
ORIGINAL RESEARCH
published: 05 November 2018

doi: 10.3389/fnhum.2018.00381

Frontiers in Human Neuroscience | www.frontiersin.org 1 November 2018 | Volume 12 | Article 381

Edited by:

Lutz Jäncke,

Universität Zürich, Switzerland

Reviewed by:

Giovanni Assenza,

Università Campus Bio-Medico, Italy

Noman Naseer,

Air University, Pakistan

*Correspondence:

Ting Li

13484462161@163.com

Received: 26 April 2018

Accepted: 04 September 2018

Published: 05 November 2018

Citation:

Li T, Xue T, Wang B and Zhang J

(2018) Decoding Voluntary Movement

of Single Hand Based on Analysis of

Brain Connectivity by Using EEG

Signals.

Front. Hum. Neurosci. 12:381.

doi: 10.3389/fnhum.2018.00381

Decoding Voluntary Movement of
Single Hand Based on Analysis of
Brain Connectivity by Using EEG
Signals

Ting Li 1*, Tao Xue 1, Baozeng Wang 2 and Jinhua Zhang 2,3

1 Shaanxi Key Laboratory of Clothing Intelligence, School of Computer Science, Xi’an Polytechnic University, Xi’an, China,
2 State and Local Joint Engineering Research Center for Advanced Networking and Intelligent Information Services, School of

Computer Science, Xi’an Polytechnic University, Xi’an, China, 3 State Key Laboratory for Manufacturing Systems Engineering,

School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China

Research about decoding neurophysiological signals mainly aims to elucidate the details

of human motion control from the perspective of neural activity. We performed brain

connectivity analysis with EEG to propose a brain functional network (BFN) and used a

feature extraction algorithm for decoding the voluntary hand movement of a subject. By

analyzing the characteristic parameters obtained from the BFN, we extracted the most

important electrode nodes and frequencies for identifying the direction of movement of

a hand. The results demonstrated that the most sensitive EEG components were for

frequencies delta, theta, and gamma1 from electrodes F4, F8, C3, Cz, C4, CP4, T3, and

T4. Finally, we proposed a model for decoding voluntary movement of the right hand by

using a hierarchical linear model (HLM). Through a voluntary hand movement experiment

in a spiral trajectory, the Poisson coefficient between the measurement trajectory and the

decoding trajectory was used as a test standard to compare the HLM with the traditional

multiple linear regression model. It was found that the decoding model based on the HLM

obtained superior results. This paper contributes a feature extraction method based on

brain connectivity analysis that can mine more comprehensive feature information related

to a specific mental state of a subject. The decoding model based on the HLM possesses

a strong structure for data manipulation that facilitates precise decoding.

Keywords: voluntary movement decoding, EEG, brain connectivity, brain functional network, hierarchical linear

model

INTRODUCTION

Research about decoding the neurophysiological signals from the human brain aims to translate
them into control signals for external devices. In the ideal state of a Brain-Computer Interface
system (BCI), it can accurately discern a subject’s body movement intents, and output smooth,
accurate control to external devices, such as neural prosthesis. Motor control is the systematic
regulation of movement in organisms that possess a nervous system. This process requires
cooperative interaction between the central nervous system and the musculoskeletal system.
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Brain signals have been adopted in BCI, including
electrocorticography (ECoG) (Miller et al., 2010; Pistohl
et al., 2012), electroencephalography (EEG) (Wolpaw and
McFarland, 2004; Bradberry et al., 2010), functional magnetic
resonance imaging (fMRI) (Yoo et al., 2004; Sitaram et al., 2007),
magnetoencephalography (MEG) (Boostani and Moradi, 2003;
Bradberry et al., 2009), and near-infrared spectroscopy (NIRS)
(Coyle et al., 2007) signals. Each of these signals has its own
strengths and limitations. The selection of one over another
for brain imaging applications will depend on the cost of the
equipment as well as the spatial and temporal resolution required
(Min et al., 2010). Currently, ECoG signals with high quality and
spatial resolution constitute the fundamental way to realize high
communication rates in BCI (Wilson et al., 2006). Numerous
studies have been performed using ECoG to extract control
signals for BCI (Lal et al., 2005; Schalk et al., 2007). Researchers
(Hochberg et al., 2012) have successfully demonstrated the
direct control of robotic prosthetic limbs with many degrees
of freedom using ECoG signals from the motor cortex of
patients with tetraplegia. However, ECoG is limited owing to
its invasiveness and requires clinical surgery to place electrodes
on the surface of the human brain. For noninvasive approaches,
EEG offers good temporal resolution but poor spatial resolution,
while NIRS provides only moderate temporal resolution and
also moderately better spatial resolution (Nicolas-Alonso and
Gomez-Gil, 2012). Indeed, recent studies reported successful
application of NIRS-BCI for facilitating the communication of
patients in a completely locked-in state (Chaudhary et al., 2017).
Until now, a number of hybrid BCI studies have demonstrated
the effectiveness of the combinatory use of different modalities
or paradigms. Researchers have also demonstrated the feasibility
of MEG and FMRI (Breitwieser et al., 2010). Current technology
for recording MEG and fMRI is both expensive and bulky,
making it unlikely for practical applications in the near term.
fNIR is potentially cheaper and more compact. However, both
fMRI and fNIR are based on changes in the cerebral blood flow,
an inherently slow response (Khan et al., 2014).

EEG records signals generated by the neuroelectrical activities
on the scalp and its noninvasiveness makes it more practically
usable than ECoG in BCI. As the analysis methods become more
efficient and precise for the noninvasive mode, researchers and
engineers gradually realize that the noninvasive mode will be
the paradigm with more acceptance in BCI applications. This is
one of the most important motivations for the development of
the study. However, a key problem related to noninvasive BCI
technologies is the limited number of control modes obtained
from decoding the movements of body parts (for example,
upper and lower limbs) (Liao et al., 2014). It remains unclear
whether noninvasive EEG signals have sufficient information to
decode the kinematics parameters of voluntary movements (Liao
et al., 2014). Noninvasive EEG-based BCI has been developed
to decode a user’s movement intention based on the markers
of active brain involvement in the preparation of the desired
movement. However, it is generally concluded that the signal-to-
noise ratio, band width, and information content of neural data
acquired via noninvasive EEG are insufficient to extract detailed
information about natural, multijoint movements of the upper
limbs (Bradberry et al., 2009). To enable EEG decoding to achieve

the same effect as ECoG decoding, improving motion feature
extraction and decoding model design is essential.

Current state-of-the-art BCIs have employed two types of
EEG to detect motor intention, i.e., movement-related cortical
potentials (MRCPs) and sensorymotor rhythms (SMRs). Because
of the low number of orders and delay in the order of seconds,
SMR-based BCIs still lack natural and intuitive control (Müller-
Putz et al., 2016). MRCPs are slow EEG fluctuations-associated.
Movement intention detection through MRCPs has been shown
to have relatively short latencies. For upper limb movements,
MRCP was analyzed for discriminating movement directions
and trajectories (Bradberry et al., 2010; Müller-Putz et al., 2016;
Pereira et al., 2017), and grasp types (Jochumsen et al., 2016).
More recently, some BCIs have combined MRCPs and SMRs to
boost their decoding performance (Lew et al., 2012; Ibáñez et al.,
2014; Úbeda et al., 2017).

The use of a linear regression model to fit EEG and velocity
profiles requires that these two temporal signals remain in the
same frequency range. In addition, in the method of linear
regression, researchers use a correlation to evaluate the fitting of
the reconstructed trajectory and the measured trajectory. This
evaluation method could lead to overly optimistic decoding
results. Moreover, the nonlinear nature of correlation makes
EEG signals at low frequencies more appropriate for decoding.
However, there is no definitive proof that EEG signals at
high frequencies do not contain information about dexterous
movements. EEG signals are also nonlinear and non-Gaussian.
The mathematical relation between EEG and voluntary limb
movements would be complex and largely dependent on the
properties of EEG features used for decoding. An increasing
number of theoretical and empirical studies approach the
function of the human brain from a network perspective
(Sporns et al., 2005). The motor areas of the cerebral cortex
involved in motor execution consist of the primary motor cortex
(M1) and several premotor areas, including the supplementary
motor area (SMA), presupplementary motor area (pre-SMA),
and ventral and dorsal parts of the premotor cortex (PMC).
The prefrontal and frontal cortices play a significant role in
cognitive and motor events that instantiate action planning
and programming (Decety, 1995). Researchers in this field are
studying the neural mechanism of limb movement control to
find methods for decoding complex movements by using the
whole EEG information (Babiloni et al., 2017; Yu et al., 2017)
and correlation characteristics at different levels (Filho, Attux
and Castellano, 2018), for example, graph metrics (Cavallo
et al., 2016). Synchronization between different brain regions
is known to be an essential feature of cognitive processing in
general. Different cognitive tasks are associated with different
connectivity patterns between brain regions (He’tu et al., 2013).
In noninvasive BCI research, several measures of connectivity
have been developed for analyzing EEG recordings (Nair
et al., 2003; Lacourse et al., 2004). These studies focus on the
differences in the connectivity patterns inmotor execution. These
connectivity patterns should be detectable from EEG recordings,
and thus offer a new type of feature space for inferring a
subject’s intention. For movement decoding and BCI control,
it is not effective to only consider frequency bands and small
subsets of electrodes known to be relevant to motor execution.
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It is important to properly address possible volume conduction
effects, not confine the analysis to a small subset of electrodes,
and consider a broad range of frequency bands. Based on this
consideration, feature extraction algorithms with the ability of
Macro data processing is required for BCIs.

Based on the discussion above, we propose a method for
decoding voluntary handmovement based on an analysis of brain
connectivity using EEG signals. We carried out an experiment
about the single direction movement of a human hand in 3D
space, and synchronously recorded the EEG signal and kinematic
data of the hand. By analyzing the characteristic parameters
obtained from the BFN, we extracted the most important
electrode nodes and frequencies for identifying the direction
of hand movement. The EEG data and the parameters of the
BFN, both of which are synchronized with hand movement,
possess a nested structure. We formed a model of voluntary hand
movement decoding based on a hierarchical linearmodel (HLM).
Finally, we performed a voluntary hand movement experiment
in the spiral trajectory. The Poisson coefficient between the
measurement trajectory and the decoding trajectory was used as
a test standard to compare with the traditional multiple linear
regression model (Bradberry et al., 2010). The main content
of the current paper can be divided into four parts. In section
Experiment, the experiments are described in detail. The process
of brain connectivity analysis and hierarchical linear regression
decoding are explained in section Calculation. In section Results,
the important results are presented. The main contribution of the
present paper is to verify the effectiveness of feature extraction
based on functional brain connectivity analysis and propose an
effective decoding model based on the HLM. The core novelties
of the current study are as follows.

• This study focused on decoding voluntary hand movement,
but with certain restricted modes of motion, e.g., center-
outreaching task and limb movement according to cue.

• Using brain connectivity analysis as the feature extraction
method, we identified the frequencies and electrodes with
significant effects for recognizing the moving direction of the
hand.

• To consider as many elements for decoding as possible,
we used a hierarchical linear model (HLM) to elucidate
the mathematical relation between the EEG signals and the
kinematic parameters of the hand.

MATERIALS AND METHODS

This study was carried out in accordance with the
recommendations of Xi’an Jiaotong University Approval
for Research Involving Animals, Comments of the laboratory
animal care committee, Xi’an Jiaotong University. The protocol
was approved by the Comments of the laboratory animal
care committee, Xi’an Jiaotong University. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

Data Collection
A 40-channel NuAmps system (NeuroScan, Inc. Sterling, USA)
was used for data recording at a sampling rate of 1,000Hz.

Electrode impedances were kept below 5 kOhm for all electrodes.
EEG signals were recorded from 32 electrodes (shown in
Figure 1), with the ground electrode at Fz. The reference
electrode A1 was on the left ear. Four additional electrodes were
used to record horizontal and vertical EOGs. Scan 4.5 performed
online EOG artifact rejection. A 50Hz notch filter suppressed line
noise.

We used the PST IRIS optical tracking/measurement system
(PS-Tech, Amsterdam, Netherlands) to measure and record the
kinematics parameters of voluntary hand movement. Table 1
represents the performance of the PST IRIS system used
in the experiment. After the PST IRIS software entered the
working state, one participant stood inside the tracking range
of PST IRIS, and swung the right arm according to the
instruction.

Experiment
Ten participants (3 female, 7 male) without previous experience
in EEG experiments participated in the study. All subjects were
right-handed, with a mean age of 26.3 years (variance was 3.3).
Before the formal experiment, all subjects took the preliminary
training on upper arm movement. In this training, a subject
learned how to guide herself/himself in a comfortable standing

FIGURE 1 | Positions of 30-channel EEG electrodes on subject’s scalp.

TABLE 1 | The performance of PST IRIS in the experiment.

Accuracy Position: <0.5mm RMSE:Orientation: <1 deg RMSE2

Latency 15–25ms (depending on the shutter time and the filter settings)

Sampling rate 120Hz, adjustable to 30, 60, 120Hz

Tracking distance 50 cm−5m, up to 7m

Tracking DOF 6 degrees of freedom in all movement space

RMSE, root-mean-square error.
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FIGURE 2 | Synchronous recording experiment of hand motion trajectory and

EEG signals. (1) Subject’s right hand moved right or left; the PST IRIS system

recorded positive or negative trajectory coordinates on the X-axis. (2) Subject’s

right hand moved close to or away from body; the system recorded negative

or positive trajectory coordinates on the Y-axis. (3) Subject’s right hand moved

up or down; the system recorded positive or negative trajectory coordinates

on the Z-axis.

position and keep the other parts of body in a state of inexertion
when the right arm waved voluntarily.

The experiment was performed in two stages. Data collected
in these two stages were used in feature extraction from the BFN
and decoding model training/testing respectively. As shown in
Figure 2, the “measure coordinate” was defined by the PST IRIS
system, which recorded the kinematic trajectory of a subject’s
right hand during right arm winging. In the process of data
collection, subjects tried to avoid body movements other than
that of the right arm for reducing myoelectric interference. To
ensure precise synchronization between EEG signals and hand
movement data, we used the absolute timestamp to complete the
synchronization.

Experiment 1: Voluntary Hand Movement Along

Single Coordinate Axis
Three single-direction hand motion modes were defined
according to the axis direction: UD (up and down) movement
on the Z-axis, LR (left and right) movement on the X-axis,
and BF (backward and forward) movement on the Y-axis
(Figure 3).

In this stage, a subject kept one degree of freedom of the
shoulder joint. The elbow and wrist joints were not moved as
much as possible. The acceleration of the hand changed mainly
in a single direction. A subject’s hand moving to the left (or up,
or backward) and back to the original point was considered one
unit. The test of each movement contained 5 units. Each motion
mode was tested 20 times. In this process, subjects took a break
anytime (1–2 s), when they felt tired. Excluding the rest time,
the mean duration of each movement was 201.3 s (100 units).
The subject was allowed to rest for 2–5min between the different
motion mode tests. The start and end points of the movement,
the distance, and the speed were all determined by the subject.

In total, each subject was tested 60 times (This experiment only
recorded the motion data of the right hand. No test has been
designed for the left hand for now).

Experiment 2: Voluntary Hand Movement in Spiral

Trajectory
In this experiment, a subject made a spiral motion in front
of the body with the right hand. In Figure 4, according to
the “measure coordinate,” the first spiral movement was made
along the Y axis, drawing a spiral from the near side of the
body to the far side. The second spiral movement was made
along the Z-axis, drawing an upward spiral from below. The
start and end points of the movement, the distance, and the
speed were all determined by the subjects, but the hand’s
spiral trajectory was required to be as round and smooth as
possible.

In this stage, the subject kept three degrees of freedom of the
shoulder joint, two degrees of freedom of the elbow joint, and no
degree of freedom of the wrist joint. The acceleration of the hand
changed in the three directions of the axes. The subjects were
required to complete all movements while standing, and except
during the spiral movements of the hand, the body was as still
as possible. Each spiral movement was repeated 40 times. The
mean duration of each spiral movement was 5.91 s. Excluding
the rest time, the mean duration of each spiral movement was
238.4 s.

Calculation
The full computation included two parts: parameter validation
and trajectory decoding model training. Parameter validation
consisted of four steps: Morlet wavelet decomposition, wavelet
coefficient correlation calculation, BFN construction, and
analysis of network characteristic parameters. Trajectory
decoding model training was performed in two steps: EEG
characteristic component extraction, and trajectory decoding
model training and testing.

Preprocessing
The preprocessing flow of the EEG with Neuroscan mainly
included the removal of DC components, visual inspection
of data, deletion of channels and data segments with serious
disturbances, and 50Hz notch filtering. The postprocessing
flow of the EEG with EEGLAB includes baseline correction,
EOG and EMG artifact removal, and band-pass filtering
(0–55Hz).

Brain Functional Network
In this study, the Morlet continuous wavelet transform was used
to decompose the EEG signals. According to the characteristic
EEG frequency bands, the wavelet coefficients were extracted
from each electrode and stored separately as a wavelet coefficient
matrix. The eight characteristic frequencies are delta (1–3Hz),
theta (4–7Hz), alpha1 (8–9Hz), alpha2 (10–12Hz), beta1 (13–
17Hz), beta2 (18–30Hz), gamma1 (31–40Hz), and gamma2 (41–
50Hz). We used Spearman’s rank correlation coefficient as the
scale to evaluate the spectral correlation between each pair of
EEG electrodes. For certain characteristic frequency bands, the
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FIGURE 3 | Three motion modes in Experiment 1.

FIGURE 4 | Two spiral trajectories in Experiment 2. (A) Spiral trajectory I. (B) Spiral trajectory II.

correlation matrix P channel was defined as follows:

Pchannel =











C1 C2 · · · CN

C1 0 p1,2 · · ·
p1,N

C2 p2,1 0 p2,N
...

...
. . .

...
CN pN,1 pN,2 · · · 0











, (1)

where Cn, n = {1, 2 . . . , N}, represents the electrodes, with
each node corresponding to the electrode position during EEG
signal acquisition. P i, j, i,j ∈ {1,. . . ,N}, represents the correlation
coefficient of the wavelet coefficients from electrode nodes i and
j. To generate a BFN with the small-world characteristic, the
correlation coefficient matrix must be filtered by a threshold. In
this study, we used the method of network cost to determine
the threshold. Network cost CG is an abstract concept that
represents the cost of measuring and constructing the network.
The equation for network cost CG is given by

CG =
K

N (N − 1)/2
(2)

where N and K are the number of nodes and links. Here,
the brain functional network (BFN) is actually an undirected

weighted graph, and the weights between the electrode nodes are
determined by using the following equation:

aij =
(

pij − CG

)

for i 6= j, (3)

where ai, j is the weight between electrode nodes i and j. When
ai, j < 0, the weight is set as 0. A threshold-processed correlation
coefficient matrix is used to construct the EEG BFN. The BFN
Fnet is defined by the weight matrix as follows:

Fnet =











C1 C2 · · · CN

C

0 a1,2 · · ·
a1,N

a2,1 0 a2,N
...

. . .
...

aN,1 aN,2 · · · 0











. (4)

The weight matrix of the BFN is a symmetric matrix. The
weight on the diagonal represents the weight of each node
to itself, and a value of 1 would result in network loopback.
Therefore, the weight of each node to itself is set to 0. Network
characteristic parameters, namely, average correlation coefficient,
average node degree, average path length, and clustering
coefficient are calculated. The average correlation coefficient
is the average of all weights. According to the definition in
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Equation (4), the average correlation coefficient P is calculated as
follows:

P =

∑

ai,j

2n
i = 1, · · · ,N; j = 1, · · · ,N. (5)

Since this BFN is an undirected network, the weight between
any two nodes is the same regardless of the direction. When
calculating the other three network coefficients, the nonzero
correlation coefficients between the nodes are set to 1, indicating
an existing path between the nodes—that is, the original
weight ai, j > 0, and ai, j is set to 1. Otherwise, ai, j is set
to 0. After the network weight is converted to binary, the
average node degree and the average correlation coefficient
are calculated by using Equation (5). The shortest distance
between any two nodes dist(i,j) is defined as the path length
between these two nodes. The average of all node pairs’ path
lengths is defined as the average path length calculated as
follows:

distc =
2

N(N − 1)

∑

i≤N

∑

j>i
dist

(

i, j
)

. (6)

If a node has k edges, then the maximum number of edges

between the k nodes connected by those k edges is
k(k−1)

2 . The
clustering coefficient C

(

p
)

of one node is its number of real edges
divided by its maximum number of edges. The average of all the
node clustering coefficients is the network clustering coefficient
calculated as follows:

C
(

p
)

=
3 (K− 2)

4 (K− 1)
(1− P)3 , (7)

where K is the number of adjacent points that may generate
connections to a node, and P is the probability of reconnection
of edges. Reconnection refers to an endpoint of an edge in the
network remaining unchanged, while the other end is randomly
selected as one node in the network.

Hierarchical Linear Regression Decoding
We adjusted the EEG data and BFN parameters into a nested
structure based on actual data relationships. Based on the
hierarchical linear regression, we designed a voluntarymovement
decoding model using the EEG data and BFN parameters as
inputs.

Level 1 of the voluntary hand movement decoding model is
described by the following equations.

x (t) = Vx +
∑N

n= 1

∑L

s= 0
UsnxSn (t − s) + ωx (8)

y (t) = Vy +
∑N

n= 1

∑L

s= 0
UsnySn (t − s) + ωy (9)

z (t) = Vz +
∑N

n= 1

∑L

s= 0
UsnzSn (t − s) + ωz (10)

Here, x (t), y (t), and z (t) are the coordinates of the hand at time
point t. N is the number of characteristic electrodes extracted
from BFN. L is the number of sampling points. Sn (t − s) are the
EEG data collected from electrode n at time point t − s. Usnx,

Usny, and Usnz are the slopes of the regression equation for the
corresponding coordinates of electrode n at time point t − s.
Vx, Vy, and Vz are the intercepts of the coordinates’ regression
equations. ωx, ωy, and ωz are residuals.

Level 2 of the voluntary hand movement decoding model is
described as follows.

Vx = avx +
∑L

k=0

(

cvkxCτ−k + pvkxPτ−k

)

+ evx (11)

Usnx = aux +
∑

φ∈8

∑L

k=0

(

c
φ

ukx
C

φ

τ−k
+ p

φ

ukx
P

φ

τ−k

)

+eux

(12)

The parameters of the BFN influence the decoding results by
altering the intercept and the slope in the Level 1 equation.
Here, we take the regression equation of the X-axis as
an example to explain the equation parameters in Level 2.
8(8 =

{

δ, θ ,α1,α2,β1,β2, γ 1, γ 2
}

)still represents the eight
characteristic frequencies. L is the number of the intercepted
segment EEG data in a time unit. τ − k represents the time
period corresponding to k time units before the current time
point τ (time point t − s). In Equation (12), C8

τ−k
and C8

τ−k
are the clustering coefficient and the average path length of the
8 band BFN corresponding to time point τ − k, respectively.

c
φ

vkx
and pφ

vkx
are the slopes. eux is the residual. Equation (11) is the

regression equation of the intercept. In Level 1, the intercept Vx

does not have a direct operational relation with the characteristic
frequencies, and hence the independent variable is the average
of the network parameters corresponding to each frequency.

Therefore, Cτ−k andPτ−k are the mean values of Cφ

τ−k
and P

φ

τ−k

in the range 8 =
{

δ, θ ,α1,α2,β1,β2, γ 1, γ 2
}

, respectively. cvkx
and pvkx are the slopes, and evx is the residual.

RESULTS

Calculation Data
Network Characteristic Parameters
Experiment 1 comprised three motion modes: UD, LR, and BF.
The purpose of Experiment 1 was to find the most sensitive EEG
component for recognizing hand movement directions. First, the
BFNs in unit time corresponding to eight EEG characteristic
frequencies under the three motion modes were constructed
(unit time was 2 s; EEG sampling frequency was 1,000Hz).
The network structure parameter vector FNet is defined as
follows:

FNet = {DVector, VDegree, VPLength, Cluster}. (13)

The nodes in the BFN represent the electrodes used in the EEG
measurement.DVector represents the node degree vector formed
by the 25 electrode nodes. VDegree represents the average of the
node degrees. VPLength is the average path length, and Cluster
is the clustering coefficient. The BFN structure parameter vector
set was acquired using the motion mode as the data grouping
condition, from which the node degree vectors were extracted
and averaged to compute the node degree average vector for each
motion mode.
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Figure 5 shows the average connection weight matrixes of
the BFNs of the ten subjects in the three motion modes and
eight frequencies. For each subgraph, the vertical coordinates
from front to back are in the order of frontal, central, parietal,
temporal, and occipital lobes. The horizontal coordinates from
bottom to top are in the same order. In general, within the scope
of the central lobe, the spectral correlation between each pair of
EEG electrodes was strongest and was most relevant. The next is

the frontal lobe. Among the brain areas, the central lobe and the
frontal lobe are more relevant. From this figure, it can be seen
that regardless of the motion mode, the number of connections
in the BFNs decreased with an increase in the EEG frequencies.
However, the variation between the connection weights increased
gradually (the red color blocks, representing a value approaching
1, and the blue color blocks, representing a value approaching
0, increase simultaneously). The degree of difference was defined

FIGURE 5 | Distribution of the brain function network connection weight matrix in three motion patterns and eight frequencies. The columns represent the motion

mode tags, and the rows represent the frequency tags. The color turned from red to blue in a gradient, representing a gradual decrease of connection weight, ranging

from 1 to 0. (A) BFN weights at frequencies 1–12Hz. (B) BFN weights at frequencies 13–50Hz.
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TABLE 2 | Average degree corresponding to the three motion modes.

Frequency Node average degree SD

BF LR UD

Delta (1–3Hz) 4.24 4.27 4.31 0.035

Theta (4–7Hz) 4.41 4.27 4.46 0.098

Alpha_1 (8–9Hz) 4.32 4.35 4.48 0.085

Alpha_2 (10–12Hz) 4.31 4.37 4.45 0.070

Beta_1 (13–17Hz) 4.30 4.29 4.39 0.055

Beta_2 (18–30Hz) 4.32 4.26 4.30 0.031

Gamma_1 (31–40Hz) 4.34 4.24 4.38 0.072

Gamma_2 (41–50Hz) 4.29 4.33 4.43 0.072

Underline denote biggest values in the respective column.

TABLE 3 | Average path length corresponding to the three motion modes.

Frequency Average path length SD

BF LR UD

Delta (1–3Hz) 2.08 2.04 2.13 0.045

Theta (4–7Hz) 2.18 2.09 2.37 0.143

Alpha_1 (8–9Hz) 2.08 2.23 2.32 0.121

Alpha_2 (10–12Hz) 2.02 2.15 2.35 0.166

Beta_1 (13–17Hz) 1.89 2.07 2.16 0.137

Beta_2 (18–30Hz) 1.85 1.94 2.07 0.111

Gamma_1 (31–40Hz) 1.83 2.03 2.10 0.140

Gamma_2 (41–50Hz) 1.88 1.95 2.14 0.135

Underline denote biggest values in the respective column.

as the difference between the maximum connection weight and
the nonzero minimum connection weight. The BFNs of different
frequencies for the three motion modes showed significant
differences in the variance of degrees (p < 0.05). The ones
corresponding to frequencies delta and theta had greater degree
of variance (p < 0.05), and the ones corresponding to beta_1 and
beta_2 had smaller degrees of variance.

Table 2 shows the average node degree corresponding to
each motion mode. The average node degree indicated the
prevailing amount of correlation between the electrodes in the
BFN. The largest standard deviation (SD) appeared in the BFN
corresponding to frequency theta (p < 0.05), indicating that the
changes in the motion modes had the maximum influence on the
correlation between the electrodes in this network.

Table 3 showed the average path length corresponding to
each motion mode, representing the smallest cost for any two
lead signals to have a correlation. The largest standard error
appeared in the BFN corresponding to frequency alpha2 (p <

0.05), indicating that the changes in the motion modes had the
maximum influence on the correlation between any two leads in
this network.

Table 4 shows the clustering coefficient corresponding to
each motion mode, indicating the level of the lead correlation
aggregation. The largest standard error appeared in the BFN
corresponding to frequency delta (p < 0.05), indicating that the

TABLE 4 | Clustering coefficient corresponding to the three motion modes.

Frequency Clustering coefficient SD

BF LR UD

Delta (1–3Hz) 0.49 0.51 0.51 0.012

Theta (4–7Hz) 0.51 0.51 0.52 0.006

Alpha_1 (8–9Hz) 0.51 0.50 0.51 0.006

Alpha_2 (10–12Hz) 0.50 0.49 0.49 0.006

Beta_1 (13–17Hz) 0.49 0.50 0.49 0.006

Beta_2 (18–30Hz) 0.51 0.49 0.5 0.010

Gamma_1 (31–40Hz) 0.51 0.49 0.5 0.010

Gamma_2 (41–50Hz) 0.51 0.50 0.5 0.006

changes in the motion modes had the maximum influence on the
characteristic of the highly relevant lead clusters.

Key Electrode Node
In the three motion modes, the standard error of the DVector
averaged on all unit times was computed, and the values are
shown in Table 5. Standard error measures how far from the
mean a set of numbers is distributed. A large standard error
indicates that most of the values are far from the mean; a
small standard error indicates that the numbers are close to the
mean. Standard error was used here to represent the influence of
different motion modes on the node degree in the BFN at a given
frequency and also manifested the characterization ability of the
BFN in a motion mode.

In Table 5, the rows represent the 25 electrode nodes, and the
columns represent the eight EEG characteristic frequencies. The
“mean” in the last row is the average standard error of the average
node degree mean of the BFN for the characteristic frequencies.
Delta (1–3Hz) obtained the highest average standard error of
0.66, followed by theta (4–7Hz) with a standard error of 0.63,
alpha1 (8–9Hz) with 0.50, alpha2 (10–12Hz) with 0.47, beta1
(13–17Hz) with 0.4, beta2 (18–30Hz) with 0.39, gamma2 (41–
50Hz) with 0.39, and gamma1 (31–40Hz) with 0.37. The average
standard error showed a decreasing trend from low to high
frequencies. Thus, we concluded that the node degree variation
in a low-frequency BFN is more sensitive to the changes in the
motion modes.

Key Electrode Frequency
The node degree vectors were grouped by the motion mode
and tested for significance. The Kruskal–Wallis test was used
to compute the P-value to determine the characteristic EEG
frequencies and the electrodes that were sensitive to the hand
motion direction. The Kruskal–Wallis test is a nonparametric test
developed on the basis of the two-independent-sample Mann–
Whitney U-test for multiple samples. It could also be used to test
whether the distribution of multiple samples had a significant
variance. First, the data of all the samples were combined and
arranged in the ascending order. The variables were then ranked,
and the average rank of each group was tested for significant
variance. If there was no significant difference between the mean
ranks of the groups, it was because the data from the groups were
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TABLE 5 | Mean values of standard deviations of node degrees.

Delta Theta Alpha1 Alpha2 Beta1 Beta2 Gamma1 Gamma2

Fp1 0.68 0.75 0.73 0.72 0.76 0.74 0.74 0.90

FP2 0.86 1.16 1.13 1.03 1.07 0.68 0.57 0.62

F3

FZ

0.10

0.43

0.29

0.50

0.28

0.24

0.31

0.52

0.20

0.27

0.28

0.32

0.28

0.54

0.13

0.38

F4 0.71 0.70 0.96 0.95 1.12 0.94 0.36 0.40

F8 0.88 1.09 0.67 0.47 0.38 0.34 0.40 0.37

FT7 0.63 0.46 0.44 0.45 0.30 0.20 0.29 0.22

FC3 0.16 0.32 0.21 0.26 0.27 0.40 0.17 0.20

C3

Cz

0.89

0.91

0.63

0.89

0.62

0.81

0.37

0.85

0.27

0.67

0.59

0.68

0.55

0.61

0.66

0.64

C4

CP3

0.75

0.71

0.71

0.56

0.52

0.36

0.32

0.17

0.50

0.20

0.26

0.28

0.15

0.63

0.20

0.81

CPz 0.72 0.60 0.41 0.39 0.16 0.49 0.98 1.14

CP4 0.58 0.51 0.03 0.22 0.50 0.71 0.62 0.82

P3 0.38 0.41 0.19 0.13 0.32 0.57 0.56 0.11

Pz 0.53 0.16 0.17 0.10 0.31 0.18 0.28 0.55

P4 0.21 0.26 0.27 0.24 0.40 0.28 0.31 0.52

T3 0.95 0.83 0.52 0.60 0.43 0.24 0.14 0.09

T5 1.24 0.88 0.53 0.71 0.47 0.13 0.06 0.07

T4 1.4 1.6 1.22 0.72 0.34 0.26 0.22 0.28

TP8 0.78 1 0.63 0.64 0.23 0.08 0.060 0

T6 0.53 0.36 0.07 0.15 0.03 0.02 0.02 0.04

O1 0.75 0.44 0.32 0.41 0.09 0.21 0.22 0.18

Oz 0.61 0.53 0.60 0.61 0.45 0.50 0.37 0.32

O2 0.05 0.12 0.53 0.42 0.26 0.32 0.19 0.13

Mean 0.66 0.63 0.50 0.47 0.40 0.39 0.37 0.39

well mixed and there was no significant difference in the data
values; thus, it could be concluded that the distributions of the
populations had no significant variance. In contrast, if there were
significant differences among themean ranks of the groups, it was
because the data from different groups could not be well mixed—
some groups had larger data values, while others had smaller data
values. Thus, it could be concluded that the distribution of the
different populations had a significant variance, p < 0.05.

The significance analysis results in Table 6 show that for
frequency delta, 14 electrodes showed significant differences
in the node degree; for frequency theta, 15 electrodes showed
significant differences; for frequency gamma1, 14 electrodes
showed significant differences. The other BFNs had too few
nodes with significant differences (less than half of the total
leads); therefore, the EEG components and the corresponding
network parameters of these frequencies were not included in the
following hand trajectory decoding model training. The values
of 0 and 1 in the table were used because the node degree was
always 0, which was different from p < 0.05. Electrodes with p
< 0.05 for all the three frequencies delta, theta, and gamma1
were FP1, F4, F8, C3, Cz, C4, CP4, T3, and T4. The EEG
signals from FP1 were affected by the elctrooculogram. So the
EEG signals from FP1 were excluded from the decoding model
training. The characteristic electrodes selected for training the
hand trajectory decoding model were F4, F8, C3, Cz, C4, CP4,
T3, and T4.

TABLE 6 | P-values from Kruskal–Wallis test of node degree vectors.

Delta Theta Alpha_1 Alpha_2 Beta_1 Beta_2 Gamma_1 Gamma_2

FP1 0.03 0.007 0.006 0.013 0.003 0.003 0.006 0.001

Fp2 0.001 0 0 0 0 0.002 0.006 0.003

F3 0.856 0.029 0.379 0.254 0.76 0.531 0.376 0.769

Fz 0.218 0.099 0.738 0.195 0.809 0.316 0.025 0.285

F4 0.032 0.003 0 0 0 0 0.032 0.013

F8 0.001 0 0 0.011 0.024 0.035 0.009 0.008

FT7 0.002 0.09 0.267 0.112 0.141 0.001 0 0.002

FC3 0.843 0.149 0.633 0.33 0.282 0.168 0.661 0.34

C3 0.009 0.024 0.025 0.213 0.594 0.006 0.023 0.072

Cz 0.006 0.014 0.051 0.006 0.055 0.05 0.033 0.016

C4 0.029 0.008 0.018 0.307 0.016 0.147 0.048 0.756

CP3 0.057 0.017 0.269 0.714 0.613 0.158 0.001 0

CPz 0.054 0.005 0.215 0.529 0.918 0.079 0.002 0

CP4 0.003 0.009 0.893 0.83 0.422 0.014 0.007 0.006

P3 0.17 0.034 0.23 0.656 0.606 0.319 0.5 0.568

Pz 0.058 0.739 0.674 0.675 0.437 0.801 0.568 0.053

P4 0.714 0.326 0.268 0.237 0.009 0.013 0.071 0

T3 0.001 0.015 0.008 0 0 0.005 0.016 0.152

T5 0 0 0.009 0.004 0.003 0.102 0.604 0.23

T4 0.007 0.024 0 0 0 0.005 0.005 0.005

TP8 0 0 0 0 0.001 0.064 0.165 1

T6 0.003 0.033 0.217 0.238 0.348 0.368 0 0.368 0.132

O1 0.023 0.008 0.002 0.001 0.1891 0 0

Oz 0.005 0.003 0 0 0 0 0 0

O2 0.834 0.805 0 0 0.009 0 0.067 0.248

Underline denote biggest values in the respective column.

Free Trajectory Decoding
Method of Evaluation
The decoding model of voluntary hand movement is a
hierarchical linear regression model. In the first level, the
coordinates of hand motion on the X-, Y-, and Z-axes were
dependent variables, and the characteristic EEG components
were independent variables. In the second level, the BFN
parameters (average path length and clustering coefficient)
corresponding to the characteristic frequencies were independent
variables, while the intercept and the slope of the regression
equation were dependent variables. As mentioned previously,
the most sensitive EEG components to recognize the hand
motion direction were distributed for frequencies delta, theta,
and gamma1. The characteristic electrodes screened out were F4,
F8, C3, Cz, C4, CP4, T3, and T4.

In the experiment, only themotion data of the right hand were
recorded. Five of the ten subjects, who provided more sensitive
EEG components for recognizing the hand motion direction,
participated in the spiral trajectory decoding test. Each subject
generated 40 groups of EEG-trajectory synchronous data for
each spiral trajectory. For each subject, the average accuracy
was over 10 runs of the 10-fold cross-validation procedure.
Then, we combined five subjects’ EEG-trajectory synchronous
data into a large dataset, and carried out 10 runs of the 10-fold
cross validation procedure to verify the decoding accuracy of
the proposed method. During the test, continuous decoding
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TABLE 7 | The average PCC of spiral trajectory I from multiple linear regression

model.

PCC Subject1 Subject2 Subject3 Subject4 Subject5 Mean

Rx 0.7348 0.3481 0.4722 0.4199 0.4647 0.4824

Ry 0.5781 0.4872 0.6118 0.4772 0.6108 0.5465

Rz 0.6061 0.4369 0.3728 0.5788 0.4886 0.4257

R 0.6397 0.4241 0.4856 0.4920 0.5213 0.5125

Underline denote biggest values in the respective column.

calculation based on multiple linear regression (Bradberry et al.,
2009, 2010) was used, and the results were compared with the
decoding results of this two-level linear regression model. The
Pearson correlation coefficient (PCC) was introduced in the
evaluation. The testing results were evaluated by computing the
correlation coefficient between the decoding trajectory and the
measurement trajectory. The equation for calculating the Pearson
correlation coefficient R is

R = avg.
(

Rx,Ry,Rz
)

,

Ri

(

I, Î
)

=
cov

(

I, Î
)

σIσÎ
, i ∈

{

x, y, z
}

. (14)

In the equation, R is the average value of the Pearson correlation
coefficient on the three axes (X, Y, and Z). Î is the coordinates
of the decoded trajectory on the corresponding axis; I is the
coordinates of the measurement trajectory on the corresponding
axis. σI and σÎ are the standard errors of I and Î. Before
calculating the correlation coefficient, the decoding trajectory was
processed through a fourth-order low-pass Butterworth filter,
smoothing the signal at a cutoff frequency of 1Hz. The mean
of the correlation coefficient of each subject was calculated to
evaluate the test results.

Spiral Trajectory Decoding
Table 7 shows the result of the multiple linear regression method
in the first spiral trajectory test, and the average correlation
coefficient between the decoded trajectories and the measured
paths from each subject. Subject 1 obtained the largest average
correlation coefficient of 0.6397 on the three axes. The average
correlation coefficient of all the subjects on the three axes was
0.5125.

Table 8 shows the result of the hierarchical linear regression
method in the first spiral trajectory test, and the average
correlation coefficient between the decoded trajectory and the
measured path of the 10× 10-fold cross-validation procedure for
each subject. Subject 4 obtained the highest average correlation
coefficient of 0.8606 on the three axes. The average correlation
coefficient of all subjects on the three axes was 0.6939, which was
better than the result of the multiple linear regression model.

Tables 9, 10 show the results of multiple linear regression
and hierarchical linear regression, respectively, in the second
spiral trajectory testing. Subject 3 obtained the highest average
correlation coefficients in both methods: 0.8721 and 0.6213,
respectively. The multiple linear regression generated an average

TABLE 8 | The average PCC of spiral trajectory I from hierarchical linear

regression model.

PCC Subject1 Subject2 Subject3 Subject4 Subject5 Mean

Rx 0.5908 0.5895 0.5186 0.8233 0.7821 0.6609

Ry 0.8625 0.8224 0.8244 0.9955 0.7568 0.8523

Rz 0.6171 0.6735 0.5041 0.8712 0.6392 0.6610

R 0.6710 0.6332 0.5927 0.8606 0.7118 0.6939

Underline denote biggest values in the respective column.

TABLE 9 | The average PCC of spiral trajectory II from multiple linear regression

model.

PCC Subject1 Subject2 Subject3 Subject4 Subject5 Mean

Rx 0.8826 0.4059 0.7592 0.5715 0.6792 0.6597

Ry 0.3004 0.4440 0.4844 0.3205 0.2503 0.3600

Rz 0.5058 0.5296 0.6203 0.6598 0.4822 0.5595

R 0.5629 0.4598 0.6213 0.5172 0.4706 0.5264

Underline denote biggest values in the respective column.

TABLE 10 | The average PCC of spiral trajectory II from hierarchical linear

regression model.

PCC Subject1 Subject2 Subject3 Subject4 Subject5 Mean

Rx 0.5213 0.6084 0.9062 0.4426 0.7966 0.6550

Ry 0.7017 0.6085 0.7979 0.3297 0.4740 0.5824

Rz 0.6887 0.8823 0.9123 0.8826 0.7545 0.8241

R 0.6372 0.6997 0.8721 0.5516 0.6750 0.6871

Underline denote biggest values in the respective column.

correlation coefficient of 0.5264 for all subjects on the three
axes. The hierarchical linear regression obtained was 0.6871,
which still showed an advantage in terms of decoding efficiency.
Then, we combined the EEG-trajectory synchronous data of
five subjects into a large dataset, and carried out 10 runs of
the 10-fold cross validation procedure to verify the decoding
accuracy of the proposed method. The results of multiple
linear regression and hierarchical linear regression were 0.5721
and 0.7315, respectively. The hierarchical linear regression still
obtained a better result. To evaluate the effects of the hierarchical
linear regression model using the ROC curve, the reference value
range of the original data and regression forecast values were
95%. If the observations for the participants were within the
reference value range, they would be determined to be normal
and recorded as “zero;” otherwise, they would be determined
to be abnormal and as “one.” Then the estimations of the both
original observations and forecast values were performed using
the ROC curve. At the end, we obtained AUC= 0.819.

Figure 6 depicts the best decoding trajectories of each subject
for the first spiral trajectory. Subject 4 obtained the best testing
results, of which the complete decoding trajectory is illustrated in
the lower right corner of Figure 6. Figure 7 shows the test result
of the second spiral trajectory. Subject 3 obtained the best testing
results, of which the complete decoding path is illustrated in the
lower right corner.
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FIGURE 6 | Test results of spiral trajectory I of five subjects.

FIGURE 7 | Test results of the spiral trajectory II.
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DISCUSSION

Experimental Paradigm
In this study, we focused on voluntary handmovement decoding.
A 40-channel NuAmps system (NeuroScan, Inc. Sterling, USA)
was used for data recording at a sampling rate of 1,000Hz.
We used the PST IRIS optical tracking/measurement system
(PS-tech, Amsterdam, Netherlands) to measure and record
the kinematics parameters of voluntary hand movement. The
sampling rate was 120Hz. The BFNs in unit time corresponding
to eight EEG characteristic frequencies under three motion
modes were constructed. The unit time was 2 s. As the result of
feature extraction, the characteristic frequencies were delta, theta,
and gamma1. The characteristic electrodes selected for training
the hand trajectory decoding model were F4, F8, C3, Cz, C4, CP4,
T3, and T4.

In the research field of neural prosthesis, it is critical
that robots follow real body movements. Because BCIs do
not depend on neuromuscular control, BCIs provide options
for communication and control for people with devastating
neuromuscular disorders (such as amyotrophic lateral sclerosis,
or ALS, brainstem stroke, cerebral palsy, and spinal cord injury).
Voluntary movement is the expression of thought through
action, in which virtually all areas of the central nervous system
are involved. Compared with certain restricted motion modes,
e.g., center-out reaching task and limb movement according to
cue, the motion of the human hand is in a “half-goal-directed”
mode. In this study, subjects swung their right hands according
to their will. The original purpose of the experiment was to
reduce the cognitive load in motion. The components related to
limb motion in EEG were anticipated to be relatively stronger
than the components extracted in the paradigm of nonvoluntary
movement.

Compared to previous EEG-based limb motion decoding
studies, this study used a smaller sample size and a smaller
number of electrodes because of the experimental paradigm and
the feature extraction method used in this study. Prior to the
formal experiment, all subjects participated in the preliminary
training of hand movement. The most important constraint of
experiment 1 was that subjects moved their hands in one axis
while preventing the movement in the other two axes. After data
collection, we calculated the variance of the coordinate values of
the measurement trajectory in the X-, Y-, and Z axes respectively.
If the variance was substandard, the corresponding EEG-
trajectory data were not included in subsequent calculations.
Therefore, the initial purpose of this study was to extract the
most sensitive EEG components and the minimum EEG feature
sets for recognizing handmovement directions. This is conducive
to the current approach to application transformation. However,
from another perspective, if low-resolution EEG is used, there
would be possible defects in practical applications. The EEG
components strongly related to changes in emotions may miss.
Second, when the motion command is output, there will be a
situation in which the motion control of external device (e.g.,
a humanoid robot) is not continuous. For this scenario, we
envision a kinematic approach to realize smooth motion control
of the robotic arm.

Brain Connectivity Analysis Using EEG
On the basis of wavelet analysis, the correlation coefficients of
the wavelet coefficients from 25 electrodes were calculated for
eight characteristic frequencies. Combining the basic theory of
the BFN, we attempted to explore the cooperative relationship
among the different brain regions in the process of voluntary
movement. Four key parameters of the BFN were investigated,
namely node degree, average of node degree, average path
length, and clustering coefficient. By analyzing the node degree,
we found that the BFNs using low-frequency EEG signals
contained more network connections. For the three motion
modes, the degree of variance among the connection weights
for the frequencies delta (1–3Hz) and theta (4–7Hz) were
greater. This result revealed that the node degree variation
in a low-frequency BFN was more sensitive to the changes
in the motion modes. This is in line with the conclusion
of Contreras-Vidal that low-frequency EEG and EcoG signals
(<3Hz) had special significance in finger motion trajectory
decoding. Through a Kruskal–Wallis test of the node degree
vectors, we found that 14 electrodes in the delta BFN exhibited
significant differences in the node degree; 15 electrodes in the
theta BFN showed significant differences, and 14 electrodes
in the gamma1 BFN exhibited significant differences. This
result provided evidence that the high frequency also played
a central role in voluntary hand movement decoding. This
conclusion agrees well with the research result of Korik (Korik
et al., 2014) that the frequency range of 28–36Hz can be used
to decode voluntary hand movements, besides the frequency
0.4–4Hz. Finally, the most sensitive components used in
decoding were the EEG signals from electrodes F4, F8, C3,
Cz, C4, CP4, T3, and T4 for frequencies delta, theta, and
gamma1. The electrodes were selected according to the P-
values obtained from the Kruskal–Wallis test. Among these
electrodes, C3 and C4, which are located on the primary
somatosensory cortex, are responsible for hand movement,
consistent with the result of Izabela’s study (Izabela, 2013).
The location of electrode CP4, corresponding approximately to
the motor cortex and the somatosensory cortex, is determined
by the decoding model as critical for hand movement
(Christine et al., 2015). Electrodes T3 and T4 are related
to the verbal analytical process and visual-spatial processing.
Electrodes F4 and F8 are related to the selection of movements
and the voluntary control of body movement, respectively
(Machado et al., 2013).

Motion Decoding Model
Some underlying shortcomings of EEG present several challenges
to voluntary movement decoding research based on EEG. To
overcome these challenges and obtain better decoding results, we
applied a method to expand the types of features extracted from
EEG. In this research, we proposed a model of voluntary hand
movement decoding based on an HLM. The original intention of
this design was to identify a computing architecture that could
contain and describe complex data, such as that of an EEG
BFN. Hierarchical linear modeling is an ordinary least squares
regression-based analysis that takes the hierarchical structure of
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the data into account. Hierarchically structured data are nested
data where groups of units are clustered together in an organized
fashion, such as students within classrooms within schools. In
this work, we adjusted the EEG data and the BFN parameters
into a nested structure based on actual data relationships, such
as BFN parameters within some certain frequency bands of the
EEG signals obtained from electrodes. Based on hierarchical
linear regression, we designed a voluntary movement decoding
model using EEG data and BFN parameters as inputs. In the first
level of the decoding model, the coordinates of the hand were
the dependent variables. EEG data were independent variables.
In the second level, the parameters of the BFN influence the
decoding results by altering the intercept and the slope in the
Level 1 equation. We used the clustering coefficient and the
average path length as independent variables. As the test results
demonstrated, the decoding model based on the HLM obtained
superior results compared to the multiple linear regression
model. In future work, a method of deep learning will be
introduced into data processing, e.g., CNN. It is expected that
this approach will open new vistas for decoding voluntary limb
movements.
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