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ABSTRACT: A 2-D Adaptive Trimmed Mean Autoregressive (ATMAR) model has been 

proposed for denoising of medical images corrupted with Poisson noise. Unfiltered images 

are divided into smaller chunks and ATMAR model is applied on each chunk separately. 

In this paper, two 5x5 windows with 40% overlap are used to predict the center pixel value 

of the central row. The AR coefficients are updated by sliding both windows forward with 

60% shift. The same process is repeated to scan the entire image for prediction of a new 

denoised image. The Adaptive Trimmed Mean Filter (ATMF) eradicates the lowest and 

highest variations in pixel values of the ATMAR model denoised image and also average 

out the remaining neighborhood pixel values. Finally, power-law transformation is applied 

to the resultant image of the ATMAR model for contrast stretching. Image quality is 

judged in terms of correlation, Mean Squared Error (MSE), Structural Similarity Index 

Measure (SSIM) and Peak Signal to Noise Ratio (PSNR) of the image with latest denoising 

techniques. The proposed technique showed an efficient way to scale down Poisson noise 

in scintigraphic images on a pixel-by-pixel basis. The highest correlation 0.9706, PSNR 

10.023 and MSE 25.902 is achieved by the proposed technique.  

ABSTRAK: Model 2-D Auto-Pengurangan Purata Potongan  Penyesuaian (ATMAR) 

telah dicadangkan bagi menghilangkan gelombang bunyi yang dicemari pada imej 

perubatan dengan bunyi Poisson. Imej yang tidak ditapis ini telah dibahagikan kepada 

pecahan kecil dan model ATMAR telah diadaptasi bagi setiap pecahan. Dalam kajian ini, 

dua 5x5 kotak tetingkap dengan 40% pertindihan telah digunakan bagi mendapatkan nilai 

tengah piksel pada barisan tengah. Pekali AR telah dikemas kini dengan meluncurkan 

kedua-dua kotak tetingkap ke hadapan dengan  60% perubahan. Proses yang sama telah 

diulang dengan mengimbas imej keseluruhan bagi mendapatkan imej yang telah 

dinyahbunyi. Tapisan Purata Potongan Penyesuaian (ATMF) ini menghilangkan 

perubahan paling bawah dan paling atas dalam nilai piksel imej model ATMAR yang 

dinyahbunyi dan menyama-rata saki-baki nilai piksel bersebelahan. Akhir sekali, 

perubahan cara-kuasa telah diadaptasi pada imej akhir model ATMAR bagi regangan 

ketara. Kualiti imej telah dinilai dari sudut korelasi, Kesalahan Purata Kuasa Dua (MSE), 

Indeks Ukuran Persamaan Struktur (SSIM) dan Signal Puncak kepada Nisbah Bunyi 

(PSNR) melalui kaedah terkini nyah-bunyi pada imej. Teknik ini menunjukkan cara 

berkesan bagi menurunkan bunyi Poisson pada imej saintigrafik pada asas piksel-kepada-
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piksel. Korelasi tertinggi adalah 0.9706, PSNR 10.023 dan MSE 25.902 telah dicapai 

melalui teknik yang dicadangkan. 

KEYWORDS: denoising; autoregressive model; Poisson noise; adaptive trimmed mean  

1. INTRODUCTION  

Scintigraphic or nuclear images allow investigation of the human body by injecting 

photons from radioactive products and detecting its radiation time. The radioactive product 

that is associated with a labelled biological molecule is called a tracer that gathers in the 

organ/tissue of interest after an injection into the blood. The planar gamma camera can be 

used for capturing radiation emitted by the radioactive product, this imaging technique is 

called scintigraphy [1]. In nuclear medicine, scintigraphic images are used for investigation 

of some organs, regardless of their poor resolution. Poisson noise is one of the important 

sources of deterioration in scintigraphic images [2]. Numerous techniques have already been 

used for reduction of Poisson noise in scintigraphic and Single Photon Emission Computed 

Tomography (SPECT) images. The degradation in quality of such tomographic images is 

caused by detection efficiency, attenuation, collimator correction, and scatter of gamma 

rays.  

These factors cause the output image to have low contrast, high noise levels, and poor 

spatial resolution [3]. In tomography, filtering techniques are considered very important for 

image enhancement. Reduction of noise can be achieved before reconstruction, which is 

called pre-filtering, or during or after reconstruction, which is known as post-filtering [4]. 

Adaptive autoregressive (AR) filters can be used for removal of Poisson noise in 

scintigraphic images [5]. The AR filter is further improved to scale down noise from 3-D 

reconstructed data of scintigraphic images and also from SPECT images [6]. It is important 

to apply the best AR filter for the projection data of scintigraphic images, because a small 

change in the projection data may cause a large change in the estimated transaxial image 

[6]. 

2.   SCINTIGRAPHIC IMAGE ACQUISITION 

The Gamma camera invented by Anger is used for capturing radiation emitted by the 

radioactive product [7]. The main components of the gamma-camera for scintigraphic image 

acquisition are discussed in the following subsections. 

2.1  The Collimator 

The collimator puts gamma rays in one direction to reach the crystal; unlike light, 

gamma rays cannot be concentrated using lenses [8]. Incoming gamma rays can be sensed 

by the collimator and the light generated by the cooperation of the gamma rays and crystal 

can be converted into an electronic signal by photomultiplier (PM) tubes and preamplifiers 

[9]. Parallel hole, pinhole, converging, and diverging are all different types of collimator. 

The most popular collimator is the parallel-hole collimator, which retains the dimensions of 

an image. In the case of non-parallel collimators, the divergence or convergence nature of 

the collimator and geometrical disposition are the controlling factors of an image dimension 

and the cause of geometric distortion [7]. Holes are detached by the lead “walls” are called 

septa. Resolution/sensitivity depends on the collimator thickness, hole diameter, and septal 

thickness. Generally, the collimator thickness is 0.3-1.4 millimeters and the hole diameter 

is 1.8-3.4 millimeters [10]. 
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2.2  The Scintillator Crystal 

In the gamma camera, crystals usually consist of thallium-activated sodium iodide (NaI 

(T1)). Edges and the front side can be protected from outside moisture and light by coating 

it with a thin aluminum (Al) layer. Atomic number (Z) and high mass density make the 

crystal desirable. Important properties of the crystal are high energy resolution, high 

detection efficiency, and low decay constant time [11,12]. Crystals generally having a 

thickness of about 1 cm can detect photons with energies up to a few hundred keV. The 

energy accumulated in the crystal is proportional to the number of light photons produced 

by interaction of crystal and gamma rays. The light guide of the glass is optically coupled 

to the rear side of the crystal, which protects the crystal and directs the light photons to an 

array of photomultiplier tubes [10]. 

2.3  The Photomultipliers (PM) Tubes 

The PM tube is responsible for converting photon energy diffused by the crystal to an 

electrical signal [11]. This is accomplished by the consolidation of several elements placed 

in a vacuum to permit the flow of electrons. The first element is a photocathode placed in 

connection with the crystal. Light photons extract electrons on metal foil on the 

photocathode. These electrons are taken captive to the first dynode due to the application of 

a high voltage between positively charged and the photocathode. The electrons’ expedition 

sanctions them to extract a much more immensely colossal number of electrons from the 

dynode. The same phenomenon is repeated on several other cascading dynodes [13]. 

3.   PROPOSED MODEL 

The proposed model consists of three major steps: an Autoregression (AR) model, 

Adaptive Trimmed Mean Filter (ATMF), and a power-law transformation. Fig. 1 shows a 

step-wise block diagram of the proposed technique. The steps of the proposed method are 

as follows: 

1. Two 5x5 windows with a 40% overlap are used to predict the center pixel value of 

each corresponding window. 

2. AR coefficients for both windows are calculated using a Forward Backward 

Prediction (FB) method as shown in equations (2) and (3). 

3. Using corresponding AR coefficients and neighborhood pixels of each window to 

predict the central pixel value according to equation (1). 

4. Using average of AR coefficients of both 5x5 windows to predict the pixel value of 

the overlapping region. 

5. Slide both windows forward with a 60% shift and update AR coefficients by 

following step 2. 

6. Repeat steps 2 through 5 to scan the complete noisy image and update their predicted 

values denoted by X_pred. 

7. X_err is calculated by using equation (4) to preserve edges and getting predicted 

image I_pred. 

8. Now, a 7x7 window of AR denoised image (X_pred) is taken, slid pixel-by-pixel. 

9. The mean and variance for each 7x7 individual window is calculated. The overall 

variance from local variance is computed. 

10. The adaptive mean of an image is computed using equation (5) to make boundaries 

prominent on its true position.  

11. The pixel values of the 7x7 window are arranged in ascending/descending order, the 

ten upper and ten lower outlier pixels are trimmed and the mean of the remaining 
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pixels is computed using equation (6). Ten pixels are trimmed on both sides as it 

gives good results after performing different experiments with trimming a different 

number of pixels. 

12. The power law transformation is applied using equation (7) for contrast stretching to 

improve the visual quality of the image. 

Fig. 1: Block diagram of the proposed denoising model. 

 

3.1  AR Model 

In the first step, the AR model filter is applied in which each pixel of the image is 

regressed on its neighborhood pixel values called the prediction region in AR model. The 

variable of interest in the AR model is predicated using linear combination of the 

surrounding values of the variables. The AR models are linear prediction models that split 

an image into two additive components, a predictable image and a prediction error image. 

In the AR model, no past values of the model input are used [14]. In this research, a new 2-

dimensional adaptive autoregressive model for filtering of scintigraphic images is 

introduced. An AR process 𝑋 (𝑛1, 𝑛2) can be expressed as [15]. 

𝑋𝑃𝑟𝑒𝑑(𝑛1, 𝑛2) = − ∑ ∑ 𝑎(𝑘1

𝑘2𝑘1

, 𝑘2)𝑋𝑛𝑜𝑖𝑠𝑦(𝑛1 − 𝑘1, 𝑛2 − 𝑘2) + 𝑤(𝑛1, 𝑛2) (1) 

where 𝑎(𝑘1, 𝑘2) are the weighting coefficients, indices 𝑘1 and 𝑘2 define the type of  

prediction region in a two dimensional array (𝑛1, 𝑛2) matrix, and 𝑤(𝑛1, 𝑛2) represents 

prediction error, that is, the difference between the original value and the predicted value in 

this pixel. Predicted image 𝑋𝑃𝑟𝑒𝑑 is the image obtained by applying the AR model on the 

original image  𝑋𝑛𝑜𝑖𝑠𝑦. AR coefficients for both windows are calculated using a Forward 

Backward Prediction (FB) method. 
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  In scintigraphic images, the same model cannot be applied to the entire image as it 

consists of large local spatial variations, therefore, the model must be adapted according to 

the variations. That is why the image is divided into smaller chunks and the AR model is 

separately applied to each chunk. In this method, two 5 x 5 windows with a 40% overlap 

are used to predict the pixel value of the central row. If more or less than 40% overlap ratio 

is selected, the predicted values will come closer to the previous or next pixel values. In 

order to keep a balanced correlation with the previous and next pixel values, this overlapping 

ratio is selected experimentally. The AR coefficients on both windows are computed using 

a Forward Backward Prediction (FB) method as follows.  

The forward predictor model predicts a sample x(m) from a linear combination of P 

past samples x(m−1), x(m−2), . . .,x(m−P). 

 𝑥⏞ (𝑚) = ∑ 𝑎𝑘𝑥(𝑚 − 𝑘)

𝑃

𝑘=1

 (2) 

where the integer variable m is the discrete time index, 𝑥⏞ (𝑚) is the prediction of x(m), and 

𝑎𝑘 are the predictor coefficients.  

Similarly, we can define a backward predictor, that predicts a sample x(m−P) from P 

future samples x(m−P+1), . . ., x(m) as 

 𝑥⏞ (𝑚 − 𝑃) = ∑ 𝑐𝑘𝑥(𝑚 − 𝑘 + 1)

𝑃

𝑘=1

 (3) 

where the integer variable m is the discrete time index, 𝑥⏞ (𝑚 − 𝑃) is the prediction of  

𝑥(𝑚 − 𝑃), and 𝑐𝑘 are the predictor coefficients.  

Using corresponding AR coefficients and four closest neighborhood pixels of the 

window to predict the central pixel value according to equation (1), both windows are slid 

forward with 60% shift and AR coefficients are updated. The same process is repeated to 

scan the whole image for prediction of the new denoised image. The AR model changes the 

nature of Poisson distribution somehow, which looks like a Gaussian distribution. Adaptive 

Trimmed Mean Filter (ATMF) is applied to the resultant image, which gives better results 

in terms of reduction in Poisson noise. 

𝑋𝑒𝑟𝑟  is calculated by following equation to preserve edges. 

 𝑋𝑒𝑟𝑟 = 𝑋𝑛𝑜𝑖𝑠𝑦 − 𝑋𝑝𝑟𝑒𝑑 (4) 

where 𝑋𝑛𝑜𝑖𝑠𝑦 is the noisy image, 𝑋𝑝𝑟𝑒𝑑 is the predicted image and  𝑋𝑒𝑟𝑟 is the prediction 

error image. The error image is averaged out by using the averaging filter to sum up with 

the predicted image for edge enhancement. 

An example of a two blocks with 40% overlapping is represented in Fig 2. 



IIUM Engineering Journal, Vol. 19, No. 2, 2018 Khan et al. 

73 

 

 

Fig. 2: Hatched area of 2-dimensional autoregressive model. 

3.2  Adaptive Trimmed Mean Filter (ATMF) 

ATMF is applied to the output denoised image of the AR process. The aim of applying 

ATMF is to remove lowest and highest variations in the pixel values and average out the 

remaining neighborhood pixel values. The whole image is divided into 7 x 7 smaller blocks 

and the local mean and variance of each block are computed. ATMF for an 𝑚 × 𝑛 image is 

given by the expression: [16]  

 𝑔(𝑖, 𝑗) = 𝑓(𝑖, 𝑗) −
𝜎2

𝑛

𝜎2
𝐿

[𝑓(𝑖, 𝑗) − 𝑈𝐿𝑇] (5) 

where 𝑔(𝑖, 𝑗) and 𝑓(𝑖, 𝑗) represent the output and input images, respectively. The  𝑈𝐿𝑇 is the 

local trimmed mean, 𝜎2
𝑛  is the overall noise variance, and 𝜎2

𝐿 is the local noise variance. 

If 𝜎2
𝑛 is close to zero, it produces an output very close to the input image 𝑓(𝑖, 𝑗). Likewise, 

if 𝜎2
𝐿 ≫ 𝜎2

𝑛 it also produces an output pixel close to 𝑓(𝑖, 𝑗). Otherwise, this filter outputs 

a pixel close to the local average. 𝑈𝐿𝑇 for an 𝑚 × 𝑛 image is given by expression in: [16]  

 𝑈𝐿𝑇 =
1

𝑚𝑛−∝
∑ 𝑓′

(𝑥,𝑦)∈𝑁𝑖𝑗

(𝑥, 𝑦) (6) 

where ∝  is the total number of maximum brightest and darkest trimmed pixels and 𝑓′(𝑥, 𝑦) 

is the sum of remaining pixels. ATMF removes abnormal pixel variations, preserves 

boundaries at their true position, and also removes blurriness effects [17]. 

3.3  Power-Law Transformation 

The power-law transformation is applied to the resultant image of the ATMF for 

contrast stretching and to improve visual quality. The power-law transformation can be 

expressed as follows [17]: 

 𝑠 = 𝑐𝑟𝛾 (7) 

where c and γ are positive constants having values 1 and 3 respectively and r is pixel 

intensity value of the image. 

4.   SIMULATION AND DISCUSSION  

The proposed model is applied on artificial scintigraphic images having different image 

statistics corrupted with Poisson noise. The AR model provides a good result with 40% 
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overlap but at the cost of some blurring in the image, which is further improved by applying 

the ATMF. Power-law transformation is applied for contrast stretching. This technique 

maintains the high resolution and also preserves the edges along with the noise reduction. 

The efficiency of the proposed technique is compared with the AR combination of median 

and Wiener filter and advanced filter, i.e. Non Local Mean (NLM) filter [18] in terms of 

visual quality, correlation, MSE, PSNR and SSIM. The proposed technique produced better 

results in terms of edge preservation though the AR process & adaptive trimmed mean filter 

produced a smoothing effect, while the edge loss is observed in the case of the conventional 

filters such as median filters. The quantitative performance measures such as correlation, 

MSE, PSNR and SSIM are used to check the performance of Poisson noise reduction 

filtering techniques. Experimental results show that the proposed technique performs 

significantly well than many other conventional & recent filtering techniques like median, 

Wiener and NLM filters, respectively. The aim of scintigraphic image filtering is to restrain 

statistical noise while sustaining contrast and spatial resolution [19]. The proposed 

technique simultaneously provides both efficient noise reduction and good spatial resolution 

for scintigraphic images. 

A renal scintigraphic image, artificial scintigraphic image, and transaxial slice of the 

Zubal phantom [20], denoised by the proposed model and other comparative methods, are 

shown in Fig. 3, Fig. 4 and Fig. 5, respectively. The proposed method shows good visual 

results. 

 

Fig. 3: Renal scintigraphic image (a) Noise-free image (b) Noisy image (c) Denoised 

image by median filter with combination of AR model (d) Wiener filter with  

combination of AR model (e) NLM Filter (f) Proposed technique. 
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Fig. 4: Artificial scintigraphic image (a) Noise-free image (b) Noisy image (c) Denoised 

image by median filter with combination of AR model (d) Wiener filter with combination 

of AR model (e) NLM Filter (f) Proposed technique. 

 

Fig. 5: Transaxial slice of the Zubal phantom (a) Noise-free image (b) Noisy image (c) 

Denoised image by median filter with a combination of AR model (d) Wiener filter with a 

combination of AR model (e) NLM Filter (f) Proposed technique. 

The proposed model performed significantly better than other conventional filters in 

terms of correlation, MSE, PSNR and SSIM shown as coexistent graphical plots with those 

obtained from median, Wiener filter combined with AR and NLM filter in Fig. 6, Fig. 7, 

Fig. 8 and Fig. 9, respectively. The SSIM index showing similarity between two images, 
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while considering one image as perfect quality to measure the quality of another. The results 

from the proposed model show that it is better in suppressing the Poisson noise and 

improving the PSNR and MSE compared to conventional filters. 

 

Fig. 6: Correlation comparison of noisy image, median + AR, Wiener + AR,  

NLM and the proposed method. 

Figure 6 shows the correlation comparison of the proposed method with median + AR, 

Wiener + AR and NLM filter. The graph clearly shows that the proposed method produced 

much better results than median + AR, Wiener + AR and NLM filter at high noise. NLM 

shows a good result at low noise but as noise varies from low to high, its results degraded. 

The graph is computed for different noise variations. 

 

Fig. 7: MSE comparison of noisy image, median + AR, Wiener + AR,  

NLM and the proposed method. 
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Figure 7 is plotted for MSE comparison of the original and the denoised image [17]. 

The MSE result of the proposed method is significantly better than median, Wiener 

combined with AR, and NLM filters. MSE is represented mathematically as 

 𝑀𝑆𝐸 =
1

𝑚 × 𝑛
∑ ∑[𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (8) 

where 𝑓(𝑖, 𝑗) and 𝑔(𝑖, 𝑗) represent pixel value at coordinate (𝑖, 𝑗)  of an image 𝑓 and 𝑔. 

Number of rows and columns are represented by  𝑚 and 𝑛.  

 

Fig. 8: PSNR comparison of noisy image, median + AR, Wiener + AR,  

NLM and the proposed method. 

Figures 8 and 9 show PSNR and SSIM comparison of the proposed method with other 

methods on different noise variation. The graph clearly shows that the proposed model is 

more efficient than other compared methods. The aim of the proposed method is to deal 

with the noise at high level. At low level noise, the conventional filters, e.g., Median and 

Weiner filter perform well but they are failed to eradicate high variation of noise. One can 

easily eliminate low level noise by simply using these conventional filters. The proposed 

method is specifically designed to deal with the high variation of noise. That is the reason 

that the proposed method beats all other methods at a high level of noise. Table 1 validated 

that the proposed method achieved the highest performance in term of MSE, PSNR, and 

Correlation. 

Table 1. MSE, PSNR and Correlation comparison with different methods 

Metrics Noisy 

image 

Median + 

AR filter 

Wiener + AR 

Filter 

NLM Filter Proposed 

MSE 57.440 66.985 62.277 40.834 25.902 

PSNR 6.0206 7.3206 7.9217 8.3450 10.023 

Correlation 0.6976 0.9428 0.9097 0.9536 0.9706 
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Fig. 9: SSIM comparison of noisy image, median + AR, Wiener + AR,  

NLM and the proposed method. 

5.   CONCLUSION 

The proposed model shows an efficient way to scale down the Poisson noise in 

scintigraphic images on a pixel-by-pixel basis. Edge preservation through calculation of 

error image 𝑋𝑒𝑟𝑟 after the predicted image through AR model and smoothening through 

ATMF to remove lowest and highest variations in pixel values, are the major contributions 

of this research work. 
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