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A membrane of high ion selectivity, high stability, and low cost is desirable for vanadium

redox flow battery (VRB). In this study, a composite membrane is formed by blending

the sulfonated poly (ether ether ketone) with lignin (SPEEK/lignin), and optimized by

tailoring the degree of sulfonation. The incorporation of lignin into the SPEEK matrix

provides more proton transport pathway and meanwhile adjusts the water channel to

repulse vanadium ions. The VRB cells assembled with the composite membranes exhibit

high coulombic efficiency (∼99.27%) and impressive energy efficiency (∼82.75%). The

cells maintain a discharge capacity of ∼95% after 100 cycles and ∼85% after 200

cycles at 120mA cm−2, much higher than the commercial Nafion 212. The SPEEK/lignin

composite membranes are promising for application in VRB system.

Keywords: vanadium flow battery, Sulfonated poly(ether ether ketone), SPEEK/lignin composite membrane, ion

selectivity, degree of sulfonation

INTRODUCTION

The vanadium redox flow battery (VRB) has attracted tremendous interest as a large-scale energy
storage technique, for environment protection and sustainable development, in light of its long
cycle life, fast response, flexible design, and great reliability via a cost-effective and eco-friendly
means (Zhang et al., 2014a; Jia et al., 2015b; Yang et al., 2015; Ye et al., 2016; Lu et al., 2017;Wu et al.,
2018, 2019). Proton exchange membrane is a key component in the flow battery, which performs
as a separator to isolate the positive and negative electrolyte compartments, and meanwhile to
conduct protons (Jia et al., 2012; Yu et al., 2016). An ideal membrane is expected to exhibit high
proton conductivity, good chemical and mechanical stability, accurate ion selectivity, and low-cost
fabrication approach (Jia et al., 2010; Ding et al., 2018; Yuan et al., 2018). To date, the commercial
Nafion membranes have been widely used in VRBs, because of its good proton conductivity,
remarkable chemical and mechanical stability (Li et al., 2014a; Dai et al., 2017). However, the
high crossover rate of vanadium ions hampers its further application in VRBs (Zhang et al.,
2018). Accordingly, several groups have been devoted to enhancing the performance of Nafion
membranes by different methods, such as changing the casting solvent and annealing temperature
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(Dai et al., 2017), altering pretreatment process (Jiang et al.,
2016), employing surface modification (Teng et al., 2015),
forming composite structure with organic materials, inorganic
materials or both (Zeng et al., 2008; Mai et al., 2011; Teng
et al., 2013, 2014). The modified membranes usually lower the
permeability of vanadium ions. Nevertheless, the extremely high
cost of the Nafion membranes is a critical barrier for VRB
commercialization (Yuan et al., 2017). Therefore, it is appealing
to explore alternative systems of high ion selectivity, good
stability and low cost toward practical application.

The sulfonated hydrocarbon polymers and their derivatives
are promising candidates as the substitutional membranes
(Wang et al., 2013). The sulfonated poly (ether ether ketone;
SPEEK) is of particular interest, in view of its low vanadium
ion permeability, simple preparation, high chemical, and
mechanical stability (Winardi et al., 2014; Jia et al., 2015a).
More importantly, the SPEEK membrane is cost-effective,
only accounting for about several tenths of the commercial
Nafion (DuPont). To enhance the proton conductivity,
organic or inorganic materials with abundant hydrophilic
groups are usually introduced to form composite membranes.
Moreover, the interaction between the additives and the
SPEEK matrix also ensures a good chemical and mechanical
stability under harsh condition during the VRB operation. Jia
et al. (2015a) prepared a composite membrane by blending
the SPEEK with functionalized carbon nanotubes. The
membrane shows not only high coulombic efficiency (CE),
voltage efficiency (VE), and energy efficiency (EE), but also
good mechanical stability and low capacity loss, compared
with the pristine SPEEK and Nafion 212 membrane. Other
SPEEK-based composite membranes also exhibited excellent
performances for VRB application, such as SPEEK/SPES
[sulfonated poly (ether sulfone)] (Ling et al., 2012), SPEEK/GO
(graphene oxide; Kong et al., 2016; Park and Kim, 2016),
SPEEK/QPEI [quaternized poly(ether imide)] membranes
(Liu et al., 2014, 2015).

Considering the cost of the additives, the lignin has recently
been focused in our group, which is a byproduct in paper
industry and bio-fuel producing process (Gong, 2016). The
lignin possesses abundant hydroxyl groups and thus improves
the wettability of the polymer matrix and promotes the proton
conductivity of the blend membrane. Figure 1 shows a general
structure of lignin, in which the phenol propane unit is linked
by alkyl–aryl, alkyl–alkyl and aryl–aryl ether bonds (Tolba et al.,
2010; Ge et al., 2014; Zhang et al., 2014b; Zhu et al., 2016; Atifi
et al., 2017; Rahman et al., 2018). The lignin interlaces with
the SPEEK substrate and reduces the size of water channels.
This gives rise to enhanced proton conductivity and meanwhile
suppressed ion permeability. On the other hand, the degree of
sulfonation (DS) in the SPEEK matrix, i.e., the amount of -
SO3H groups, also affects the proton conductivity. In general,
the conductivity increases with the DS. However, a high DS
seriously influence the chemical and mechanical stability of the
membrane (Xi et al., 2015). In this study, the DS effect on the ion
selectivity and stability was systematically studied. An optimized
degree of sulfonation was proposed toward the application in
VRBs.

EXPERIMENTAL

Materials and Membranes Preparation
The lignin powders (Sigma-Aldrich) were soaked in 2M
hydrochloric acid solution (mass to volume ratio, 1 g per 20mL)
and stirred for 2 h. After that, sodium hydroxide solution was
used to neutralize the above mixture, followed by filtration and
freeze drying. The DS of SPEEK was controlled to about 41, 50,
59, and 72%, which weremeasured by titrationmethod according
to our previous work (Jia et al., 2015a). For the preparation
of SPEEK/lignin composite membranes, 1.6 g of SPEEK was
dissolved in 50mL dimethyl sulfoxide (DMSO), and stirred at
60◦C until being dissolving completely. After cooling down
to room temperature, 240mg pretreatment lignin powder was
added and vigorously stirred overnight. The mixture was casted
on a home-made glass plate and dried in oven at 100◦C for
solvent evaporation. After cooling, the membrane was peeled
off from the glass and soaked in water immediately. Based on
the mass ratio of lignin to SPEEK, the composite membranes
were named as SPEEK41/L15, SPEEK50/L15, SPEEK59/L15, and
SPEEK72/L15. Commercial Nafion 212membrane (DuPont) was
used as the reference. All of the reagents were used as received.

Characterization
Fourier transform infrared spectroscopy (FT-IR, Thermo Fisher
Nicolet iS10) was investigated in the range of 400–4,000 cm−1.
The microstructure of the as-preparedmembranes was examined
with field-emission scanning electron microscopy (FESEM, Zeiss
Auriga FIB/SEM). Water uptake (WU) was measured as follow:
(1) dry membrane was soaked into distill water for 24 h; (2)
the membrane was taken out and cleaned with filter paper
immediately; (3) the cleaned membrane was weight by Mettler-
Toledo analytical balance (ME204E). Swelling ratio (SR) was
obtained by measuring the length variation of the membrane
before and after immersing in deionized water for 24 h. The
WU and SR of these membranes can be calculated through the
following equations (Ling et al., 2012).

WU =
Wwet −Wdry

Wdry
(1)

SR =
Lwet − Ldry

Ldry
(2)

where theWdry andWwet are the weight of the membrane before
and after soaking, respectively; the Ldry and Lwet are the length of
the membrane before and after soaking, respectively.

The permeability of VO2+ ion across the membranes was
investigated as follow: (1) isolating two reservoirs that were filled
70mL of 1.5M VOSO4 in 3.0M H2SO4 solution and 70mL of
1.5M MgSO4 in 3.0M H2SO4, respectively, with a membrane of
2.01 cm2 active area; (2) stirring continuously and measuring the
concentration of VO2+ in MgSO4 compartment at 24 h intervals
by TU-1900 UV-vis spectrometer; (3) sampling with replacement
to keep the solution volume stable. A typical experimental setup

Frontiers in Chemistry | www.frontiersin.org 2 November 2018 | Volume 6 | Article 549

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Ye et al. SPEEK/Lignin Membrane for Flow Battery

FIGURE 1 | The general structure of lignin and schematic illustration showing the water channel in a composite membrane for vanadium redox flow battery.

FIGURE 2 | A typical diffusion cell to measure VO2+ permeability.

was shown in Figure 2. The permeability value of the membrane
can be calculated using Equation (3) (Jia et al., 2015a):

V
dC(t)

dt
= A

P

L
(C− C(t)) (3)

where V, A, P, L, C, and C(t) are the volume of the VOSO4

solution, the effective area of the membrane, the permeability of
the vanadium ions, the thickness of the membrane, the initial
concentration of VO2+ in the VOSO4 compartment, and the
vanadium concentration in the MgSO4 compartment at the
moment t, respectively.

The area resistance (R) of membranes was investigated by
a resistance tester (DME-20, DM, China). The electrolytes in
both compartments were 1.5M VOSO4 and 3M H2SO4, and the
conductivity (σ ) of the membrane can be calculated as follow
(Ling et al., 2012):

σ =
L

AR
(4)

where R represents the resistance difference between the cell with
and without membrane, L is the thickness of the membrane, and
A is the active area of membrane (13.5 cm2).
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FIGURE 3 | FT-IR spectra of (A) lignin powder, (B) pure SPEEK membrane,

(C) SPEEK41/L15, (D) SPEEK50/L15, (E) SPEEK59/L15, (F) SPEEK72/L15.

Cell Testing
The VRB single cell consisted of a composite membrane (13.5
cm2) sandwiched between two carbon felt electrodes (13.5
cm2), and two graphite polar plates (current collectors). The
1.5M VO+

2 in 3.0M H2SO4 and 1.5M V3+ in 3.0M H2SO4

solutions were used as catholyte and anolyte, respectively. The
cell performance was measured by Arbin battery testing system
(BT-I, Arbin, USA) including open circuit voltage decay (OCV),
long cycle charge-discharge, and rate performance. The OCV
(75% state of charge) was terminated when the voltage of the
testing cell declined below 0.85V. The potential range was
between 0.7 and 1.75V at room temperature.

RESULTS AND DISCUSSION

Membrane Characterization
Figure 3 shows the FT-IR spectra of lignin, pure SPEEK, and
the composite membranes. The broad band at 3,400 cm−1 is
ascribed to the hydrogen bond and OH vibration. For lignin, the
peaks at 2,938 and 2,849 cm−1 are assigned to the C-H stretch
in methyl and methylene group (-CH2-), and those at 1,594
and 1,511 cm−1 are attributed to the aromatic rings of phenyl
propane skeleton (characteristic bands of lignin; Faix, 1991). For
SPEEK membrane alone, the following fingerprint absorption
peaks are present: 3,428 cm−1 (O-H stretching of -SO3H groups),
1,076 cm−1 (symmetric stretching of O=S=O), and 706 cm−1

(S-O stretching; Li et al., 2014b; Ma et al., 2018). For composite
membranes, the intensity of the peaks for -SO−

3 (1,076, 1,020,
and 706 cm−1) increases with the DS, because of the increased
amount of the -SO3H. More importantly, all of the composite
membranes exhibit the characteristic peaks of lignin, indicating
the incorporation of lignin into the SPEEK matrix. Compared
with the pure SPEEK, the peaks of O-H stretching (3,248 cm−1)
shift toward the low frequency and the peak intensity decreases
in the composite membranes. This suggests the hydrogen bond

interaction between the -OH groups of lignin and the -SO3H
groups of SPEEK.

Figures 4A,B reveals that the lignin powders are
homogeneously dispersed in the SPEEK solution without
any precipitates, even after 240 h. This is a prerequisite for
forming a uniform composite membrane. Figures 4C,D displays
the resulting SPEEK and SPEEK50/L15 membranes which
exhibit uniform and dense surface. This would hamper the
crossing of vanadium ions and enhance the cycle stability of the
membrane. Moreover, the lignin particles are homogeneously
embedded into the polymer matrix and can improve the wetting
property of the composite membrane. The 3D structure of
lignin also provides more pathways for protons transport and
reduces the water channels to repulse vanadium ions. Therefore,
the lignin is introduced into the SPEEK matrix, which can
enhance the proton conductivity while inhibit the vanadium ions
permeation.

The proton transport generally proceeds via the vehicle and
Grotthuss mechanism in the membrane. As such, the water
uptake is a critical property. It has been demonstrated that the
proton conductivity of the proton exchange membrane enhances
with the WU amount. However, a high water uptake usually
results in low mechanical stability. Table 1 shows that the WU
of SPEEK/lignin membranes increases with the DS, as more
hydrophilic -SO3H groups enhance the wetting property of the
membrane. Similarly, the SR displays the same tendency as the
WU.

The permeability of the resulting membranes is shown in
Figure 5. The VO2+ permeability of SPEEK/lignin membranes
increases with the degree of sulfonation. This is attributed to
the high DS that generally imparts abundant -SO−

3 groups
in the polymer matrix, which drastically improve the proton
conductivity (see Table 1) and also accelerate the crossover
of vanadium ions through the membrane. The ion selectivity
(Zhang et al., 2014a; Ji et al., 2017), namely the ratio of proton
conductivity to ion permeability, is widely used to describe the
balance between the two processes. Figure 5B shows that the
ion selectivity of the composite membranes is much higher
than that of the Nafion 212, regardless of the DS in SPEEK,
because of the suppressed permeability of VO2+ ion. This clearly
demonstrates the advances of the composite system. In particular,
the SPEEK59/L15 membrane exhibits the best performance
(61.96 × 104 S min cm−3), nearly five-fold increment as
compared to the Nafion 212 (12.78 × 104 S min cm−3). The
incorporation of lignin into the SPEEK substrate provides more
proton transport pathway and meanwhile adjusts the water
channels to repulse vanadium ions, thus giving rise to high ion
selectivity.

Cell Performances
To systematically study the performance of the composite
membranes, the OCV, long cycle process, and rate performance
of VRB single cells were carried out under different conditions.
The OCV is a critical parameter to verify the vanadium ions
cross rate in the membranes, as the vanadium ions crossing
the membrane results in self-discharge and therefore the cell
voltage declines accordingly. Figure 6A reveals that the OCV
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FIGURE 4 | Photographs of SPEEK solution and SPEEK/lignin mixture in DMSO: (A) initial and (B) after 240 h; SEM images of (C) pure SPEEK and (D) SPEEK50/L15

membranes.

TABLE 1 | Property of different membranes.

Membrane Thickness (µm) Area resistance (� cm2) Water Uptake (%) Swelling ratio (%) Conductivity (mS cm−1)

SPEEK41/L15 81 1.054 23.62 6.60 7.7

SPEEK50/L15 81 0.609 27.61 8.25 13.3

SPEEK59/L15 81 0.460 30.07 10.28 17.6

SPEEK72/L15 81 0.406 42.63 12.47 19.9

Nafion 212 50 0.244 / / 20.4

FIGURE 5 | Comparison between Nafion 212 and SPEEK/Lignin membranes: (A) VO2+ permeability; (B) permeability and ion selectivity.

curves decrease rapidly with the enhanced DS in the composite
membrane. It is obvious that the voltage decay (above 0.85V) of
cells assembled with the composite membranes is much slower
than that of Nafion 212 (288.6 vs. 14.05 h for SPEEK41/L15
vs. Nafion). This indicates that the SPEEK/lignin composite

membrane efficiently suppresses the permeation of vanadium
ions, in good agreement with the results in Figure 5.

Figure 6B displays the typical charge-discharge curves of the
VRB cells using different membranes under current density of
120mA cm−2. As a high area resistance (see Table 1) usually
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FIGURE 6 | (A) Open circuit voltage decay of different membranes, (B) the charge-discharge performance of VRB cells employing different membranes at 120mA

cm−2.

FIGURE 7 | The Coulombic efficiency (A) and discharge capacity (B) of the cells with SPEEK59/L15 and Nafion 212 membranes at current density between 50 and

320mA cm−2.

leads to high ohmic polarization, the average charge voltage of
cells with SPEEK/lignin membranes is slightly higher than that
of the Nafion 212, with the average discharge voltage being on
the contrary. However, the SPEEK59/L15 membrane exhibits
the best discharge capacity, as a result of high ion selectivity,
consistent with the above discussion.

Figure 7 shows the cycling performance of cells assembled
with SPEEK59/L15 and Nafion 212 membranes from 50 to
320mA cm−2. The Coulombic efficiency of the cells with
SPEEK59/L15 (up to 99.56%) is higher than that of Nafion 212
over the whole rate range. This originates from the reduced
vanadium ion permeability with the composite membranes. It
is noted that the CE of both cells increases with the current
density. This is mainly due to the shortened charge-discharge
time under high current density, which suppresses the crossover
of vanadium ions through the membrane. Figure 7B reveals that
the discharge capacity of SPEEK59/L15 is higher than that of
the Nafion 212 under current density ≤250mA cm−2. This can
be attributed to the overpotential and ohmic polarization under

high current. Therefore, the better performance of SPEEK59/L15
is ascribed to the synergistic effect from the lignin additives and
SPEEK matrix, which provides more proton transport pathway
and meanwhile suppresses the crossover of the vanadium
ions.

Figure 8 displays the stability performance of the
corresponding VRB cells operated at 120mA cm−2. The
Coulombic efficiency decreases with the degree of sulfonation
(Figure 8A). This agrees well with the varying trend of
VO2+ permeability (Figure 5A), as a high DS improves the
proton conductivity but accelerates the crossover of vanadium
ions through the membrane. As such, the voltage efficiency
increases with the DS (Figure 8B). Accordingly, the cells
with SPEEK59/L15 membranes exhibit an impressive energy
efficiency (EE = CE × VE, up to 82.75%), comparable to that of
the Nafion 212. This is attributed to the best ion selectivity for
the SPEEK59/L15 membrane. It is noteworthy that the cells with
SPEEK72/L15 fail after only 29th cycles, as a high DS deteriorates
the mechanical and chemical stability of the membrane.
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FIGURE 8 | The Coulombic efficiency (A), voltage efficiency (B), energy efficiency (C), and discharge capacity retention (D) of VRB cells using different membranes

under current density of 120mA cm−2.

The capacity retention of VRB cells is a key factor to measure
the ion imbalance in the operation process. Figure 8D discloses
that the discharge capacity retention of the cells assembled
with Nafion 212 maintains just 55.96% after 100 cycles under
120mA cm−2. In contrast, under the same conditions, the cells
with SPEEK59/L15 keep about 94.80% after 100 cycles, and
more than 85% after 200 cycles. This demonstrates that the
SPEEK59/L15 membrane substantially suppresses the crossover
of vanadium ions and thus enhances the stability and prolongs
the cycle life. The cells with the SPEEK59/L15 membranes show
the best capacity retention and outperform the other ones. The
SPEEK59/L15 membranes synthesized by an eco-friendly and
cost-effective approach exhibits high ion selectivity and excellent
stability, making it a promising candidate for efficient VRB
system.

CONCLUSIONS

The SPEEK/lignin composite membranes were optimized by
controlling the degree of sulfonation toward the VRB application.
The VRB cells with SPEEK59/L15 membranes exhibit an
impressive energy efficiency up to 82.75%, low vanadium ion
permeability, high ion selectivity, and high capacity retention
(94.80% after 100 cycles and over 85% after 200 cycles).
The good performance is assigned to the synergistic effect
from the lignin additives and SPEEK matrix, which improves
the proton conductivity and suppresses the crossover of the
vanadium ions. The eco-friendly and cost-effective composite

membranes make it a competent candidate for VRB energy
storage technique.
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