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Investigations of mental illness have been enriched by the advent and maturation of
neuroimaging technologies and the rapid pace and increased affordability of molecular
sequencing techniques, however, the increased volume, variety and velocity of research
data, presents a considerable technical and analytic challenge to curate, federate
and interpret. Aggregation of high-dimensional datasets across brain disorders can
increase sample sizes and may help identify underlying causes of brain dysfunction,
however, additional barriers exist for effective data harmonization and integration for
their combined use in research. To help realize the potential of multi-modal data
integration for the study of mental illness, the Centre for Addiction and Mental
Health (CAMH) constructed a centralized data capture, visualization and analytics
environment—the CAMH Neuroinformatics Platform—based on the Ontario Brain
Institute (OBI) Brain-CODE architecture, towards the curation of a standardized,
consolidated psychiatric hospital-wide research dataset, directly coupled to high
performance computing resources.
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INTRODUCTION

Mental illness affects one in three individuals in their lifetimes (Smetanin et al., 2011), and is the
leading cause of disability in Canada (Lim et al., 2008; Mental Health Commission of Canada,
2014; Whiteford et al., 2015) exerting an economic burden estimated at $51 billion per year,
including health care costs, lost productivity and reductions in health-related quality of life (Lim
et al., 2008; Smetanin et al., 2011). Investigations of mental illness have been enriched by the
advent andmaturation of neuroimaging technologies and the rapid pace and increased affordability
of molecular sequencing techniques (Lynch, 2003; Linden, 2012; Factors Study, 2013; Fu and
Costafreda, 2013; Schreiber et al., 2013; Mayberg, 2014; Etkin, 2014; Power et al., 2016; Altman
et al., 2016).

While these tools can independently provide powerful insights into the brain’s structure
and function, directed integration of complementary information holds considerable promise to
accelerate discovery and identify cross-modal biomarkers for stratification, diagnosis and treatment
of mental illness (Potkin et al., 2014; Mufford et al., 2017).
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This increased volume, variety and velocity (Bellazzi, 2014;
Lee and Yoon, 2017) of research data, presents a considerable
technical and analytic challenge to curate, federate and interpret,
requiring the adoption of clear standardizations and aligned
infrastructure to coordinate data within and across studies.
Neuroinformatics has emerged as a discipline in response to
these needs and the progressive evolution of computational
psychiatry.

To help realize the potential of multi-modal data towards
the study of mental illness, the Center for Addiction and
Mental Health (CAMH) constructed a centralized data
capture, visualization and analytics environment—the CAMH
Neuroinformatics Platform—based on the Ontario Brain
Institute’s (OBI) Brain-CODE platform, enabling the curation of
a standardized, consolidated psychiatric hospital-wide research
dataset, directly connected to high performance computing
resources.

The CAMH Neuroinformatics platform was developed to
support core capabilities for institutional researchers:

• Provide a research data management platform that can
accommodate and federate the varied research data collected
at an academic teaching hospital.
• Provide value to researchers through data visualization, quality
reports and intuitive query interfaces.
• Accelerate analytics, by bringing organized data structures and
compute power together in an integrated environment.
• Establish a standardized framework, to facilitate cross-
institutional data integration.

This article centers on the recent implementation of the
CAMH Neuroinformatics Platform, a hospital-focused adoption
of the OBI’s Brain-CODE model to enable organization of
site-wide multi-modal research data to accelerate discovery
in mental health. The manuscript addresses the utility and
flexibility of Brain-CODE as applied to a hospital environment,
and the extensibility of the model, as demonstrated by further
developments, including the federation of anonymized clinical
records and coupling to unified compute resources.

MATERIALS AND METHODS

To develop a centralized data management and analytics
environment, CAMH approached the OBI to review the design
elements of the Brain-CODE platform for large-scale multi-
dimensional provincial data management, guided by the FAIR
data principles (Jeanson et al., 2014, 2016; Wilkinson et al.,
2016; Vaccarino et al., 2018). The Brain-CODE model met
core criteria appropriate for translation to a research hospital
environment.

Flexible
Brain-CODE adopted data capture and organization systems
to support the vast array of data types found in brain
science. This was essential to meet the requirements posed
by the considerable variety of research data collected
at CAMH, including magnetic resonance imaging (MRI),
positron emission tomography (PET), computed tomography
(CT), electroencephalography (EEG), genetics, epigenetics and

proteomics. The systems were also extensible to adapt custom
data types and structures. This flexibility extended through the
choice of technologies, each of which allow for considerable
customization, and open integration with other systems,
including the addition of other databases, such as in the
case of electronic medical record (eMR) datasets (CERNER),
administrative data (such as the Institute for clinical evaluate
sciences, ICES), population health and economics data.

Scalable
The Brain-CODE platform was demonstrated to be highly
scalable as applied to province-wide neuroscience studies
supported through the OBI. This scalability met the
requirements to aggregate data across hospital research
programs and to facilitate national and international multi-site
studies. The platform needed to be capable of handling the
hundreds of active studies CAMH supports and the thousands
of closed/archived projects of historical data.

Secure
Brain-CODE was developed with a ‘‘privacy by design’’
approach, embedding security into each layer of
implementation based on the 10 Canadian Standards
Association (CSA) Privacy Principles1. This aligned with
the requirements of a hospital environment, where security
of research and clinical data are paramount. Granular and
defined access levels, built around the structure of research
endeavors, provided a solid framework for secure access.

Accessible
The individual applications and interfaces are highly accessible
to the research community. The web-based tools are intuitive
and well-suited for data collection in each domain (imaging,
molecular, clinical), and require limited training to reach a
sufficient level of comfort for systems adoption and can be
made accessible securely within the hospital network, through
centralized two-factor authentication.

Research Domain Databases
The Neuroinformatics Platform consists of open-source
domain-specific database systems, federated through a DB2
back-end to provide subject-by-subject records. Each database
interface is designed for a particular data-type, e.g., imaging,
molecular, clinical, allowing for intuitive data entry and handling
(Figure 1).

REDCap2 is used to capture behavioral and clinical
assessments, including harmonized common data elements
(CDEs) and self-report surveys (Harris et al., 2009). The CAMH
instance of REDCap was validated in collaboration with the
internal research ethics board (REB) and IT Security teams,
to enable usage in regulated clinical trials in compliance with
Health Canada.

XNAT3 (adapted as SPReD4) is used to store and organize
medical imaging data, including MRI, CT/PET and EEG. MRI

1https://www.csagroup.org/codes-standards/health-safety/
2http://project-redcap.org
3http://www.xnat.org
4https://sites.google.com/a/research.baycrest.org/informatics/spred
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FIGURE 1 | Overview of the Center for Addiction and Mental Health (CAMH) Neuroinformatics Platform. Data sources include XNAT (imaging), LabKey (molecular),
REDCap (electronic case report forms, eCRFs) and case of electronic medical record (eMR) case of electronic medical record (eMR) datasets (CERNER; electronic
health records, eHRs) which are federated into a central DB2 database. Federated datasets are available to compute resources (compute and Hadoop clusters) and
easily accessible through dashboards and software notebooks through the Neuroinformatics Portal.

data are stored in both their original DICOM and derived
formats, including NiFTI, MINC and ANALYZE, automatically
generated through pre-processing pipelines.

LabKey5 is used for the coordination and storage of biological
specimens and molecular data, including genetics, epigenetics
and proteomics. This system supports both raw data storage and
direct tabularization of results.

The databases support both original source data, derived
values (e.g., quality assessments and final results) and
pre-processed datasets (e.g., artifact correction).

All subject data are collected with informed consent,
under a study-specific REB protocol. Authentication has been
harmonized through the hospital-wide active directory system
and within each sub-system, rights are limited depending on
user-role to maintain security and to separate projects based
on REB study protocol. All changes to user access require
submission of an auditable electronic form, which requires
principle investigator sign-off. This extends to visualization
dashboards and individual table access for analytics (Clinical data
access has additional constraints, described in the section specific
to clinical record data).

5https://www.labkey.com

In the current phase, external access can be provided to
researchers who are named collaborators on the REB study
protocol. Access requires confidentiality agreements and a
centrally administered institutional account.

Data Federation
Multi-modal datasets are federated using the IBM InfoSphere
Federation Server6, which provides a thin, virtual data definition
layer that allows seamless communication with data sources.
A flexible API backend utilizes this federation capability to
provide subject-oriented, de-normalized mart-like data tables,
within a DB2 database environment. Data are linked, by unique
standardized research participant IDs, across each source system,
to generate a subject-level, profile for each individual.

Visualization and Query Interface
Visualization and federated query interfaces are provided
through TIBCO Spotfire7. Dynamic dashboards, refreshed daily,
provide federated data views across data sources. These data
views are served to specific research teams, defined by their study
protocols and data requirements.

6http://www-03.ibm.com/software/products/en/ibminfofedeserv
7http://spotfire.tibco.com/
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Dashboards provide visualizations that can be constructed
from any data or metadata in the source systems (XNAT,
REDCap, LabKey and CERNER). Filters can be applied directly
through interactive selection, or a variable-by-variable query
interface, to refine cohorts for data export to compute cluster
environments or local processing centers.

Statistical packages included with the dashboard
implementation allow for clustering, regression and stratification
of datasets, presenting an initial layer of rapid exploration and
visualization, prior to offloading to dedicated compute resources
for further investigation.

Neuroinformatics Portal
Access to each of the data entry tools, dashboards and analytics
applications are coordinated through a central Neuroinformatics
Portal (Figure 2). This primarily web-based design of the
Neuroinformatics Platform provides a consolidated gateway for
CAMH researchers to interact with their data.

Central Subject Registry
A central ledger of all participants entered into the platform
is supported by the Subject Registry (Vaccarino et al., 2018).
As a core component of this tool, medical record numbers
(MRNs) or health card numbers can be encrypted on entry,
allowing for the identification of common participants across
studies. As participants can be identified across studies, visits and
encounters, the subject registry facilitates longitudinal dataset
linkages and simplified hospital-wide research participant review
and oversight.

The Neuroinformatics Platform operates based upon
informed participant consent, meaning that institutional REB
approvals and associated informed consents govern what
data can be collected, uploaded, de-identified and shared.

This information is tracked in an Ethics Tracking Database,
(supported through a validated REDCap instance) which
contains information on the sensitivity of datasets and sharing
permissions. The information in the Ethics Tracking Database
is linked to each participant via the Subject Registry which
allows the tracking and management of data permissions on a
participant-by-participant basis.

Quality Assurance
Prompt and reproducible metrics of data quality are essential to
ensuring the integrity of research data. This is supported through
the Neuroinformatics Platform in the implementation of quality
control and quality assurance (QC/QA) scripts launched for new
data entry into data collection systems, and the presentation of
data quality dashboards.

QC scripts and summary dashboards are a core component
of the XNAT implementation. Automated QC scripts are
initiated on a nightly basis, with computation coordinated
through the CAMH compute cluster. These include naming
convention checkers, scan protocol checkers and both human
and phantom QC/QA. Functional MRI data quality is assessed
using phantom and human implementations of the fBIRN
pipeline from the Biomedical Informatics Research Network
(Friedman and Glover, 2006; Glover et al., 2012). Structural data,
specifically T1 scans are evaluated through an MRI registration
pipeline that automatically registers (non-linear warping with
ANTS8 every new high-resolution T1 MRI structural scan to a
template and then automatically measures signal-to-noise (SNR)
and contrast-to-noise (CNR) in gray matter. The pipeline also
includes white matter measures and automatically measures
volumes of interest using the MNI152 registration template and
the LPBA40 segmentation atlas (Shattuck et al., 2008).

8https://sourceforge.net/projects/advants/

FIGURE 2 | CAMH Neuroinformatics Portal landing page (Left), Dashboard view for multi-modal dataset (Right). The filter function for data query is illustrated for the
Dashboard view.
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FIGURE 3 | Example, “global” longitudinal quality assurance and quality control (QA/QC) dashboard for functional MRI (fMRI) data.

The reports generated by these scripts are captured and
associated with the subject/imaging sessions in XNAT, and are
further aggregated into interactive dashboards visible to each
research group, with both cross-sectional and longitudinal views
across the study (Figure 3).

A ‘‘global’’ imaging data quality dashboard also provides a full
view of all data entered into the Neuroinformatics platform. This
assists with the evaluation of overall site performance, long-term
trending and detection of outlier data.

Any number of pipelines can be added to these workflows to
support additional QC or pre-processing steps on neuroimaging
datasets that can be executed on secure local compute resources.

XNAT—Anonymization
In additional to anonymization of clinical data discussed in
the following sections, de-identification of imaging data is also
handled through automated pipelines (Li, 2011). A DICOM

header de-identification pipeline is applied to remove or replace
fields within the DICOM files. The fields to be modified are
configurable and are evaluated on a project-by-project basis,
dependent on REB protocol and in co-ordination with the
CAMH privacy office. High-resolution structural MRI scans
have been demonstrated to allow for the reconstruction of
facial features and identification of individuals (Schimke et al.,
2011). To support anonymization of imaging data a defacing
pipeline based on the MRI_deface tool (FreeSurfer; Bischoff-
Grethe et al., 2007) can be applied to data to remove facial
features from T1 images. In combination these pipelines can
reduce the likelihood of re-identification of imaging datasets.

Clinical Datasets
Electronic Medical Health Records
CAMH is a ‘‘HIMMS EMRAM Stage 7’’ hospital with
highly coordinated electronic medical health records

Frontiers in Neuroinformatics | www.frontiersin.org 5 November 2018 | Volume 12 | Article 77

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Rotenberg et al. CAMH Neuroinformatics Platform

FIGURE 4 | High-level schematic overview of data flow from the eMHR
system (CERNER) to the Neuroinformatics Platform database: (1) Electronic
Medical Health Care Data are collected as part of clinical care and from clinical
trials/translational clinical research; (2) Extract Transform and Load (ETL)
scripts extract data from the electronic medical health record system to a
curated intermediary database; (3) The NI extraction scripts are run, pulling
only the agreed upon variables and anonymous Research IDs. These data,
including an up-to-date schema are transferred to a secure location;
(4) Anonymization scripts (sdcMicro; Templ et al., 2015) are run to determine
whether the new extract fulfills anonymization criteria. If not, data flow ceases
and the data are triaged. The extract is revised, until the thresholds are
appropriately met; (5) Once the anonymization thresholds are successful, data
are transferred to the DB2 database, incorporating updated schemas;
(6) Accesses to these data are provided securely to research teams, with prior
research ethics approvals only.

systems (CERNER) deployed to clinicians as I-CARE9.
These records are of significant interest to researchers, both
as independent sources of information related to patient
prognosis, progression and outcomes, as well as when combined
with research data, such as medical imaging and molecular
expression.

Clinical datasets are provisioned to researchers through two
methods: (1) anonymized aggregate data for review by internal
researchers; and (2) data cuts specific to a REB approved study,
including retrospective chart review, restricted only to those
named members on the study protocol and in agreement with
identifiers included when and if allowed by the REB.

Coordinated data extracts of the hospital electronic medical
health record system, are staged through the federation
server, and then imported into the DB2 data-lake (Figure 4).
These records, including demographics, laboratory results and
pharmacological information, are linked to extended research
datasets, securely bridging clinical and research domains.

Anonymization
The capability to ensure anonymization is essential to the use of
clinical data in a research environment. Three primary methods
are applied to clinical data prior to exposure to research systems:
direct identifier removal, k-anonymity and l-diversity (using the
sdcMicro software package; Templ et al., 2015).

Direct identifiers, such as name, address, phone number, date
of birth, as well as IDs (such as medical record and health card
numbers) are isolated and removed. These variables are masked
(i.e., cells are nullified or the columns are removed entirely

9www.cerner.com

from the table) in the standard extract for the Neuroinformatics
Platform.

Anonymous ‘‘Research IDs,’’ following the CAMH research
naming convention, are generated in-place of other internal IDs
tied to identifiable information. The clinical team retains secure
mappings, to recover information if re-identification is required.

Variables that pose an identification risk, alone or in
combination with others, including Gender, Age Group, Local
Health Integration Network (LHIN) and Major Program are
considered Key Variables. To enforce k-anonymity (Samarati
and Sweeney, 1998; El Emam et al., 2009) the datasets are
processed for unique values or unique combinations of up to
three variables, which if identified are nulled.

Confidentiality is breached if a set of subjects with the same
combination of (up to 3) key variables has the same diagnosis.
In these cases subjects have their key variables nulled, to enforce
l-diversity, while guaranteeing a minimum loss of information
(Machanavajjhala et al., 2007).

After the application of k-anonymity and l-diversity
algorithms, risk measures related to the probability of
identification are calculated, to help ensure low risk of disclosure
and monitor the disclosure risk changes over time.

These metrics are calculated for each subject in two ways:
(i) ‘‘Disclosure Risk’’ for a given subject is calculated as 1 divided
by the number of subjects with the same combination of key
variables. It will be 1 if the subject has a unique combination
of key variables, considered unacceptable; and (ii) ‘‘Sample
Frequency on Subsets,’’ is calculated using the Special Unique
Detection Algorithm (SUDA2). A Data Intrusion Simulation
(DIS) score is derived for each subject based on considerations
of how unique the combination of key variables is (with higher
weight for combination of fewer variables).

The output of this process is an anonymized dataset and a
report that highlights the changes made to the original data and
summaries of the risk measures of anonymity.

If the risk probability for re-identification exceeds established
thresholds, further processing will cease and the data will remain
in the staging area. The dataset is adjusted in coordination with
clinical teams until the re-identification risk is reduced to within
the set parameters.

Cohort Explorer
The anonymized medical record data are utilized to provide a
cohort explorer for study feasibility evaluation and statistical
power calculations (Figure 5). This follows a similar model
to Informatics for Integrating Biology and the Bedside (i2b2;
Murphy et al., 2006), by providing a layer of access to explore
cohorts across the breadth of the clinical records systems.
The clinical data can be further combined with research
data from the other source databases through the common
DB2 backend.

As the anonymization process can reduce the amount of
information available, the aggregate cohort explorer is intended
primarily as an overview to identify study feasibility. Further
variables do continue to be added to the aggregate clinical extract,
to make these data more valuable for analysis. Where further
information is required, detailed extracts are provisioned in
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FIGURE 5 | Example clinical data cohort explorer dashboard, with visualizations of diagnosis, age, gender and average encounter (filterable by diagnosis). QC data
and full table views are also made available.

alignment with a specific REB protocol, and are anonymized as
far as possible, to limit identifiers to those prescribed by the REB.

Analytics
Compute Cluster
The scale and complexity of medical imaging and molecular
datasets necessitates substantial compute capabilities for
the pre-processing, QC measures and post-processing. The
Neuroinformatics Platform was designed with full connectivity
to a local high-performance compute cluster to handle
computationally demanding tasks (Figure 6).

Automated scripts initiated from the source databases
(e.g., XNAT and LabKey) are issued to the local compute
infrastructure, on dedicated secure queues.

Researchers are able to access their datasets, via queries
and data pointers directly from the compute clusters. The

architecture adopted, minimizes data transfers, and includes
a tightly connected network on a unified VLAN, at 10 GB
bandwidth, between all Neuroinformatics platform resources.

Hadoop Analytics Environment
To enable analysis of increasingly large datasets, otherwise
intractable to conventional approaches, the Neuroinformatics
Platform was implemented alongside dedicated Hadoop
infrastructure10. The DB2 database is imported in full to a HIVE
2.011 framework, utilizing SQOOP12, with secured permissions
enforced on a column-by-column level. Researcher’s datasets are
directly accessible to the active workspace to apply pipelines and
processing frameworks.

10http://hadoop.apache.org
11http://hive.apache.org/
12https://hortonworks.com/apache/sqoop/
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FIGURE 6 | Illustration of the CAMH Compute Cluster architecture.

Notebook Interfaces
To further the accessibility and web-based design of Brain-
CODE, notebooks for Python (Jupyter13) and R (RStudio14),
common languages in computational psychiatry, are accessible
through the central Neuroinformatics Portal. These notebooks
can process code on either a classical compute cluster,
or dedicated Hadoop environment, leveraging SparkR15 and
PySpark16 to seamlessly execute pre-developed code, without
recoding in native MapReduce.

Data Center
The infrastructure to support the functions of the
Neuroinformatics Platform is maintained locally at CAMH
across three secure data centers. The Neuroinformatics Platform
adopted a design philosophy to ensure no ‘‘single point of
failure.’’ Each server includes redundant components, network
connections, RAID storage configurations and hot-spares.

Each database application (XNAT, LabKey, Spotfire and DB2)
is provisioned with a dedicated development and production

13http://jupyter.org/
14https://www.rstudio.com/
15https://spark.apache.org/docs/latest/sparkr.html
16http://spark.apache.org/docs/2.1.0/api/python/pyspark.html

server, physically separated between the primary data centers for
high availability and disaster recovery purposes.

Similar to the OBI, CAMHhas adopted a primarily virtualized
architecture, using Oracle VM (OVM17). While there are some
limitations in performance as a result of virtualization, this
approach provides substantial operational benefits, notably:
(a) flexible deployment; (b) efficient snapshots for backup; and
(c) simplified fail-over procedures to initialize replicated VMs.
The virtual machines are distributed to a cluster of computers,
through OVM, such that they can be dynamically deployed/re-
deployed as required in case of hardware failure (Figure 7).

Data storage and backup functions are supported through
a 1.9 PB high performance storage system. Replication at the
file-level is conducted on an hourly basis, between the primary
and secondary storage sites, maintaining concurrent mirrors of
all raw and processed data (MRI, EEG, PET, etc.). Point-in-time
snapshots are taken each day, and retained up to 1-month, such
that accidental deletions or modifications can be rolled back
for up to 30-days. Daily extracts of system configurations are
included in the file-level replication.

17http://www.oracle.com/technetwork/server-
storage/virtualbox/overview/index.html
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FIGURE 7 | Overview of the Neuroinformatics Platform architecture that leverages high performance storage system replication and virtual machines, to support high
availability, redundancy and robust failover.

The Neuroinformatics platform virtual machines are stored
on a separate file system, accessed via Internet Small Computer
Systems Interface (iSCSI), on the central storage system. This
allows for block-level replication of the entire virtual machine
environment between primary and secondary sites. Automated
scripts allow for the preparation and launch of replicated virtual
machines, (either the production or development frameworks),
which can resume access of the research data from the file-level
replica. Both replication channels are further accelerated using
specialized hardware, and encrypted point-to-point.

The research storage systems, Neuroinformatics platform and
high performance compute environments are interconnected
by 10 GB optical fiber, under a single harmonized research
VLAN. This interconnect provides high bandwidth and low
latency to synchronize research data across applications and
analytics systems. The compute infrastructure includes a Hadoop
deployment (HortonWorks), a GPU node for machine learning
applications, and 45 high memory (128–256 GB RAM) compute
nodes, providing over 1,000 available processing cores.

This implementation of the Brain-CODE model on new
hardware architecture demonstrates the flexibility of the design,
and that it can be deployed under differing data center
conditions.

RESULTS

The Neuroinformatics platform has provided a key component
of technological infrastructure that affords researchers with a
standardized framework for data organization and analytics,
accessible through a centralized portal. The system, based on
the OBI Brain-CODE framework, has been able to support and
federate the varied research data types collected at CAMH.

At the time of writing, the CAMH Neuroinformatics
Platform supports 38 distinct research projects, spanning each
of the hospital’s primary research programs, with 3,61,777 total
participant records (including medical records), and anticipated
growth of 30,000 records per year (Table 1A). The total datasets
span 20 TB and adoption across the hospital has been strong,
with the web-based access model allowing for simplified study
management and data transfer.

Supported studies range multiple disorders and cross-lifespan
populations including, Pediatric, Geriatric, Neurodegenerative
(Alzheimer’s, Parkinson’s), Depression, Bipolar Disorder,

TABLE 1 | Summary table of data currently stored in the Center for Addiction and
Mental Health (CAMH) Neuroinformatics platform.
(A) Neuroinformatics platform data summaries.

Primary database Number of Participants

XNAT—Medical Imaging 2,878
REDCap—Assessments 13,514
LabKey—Molecular 15,385
eMHR—Clinical 330,000

Total 361,777

(B) Neuroimaging summary.

Modality Scans

DTI 2277
EEG 1837
T1 2600
T2 4322
fMRI 22108

Total 33144

Number of primary records stored in each database, XNAT, REDCap, LabKey and
from clinical records, Summary of Neuroimaging data types currently stored in
XNAT.

Psychosis, Autism, Schizophrenia and Addictions (Alcohol,
Nicotine). Data types include MRI: Functional, Structural and
Diffusion (Table 1B), PET, EEG, Whole Genome Sequencing,
Methylation, Chip Sequencing, MicroArray Sequencing and
RNA Sequencing.

Each study varies in the data types that are required for
collection and management. While not all studies include data
across each domain (e.g., studies with molecular and assessment
data, or imaging data only), several studies collect extensive
phenotypic data incorporating medical imaging, molecular,
assessment and clinical data for each participant.

In particular, the Social Processes Initiative in Neurobiology
of the Schizophrenia(s) (SPINS18; d = 109) and Preventing
Alzheimer’s Dementia With Cognitive Remediation Plus
Transcranial Direct Current Stimulation in Mild Cognitive
Impairment and Depression (PACt-MD19). These studies collect
biological samples, neuroimaging data (with the inclusion of EEG
data for PACt-MD) and extensive clinical and assessment data.
The complex data collected by these studies are well supported

18http://camhstudies.ca/cgi-bin/ver2/findCAMHstudy_study.php?
19https://sunnybrook.ca/research/content/?page = sri-groups-nppc-proj-7
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by the CAMH Neuroinformatics platform as the system can
accommodate the diverse data types and combine records
through federation: SPINS (LabKey—274, REDCap—174,
XNAT—319), PACt-MD (LabKey—230, REDCap—212,
XNATtextemdash217).

Tight coupling with computing environments supporting
classic parallel clusters and Hadoop frameworks, avoids
intermediary data transfer and storage, staging an environment
for rapid data exploration at-scale. The analytics environments
supporting the platform have run a total of 2,50,000 parallel
jobs, spanning QC, pre and post-processing workloads. The
use of web-based ‘‘notebook’’ interfaces has simplified access to
computational resources and abstracted complexities of queue
management from the user.

Federated records can be served securely to researchers
through interactive dashboards, functionally refined to suit the
requirements of each study. Dynamic query and filter functions
embedded within the platform have enabled researchers to
quickly identify cohorts and data sub-sets, greatly enhancing
data accessibility, and shifting time spent on ‘‘collating data’’ to
scientific interpretation.

The development of the Neuroinformatics platform
establishes the first phase of hospital-wide data integration
by providing a consistent framework for data organization and
management.

DISCUSSION

Sophisticated systems are required to handle the increasing
variety and scale of neuropsychiatric research data. These
challenges are well-known to the neuroscience community,
which have driven the development of several concurrent
approaches to manage complex datasets including, FBIRN FIRE,
COINS, LORIS, NeuroLOG, i2b2 and the Human Brain Project
Medical Informatics Platform (Amorim et al., 2016).

Comparisons to Similar Approaches
The Function Biomedical Informatics Research Network
(FBRIN) and Federated Informatics Research Environment
(FIRE; Keator et al., 2015) are a set of open-source integrated
tools for multi-side or multi-study neuroimaging studies
that includes many critical components such as central
authentication, online clinical data entry forms and the
Human Imaging Database20 for data management. FIRE also
includes the FBIRN image processing stream21. This is a valuable
open-source resource for functional MRI studies and shares
several similarities with the CAMH deployment, including
imaging and clinical assessment data collection, a centralized
database and coupling to compute for processing pipelines (both
including components of FBIRN QA). The two systems also
share querying interfaces with URLs pointing to image data
for staging downstream analyses. The Brain-CODE instance
includes additional data sources, and has been extended for use
with other neuroimaging data types, such as DTI.

20www.nitrc.org/projects/hid
21http://www.nmr.mgh.harvard.edu/∼greve/fbirn/fips/

The Collaborative Informatics and Neuroimaging Suite
COINS22 (Scott et al., 2011) is based on an open-source model
that includes web-based tools to manage studies, subjects,
imaging, clinical data, and other assessments, including a
standard metadata model and powerful query interface. It acts
as an institutional data repository that enables secure data
sharing with a focus on PHI considerations. While there are
advantages to the COINS deployment, as compared to XNAT as
a standalone implementation, such as longitudinal tracking and
standardized meta-data and data structures, the Brain-CODE
model incorporates strict standardization, including naming
conventions for longitudinal studies and enhanced query
through the federation system.

The Longitudinal Online Research and Imaging System
(LORIS; Das et al., 2016) is an extensible web-based data
management system that supports multiple data types, including
imaging, clinical, behavior and genetics. The system includes
capabilities to store, process and disseminate datasets and is used
for a variety of multi-site studies with instances used worldwide.

It shares many conceptual components of Brain-CODE and
the CAMH implementations, and provides valuable insight
into the challenges of managing longitudinal research data.
Compatibility between Brain-CODE and LORIS (Vaccarino
et al., 2018) using the underlying federation model has been
achieved to bridge these two systems towards data integration for
specific studies.

NeuroLOG (Batrancourt et al., 2014) provides a middleware
data management layer, to share heterogeneous and
distributed neuroimaging data using a federated approach.
Shared information can be captured through a multi-layer
ontology and federation schema to harmonize heterogeneous
data. This shares some components of the federation
approach used in Brain-CODE, through standardization
approaches and centralized federate schema. The challenge
of combining retrospective heterogeneous datasets from
legacy databases, still presents a challenge that may be
addressed through the use of mappable data models and
semantic database frameworks, discussed in relation to future
work.

i2b2 is an open-source system developed to provide tools
for clinical investigators to integrate medical records and
clinical research data (Murphy et al., 2010). This provides
similar functionality to the eMHR and research data integration
provided through the CAMH instance of Brain-CODE, including
a query tool to search applicable datasets, and are access
restricted based on REB review. The i2b2 implementation also
has two primary methods of exposure of medical record data:
an anonymized dataset of researcher review and restricted
matched sets of patients and controls based on study-
specific requirements. The i2b2 platform uses ontologies to
standardize data, and can link to diverse databases to access
other data streams and connections to compute resources are
supported. This system does lack the visualization capabilities
afforded by Spotfire, and would rely on the source systems
for QC.

22http://coins.mrn.org
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The Human Brain Projects’ Medical Informatics Platform
can provide support for hospital clinical data to be uploaded
and maintained locally for analysis (without leaving the
originating institution), and also view aggregated data
for large-scale analyses of clinical data across hospitals
(Galili et al., 2014). The CAMH Neuroinformatics platform
approach is more similar to the i2b2 model, with data not
yet federated in aggregate with other institutions. Secure
aggregates are made available for internal use, however,
the inclusion of data models and ontologies, coupled with
anonymization, can allow for more broad clinical data
integration.

In the context of the current environment of
Neuroinformatics approaches, the Brain-CODE model as
implemented at CAMH and its extension through local resources
represents a unique application with several advantages suited to
the hospital-focused use-case.

The Brain-CODE model utilizes open-source databases for
imaging, molecular data and assessment data, leveraging the
specialization of those tools to their data type(s). This supports
a highly diverse range of modalities, as required by CAMH
research programs. This also allows for new systems to be
added, or replaced, as the Neuroinformatics field evolves. The
underlying federation model has also been demonstrated to be
flexible combining data from multiple internal and external data
sources, such as eMHR data at CAMH.

The Neuroinformatics platform combines many of the key
components of comparable systems, with flexibility to extend
additional capabilities, to enrich the existing datasets and move
towards institutional data integration.

Limitations
There are several limitations to the implemented system, from a
user perspective, repository perspective and the data federation
approach.

Development of QC and pre-processing pipelines still
requires substantial coding and subject matter expertise.
Technical teams are available to assist researchers in
implementing their pipelines under the existing frameworks
(XNAT, LabKey), however, considerable knowledge of coding is
still required to ensure that these analyses work seamlessly.

Work was done to allow for direct data download after
querying federated study records. While this has been
successfully implemented for imaging data from XNAT,
the system can only provide tabularized molecular data from
LabKey and has not yet been built to pull raw data in bulk
through the query interface.

Many scripts and tools rely on standardized naming
conventions for MRI scans, which have been shown to
vary considerably between studies. While re-naming can be
performed during data import, and look-up tables established
to accommodate cases where re-naming is not possible, further
effort is required to generalize the system to better handle
varied conventions, particularly when considering inclusion of
externals sources. The authors are also aware of the importance of
provenance andmaintaining full information about the sequence
that was performed for data generation, which may preclude

re-naming. Additional efforts are underway institutionally to
standardize acquisitions.

As discussed in sections ‘‘Electronic Medical Health Records’’
and ‘‘Cohort Explorer’’ there are two methods that clinical data
extracts can be made available: (a) as an anonymized aggregate;
(b) amore complete extract dependent on REB approval for chart
review. The anonymization framework for the clinical data is by
design, conservative and results in a reduction of information
available in the output records that make these data less useful to
investigators. Ongoing efforts include adding additional variables
to the aggregated extracts to provide further information of
interest, while maintaining anonymization criteria.

A primary limitation of the current iteration of the
Neuroinformatics platform is that while data are federated on a
subject-by-subject level, they are not ‘‘integrated’’ across studies.
These limitations exist for legal, ethical and technical reasons.
Foremost patient consent and approved REB protocols are
not generalized for data sharing. There are further technical
limitations imposed by the initial federation software layer.
It is a key component of current and future directions to
implement an interoperability system, through Blue Brain
Nexus23) supporting permutable data models and detailed
provenance. Blue Brain Nexus was designed to fully support
the FAIR data model, and is currently being implemented
within the Neuroinformatics Platform to allow for findability,
interoperability, accessibility and reproducibility. Through the
development of standardized and consistent data model(s) that
incorporate data sharing options and the technology of Nexus,
will support the aggregation of different data sources for the
purpose to increase study sample sizes and enrich a growing
institutional dataset.

CONCLUSION

The CAMH Neuroinformatics Platform represents a unique
application of the Brain-CODE model in a hospital setting,
enabling data management and federation between research and
clinical domains, in support of treatment units and study centers.

The CAMH Neuroinformatics Platform supports individual
study data management and lays the foundations to facilitate
hospital-wide dataset federation, through the application of data
standardization and CDEs24. Maximizing statistical power is
challenging in individual studies, however, integration of related
data through participatory consortia such as, ENIGMA (Kelly
et al., 2018), ADNI (Yao et al., 2017), HCP (Van Essen et al.,
2013), bioCADDIE (Cohen et al., 2017) demonstrate that more
expansive datasets can be established for analysis. Thorough data
integration requires the adoption of data models, ontologies and
semantic description frameworks, to map between existing data
and optimally coordinate future data collection and institutional
developments of harmonized consent models. These capabilities
are critical to the development of large-scale datasets from
across diverse studies and the formulation of longitudinal
datasets. The extensibility of the OBI Brain-CODE model allows

23https://github.com/BlueBrain/nexus
24https://www.braincode.ca/content/getting-started#toc-2
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these developments to be applied effectively at the individual
domain-database level and the intermediary and federation
layers.

Further expansion of the Neuroinformatics Platform will be
focused on establishing a core integration layer that will ensure
data remain ‘‘live,’’ in a searchable, accessible and interconnected
format, under the FAIR data principles. Provenance will also be
a cornerstone of future initiatives, embedded into the platform,
to provide clear descriptors of data origins, processing pipelines
and derivations, and to coordinate authorship in accordance with
applicable data trajectories.

The implemented model of primarily open-source tools
represents a crucial component of research infrastructure, which
can be replicated at institutions of varying size to approach ‘‘Big
Data’’ and multi-modal investigations. The Neuroinformatics
Platform at CAMH will continue to accumulate multi-
dimensional medical imaging, molecular and clinical data to
further expand a rich dataset for large-scale studies to further
our understanding of the etiology, progression and treatment of
psychiatric illness.
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