tardigrade species found in fruticose samples
feed on microbes (Echiniscus quadrispinosus and Ramazzottius oberhaeuseri) while the
other two are predatory (Milnesium eurystomum and Milnesium. sp 1). The ‘‘hair-lichen’’
morphology of fruticose lichen may represent a relatively xeric, high-stress environment,
with implications for those taxa which can successfully colonize (Grime, 1977; Guil et al.,
2009; Bartels, Nelson & Exline, 2011). All of the tardigrade taxa found in this study were
documented in Schuster & Grigarick (1965) and Schuster & Grigarick (1971) suggesting
population stability during the 50 years between each study. This highlights the utility of
co-locating field sites with previous studies to inform rates of long-term immigration and
emigration and provides further evidence that phylum Tardigrada is relatively species poor
(Bartels et al., 2016).

Epiphytes in tree canopies seem to support a similar tardigrade species richness as
epiphytes found at ground level, and our observation of higher microfaunal diversity
in bryophytes than lichen is supported by Bartels & Nelson (2007), Guil et al. (2009),
Zawierucha et al. (2016) and Zawierucha et al. (2017). An understanding of regional
tardigrade community structure in North America is beginning to emerge (Meyer, 2013;
Kaczmarek, Michalczyk & McInnes, 2016).

The distribution of microfaunal communities is complex, but may be explained
by immigration events (Mogle et al., 2018; Zawierucha et al., 2018), reproduction rates
(Tsujimoto, Imura & Kanda, 2016; Bingemer, Hohberg & Schill, 2016), lifespan and life
history traits (Schuster & Greven, 2013), suitable abiotic environment (Wright, 1989),
and site specific biotic factors (Kinchin, 1994; Guil et al., 2009; Glime, 2013) including
feeding behavior (Guil et al., 2009; Sánchez-Moreno, Ferris & Guil, 2008; Miller, Horning
& Heatwole, 2001; Guidetti et al., 2012; Guil & Sanchez-Moreno, 2013). Although there are
likely numerous interacting forces that contribute to microfaunal species distributions,
disentangling the impact of epiphyte growth formand abioticmicro-climate onmicrofaunal
abundance is challenging because epiphyte species and microfaunal distributions may
respond similarly to gradients. Experimental manipulations of habitat characteristics using
factorial treatment designs may be useful to decipher microfaunal habitat preferences.
Habitat manipulations could help identify mechanisms driving microfaunal distribution.

CONCLUSION
Microfaunal populations respond to epiphyte type, and to a lesser extent, sampling height.
This evidence suggests that microfauna are more strongly influenced by biotic micro-
environmental forces such as epiphyte growth form and water retention characteristics
than abiotic micro-environmental forces alone. Additionally, it may be more informative
to view microfaunal population dynamics through the lens of their habitat morphology, as
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conserved functional traits of epiphyte morphologymaymirror local micro-environmental
forces on which microfaunal micro-population establishment is dependent. Future
ecological studies on microfauna could benefit from carefully considering epiphyte
morphology.
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