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Submerged macrophytes and epiphytic algae play significant roles in the functioning
of aquatic ecosystems. Submerged macrophytes can influence the epiphytic algal
community by directly or indirectly modifying environmental conditions (nutrients, light,
etc.). From December to June of the following year, we investigated the dynamics of the
dominant winter species Potamogeton crispus, its epiphytic algae, and water quality
parameters in the shallow Liangzi Lake in China. The richness of epiphytic algae had
a trend similar to that of P. crispus coverage, which increased in the first four months
and then decreased in the following three months. The structural equation model (SEM)
showed that P. crispus affected the richness of epiphytic algae by reducing nutrient
concentrations (reduction in total organic carbon, total nitrogen and chemical oxygen
demand) and enhancing water transparency (reduction in turbidity and total suspend
solids) to enhance the richness of epiphytic algae. The results indicated that high
amounts of submerged macrophyte cover can increase the richness of the epiphytic
algal community by changing water quality.
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INTRODUCTION

A least-disturbed shallow ecosystem should have high water quality and biodiversity (Mcnaughton,
1988; Downing et al., 2014). Submerged macrophytes play a significant role in maintaining good
water quality and high biodiversity in shallow ecosystems (Jeppesen et al., 1998; Kuiper et al., 2017).
Submerged macrophytes inhibit algal blooms through the reduction of nutrients, allelopathy and
shading (Nakai et al., 2000; Engelhardt and Ritchie, 2001; Casartelli and Ferragut, 2018). Epiphytic
algae play a significant role in the functioning of shallow ecosystems, contributing to material
circulation, energy flow and the maintenance of food webs (Rodusky et al., 2001; Vadeboncoeur
and Steinman, 2002; Song et al., 2017). The community structure of epiphytic algae in shallow
ecosystems is influenced by a number of physical (Vadeboncoeur et al., 2003; Tóth and Palmer,
2016), chemical (Rodusky et al., 2001; Trochine et al., 2014) and biological factors (Jones and Sayer,
2003; Tunca et al., 2014; Hao et al., 2017).

It is widely acknowledged that the relationship between epiphytic algae and macrophytes
plays an important role in maintaining the function and stability of the shallow ecosystems
(Liboriussen and Jeppesen, 2006; Scheffer and Nes, 2007). The epiphytic algal community can
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be strongly influenced by macrophytes, especially with a high
coverage of macrophytes, which has been frequently reported by
researchers (Chambers et al., 2008; Santos et al., 2013; Souza et al.,
2015). The macrophytes can directly or indirectly modify the
environmental conditions for epiphytic algae, which complicates
the relationship between them. Macrophytes participate in
the nutrient cycling process through nutrition absorption,
precipitation, mobilization, decomposition (Carignan and Kalff,
1980; Barko and James, 1998), processes that can change nutrient
and light conditions for epiphytic algae. Macrophytes can provide
surfaces for epiphytic algae development, but they may also
decrease epiphytic algae growth through reduced light availability
due to shading and allelochemical production (Erhard and Gross,
2006; Meerhoff et al., 2007). Therefore, it is reasonable to assume
that macrophytes may be a determinant of the community
structure of epiphytic algae.

However, few studies have identified a model for variation in
the epiphytic algal community, especially considering the effects
of water quality changes by aquatic macrophytes on the epiphytic
algal community. Therefore, we surveyed the interrelationship
between the epiphytic algal community, macrophyte coverage
and water quality variables to determine the direct and indirect
effects on the epiphytic algal community.

MATERIALS AND METHODS

Study Area
Liangzi Lake, Hubei Province, China (30◦05′ ∼ 30◦18′N, 114◦21′
∼ 114◦39′E) is a typical Macrophyte-dominated mesotrophic
shallow lake [average annual diaphaneity is 1.2 m, average annual
pH is 8.0, average annual salinity is 0.07 ppt, average annual total
suspended solids is 19.0 mg/L, average annual total nitrogen is
0.53 mg/L, average annual total phosphorus is 0.023 mg/L and
average annual chemical oxygen demand (COD) is 3.68 mg/L]
in the central of Yangtze River Basin with good water quality
and high biodiversity (Xie et al., 2015). It has a surface area of
304.3 km2 and the mean depth varies from 2.5 to 6 m (Fan
et al., 2015). It is a dimictic lake, water retention is 0.53 year,
about 1.48 × 109 m3 water take part in the water replacement
each year because of seasonal precipitation and draining into
the Yangtze river. Liangzi Lake features a subtropical monsoon
climate, and the weather is relatively moderate with an annual
average temperature of 17.3◦C, the mean freezing period is 15
days. This lake was divided into five regions based on different
macrophyte community composition and hydrologic conditions
(Figure 1) (Xu et al., 2018). P. crispus is an annual submerged
macrophyte and a dominant winter species in Liangzi Lake
(Qian et al., 2014). It germinated in the autumn (September to
November) and slowly grew throughout the winter (December
to the coming February, there is no ice, average temp is 7.9◦C),
increased its biomass rapidly from March to April and declined
in June (Rogers and Breen, 1980; Kunii, 1982; Chen, 1985).

P. crispus and Epiphytic Algae Samples
Due to enclosure of other two regions, five fixed sampling sites
were distributed in three regions of Liangzi lake (Qianjiangdahu,

Manjianghu, and Gaotanghu) (Figure 1). From December 2016
to June 2017, each site was surveyed on the 15th–17th day each
month (total of seven times samples). Five quadrats (1 m × 1 m,
quadrats were placed without overlapping, randomly) with a
P. crispus monodominant community were investigated at each
site, and the plant coverage of each sample was surveyed by
ocular estimate (Fang et al., 2009). The coverage of P. crispus
(macrophyte cover) at each site was calculated as the mean of
the five samples. Ten pieces of P. crispus leaves approximately
50 cm from the top were carefully selected from those five
quadrats to ensure uniformity in the growth state (young leaf)
and size to ensure the minimum sampling error in sample
size. Then, each leaf was placed into a wide-mouth plastic
bottle with 200 ml of distilled water at each site. The area
of the selected leaves was measured by area meter (LI-3100C,
LI-COR, United States). Epiphytic algae were removed by a
banister brush in water (Foerster and Schlichting, 1965) and
preserved in a well-labeled plastic container, with 2 ml Lugol’s
solution to fix the epiphytic algal sample. Epiphytic algae were
identified to species and quantified with a microscope using
the blood count plate method (Hu and Wei, 2006; Effiong and
Inyang, 2015; Qian et al., 2015). The total abundance of each
month was the mean of the five fixed sites. The richness of
epiphytic algae was the summation of species at each site per
month.

Water Samples
Eighteen physical and chemical water parameters were measured
at a depth of 1.5 m underwater. Water temperature (T), dissolved
oxygen (DO), conductivity (Cond) and pH of water samples
were measured with a portable water quality monitor (PROPLUS,
YSI, United States), and chlorophyll a (Chla) was measured with
a handheld probe (HYDROLAB DS5, HACH, United States).
Turbidity (Turb) and total suspended solids (SS) were measured
with a turbidity meter (2100Q, HACH, United States) and
a portable spectrophotometer (DR900, HACH, United States)
in the field tests. Additionally, water samples were collected
from each site and stored on ice. Total nitrogen (TN) and
total phosphorus (TP) were analyzed by a flow injection
analyzer (QC8500, LACHAT, United States), total organic carbon
(TOC) was analyzed by a total organic carbon analyzer (TOC-
L, SHIMADZU, Japan), the cations and anions (Na+, K+,
Mg2+, Ca2+, F−, Cl−, and SO4

2−) were determined by a ion
chromatograph (ICS-1000, DIONEX, United States) and COD
was analyzed with a digestion solution for COD and landscape
photometry (DR900, HACH, United States).

Data Analyses
To ensure that the data conform to a normal distribution,
all water parameters were log10-transformed before performing
regressions and SEM (Zuur et al., 2010), whereas macrophyte
cover and epiphytic richness were not log10-transformed (O’Hara
and Kotze, 2010). Macrophyte cover and epiphytic algal richness
in different months were compared using repeated-measures
ANOVA by post hoc Bonferroni tests for multiple comparisons
(Thompson et al., 2001). The linear regressions were used to
test the patterns of epiphytic algal richness along significant
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FIGURE 1 | Map of Liangzi Lake showing sampling sites. Five fixed sites were distributed in three lake regions: S1 in Manjianghu, S2 and S3 in Qianjiangdahu, S4
and S5 in Gaotanghu.

FIGURE 2 | Variations in some physical and chemical parameters of Liangzi Lake (December 2016–June 2017). (A) water temperature, (B) dissolved oxygen,
(C) conductivity, (D) pH, (E) Turbidity, (F) total suspended solids, (G) Total nitrogen, (H) total phosphorus, (I) chemical oxygen demand (COD), (J) chlorophyll a,
(K) total organic carbon, (L) K+ (M) Na+, (N) Mg2+, (O) Ca2+, (P) F−, (Q) Cl− and (R) SO4

2− (n = 35).

environmental gradients and the regressions coefficients squared
were corrected for multiple tests. To determine the relative
importance of direct vs. indirect effects of P. crispus community

dynamics driving epiphytic algal richness, we built a structural
equation model (SEM; Oberski et al., 2014) including macrophyte
cover, nutrient environmental factors (i.e., TN, TP, COD, and
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TOC), and light-related environmental factors (i.e., Turb and SS),
with richness of epiphytic algae. Statistics were performed using R
version 3.5.1 (R Development Core Team, 2011) and the packages
agricolae (Mendiburu, 2009) and lavaan (Rosseel et al., 2011).

RESULTS

Physical and Chemical Parameters
The T (P < 0.001), Cond (P < 0.001), pH (P < 0.001) and Chla
(P < 0.001) showed an increasing trend during the survey periods
(Figures 2A,C,D,J). The DO Turb, SS, TN, TP, TOC, COD, Na+,
K+, Mg2+, Ca2+, F−, Cl−, and SO4

2− were shown a non-liner
trend during the survey periods (Figures 2B,E–I,K–R). Turb,
SS, TN, TP, TOC, COD decreased in the first four months of
the observation period, followed by increases in the remaining
observation period (Figures 2E–I,K). The six values (i.e., Turb,
SS, TN, TP, TOC, and COD) in April were smaller than those in
other months, which indicated that the water column was cleaner
in April than in other months.

Coverage of P. crispus and Epiphytic
Algae
Macrophyte cover (F(2.07,8.29) = 72.67, P < 0.001) and epiphytic
algal richness (F(2.60,10.40) = 96.53, P < 0.001) were significantly
difference in month. macrophyte cover increased in the first four
months and then decreased in the last three months (Figure 3).
macrophyte cover reached a peak of approximately 75–80% in
mid-April (Figure 3). The mean macrophyte cover increased
from 28% in December to 38% in January of following the year,
showing that P. crispus slowly grew throughout the winter. The
mean macrophyte cover increased from 38% in January to 78% in
April, showing that P. crispus increased its biomass rapidly in the

FIGURE 3 | Community dynamics of P. crispus and epiphytic algae. The data
are presented as the mean ± SE of 5 fixed sites each month (n = 35). Means
with the different letters are significantly different at P < 0.05 in different
months (Bonferroni test).

spring (Figure 3). The mean macrophyte cover decreased from
78% in April to 36% in June, showing that P. crispus declined in
the early summer (Figure 3).

The richness of epiphytic algae had a trend similar to that
of P. crispus coverage dynamics, first increasing during the first
four months and then decreasing during the last three months
(Figure 3). The richness of epiphytic algae reached a peak at
approximately 20 species in the mid-April (Figure 3). A total of
33 epiphytic algae species belonging to 6 phyla were identified
on P. crispus in Liangzi Lake (Supplementary Table S1). Fifteen
genera of diatoms, 10 genera of green algae, 6 genera of blue
green algae, 1 genus of cryptomonad, 1 genus of euglenoid
and 1 genus of golden algae were identified (Supplementary
Table S1). Diatoms were the dominant group of epiphytic algae
in richness and reached a peak of approximately 10.6 species
in mid-March (Figure 4). Green algae had the highest richness
in the April with approximately 6.8 species and the lowest
richness in December with approximately 1 species (Figure 4).
The richness of blue green algae increased over the last three
months, reaching a peak of approximately 3 species in mid-
June (Figure 4). Only 1 species of euglenoid appeared from
March to May (Figure 4). Only 1 species of cryptomonad
and golden algae appeared in January and June, respectively
(Figure 4).

Effects of Biotic and Abiotic
Environmental Factors on Epiphytic Algal
Richness
The epiphytic algal richness was positively correlated with
macrophyte cover, DO and pH (Figures 5A–C). The richness was
negatively correlated with Turb, SS, TN, TP, COD, TOC, Na+,
K+, Ca2+, Mg2+, F−, and Cl− (Figures 5D–O). The epiphytic
algal richness was no significantly correlated with T (R2 = 0.00,
P = 0.176), Cond (R2 = 0.00, P = 0.392), Chla (R2 = 0.00,
P = 0.252) and SO4

2− (R2 = 0.00, P = 0.987).

FIGURE 4 | The richness of 6 phyla of epiphytic algae on P. crispus during the
study period. The richness of each phylum was the mean of 5 fixed sites
(n = 35).
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FIGURE 5 | The linear regressions between richness of epiphytic algae and the coverage of P. crispus and water quality parameters. Environmental factors were
correlated with the richness of epiphytic algae. (A) coverage of P. crispus, (B) dissolved oxygen, (C) pH, (D) Turbidity, (E) total suspended solids, (F) Total nitrogen,
(G) total phosphorus, (H) COD, (I) total organic carbon, (J) Na+, (K) K+, (L) Mg2+, (M) Ca2+, (N) F− and (O) Cl−. The regressions coefficients squared and
P-values are given for the regression by correction for multiple tests (n = 35).

FIGURE 6 | A structural equation model of macrophyte cover effects on the
richness of epiphytic algae. Red and blue arrows represent significant positive
and negative pathways, respectively. Arrow width is proportional to the
strength of the relationship, and solid and dotted lines represent significant
and non-significant pathways, respectively. Numbers indicate the standard
path coefficients (C) χ2 = 242.68, P < 0.001; RMSEA = 0.66, P < 0.001;
AIC = 1216.45. Significance levels are indicated by asterisks: ∗∗∗P < 0.001,
∗∗P < 0.01, ∗P < 0.05.

The macrophyte cover had a significant negative effect on
TOC (C = –0.29, P = 0.003), TN (C = –0.50, P < 0.001), COD
(C = –0.28, P = 0.003), Turb (C = –0.19, P = 0.020) and SS (C =
–0.61, P < 0.001) (Figure 6). TOC (C = –0.83, P < 0.001), TN
(C = –0.22, P < 0.001), Turb (C = –0.26, P < 0.001), and SS (C =
–0.22, P = 0.001) had a negative effect on the richness of epiphytic

algae (Figure 6). The macrophyte cover had a non-significant
negative effect on the richness of epiphytic algae (C = 0.08,
P = 0.276, Figure 6). The model shows that P. crispus effects the
diversity of epiphytic algae by reducing nutrient concentration
(TOC and TN decreases) and increasing the clarity of the water
(Turb and SS decreases) to improve the richness of epiphytic
algae.

DISCUSSION

Changes in the macrophyte community can be an important
cause of changes in the epiphytic algal community structure
(Souza et al., 2015). Increasing macrophyte coverage could
increase the species richness of epiphytic algae by providing more
diverse and heterogeneous habitats for epiphytic algae (Cattaneo
et al., 1998; Toporowska et al., 2008; Celewicz-Gołdyn and
Kuczyńska-Kippen, 2017). Liangzi Lake had a high abundance of
aquatic macrophytes, especially P. crispus during winter to early
summer, and the abundance varied over this period (Qian et al.,
2014). Our results showed that the total richness of epiphytic
algae had a similar trend to that of P. crispus coverage (Figure 3),
which suggested that higher coverage of P. crispus might provide
more habitats and spatial niches for epiphytic algae. Therefore,
within a range of coverage and conditions examined, a greater
P. crispus coverage could accommodate more species of epiphytic
algae.
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On the other hand, when the coverage of P. crispus increases,
total organic carbon, total nitrogen, COD, turbidity and total
suspended solids in the water column are decreased. These results
may suggest that P. crispus improved the water quality at the
growing season in terms of improving transparency, decreasing
nutrients are represented by the first part of the SEM. A large
amount of nutrients and suspended solids in the water column
were absorbed for macrophyte growth and reproduction that
have been widely confirmed by many studies (Scheffer, 1999; Cao
et al., 2018). The water quality was improving, which usually
manifested as high transparency, low nutrient concentrations and
high biodiversity in a shallow ecosystem (Karr and Dudley, 1981;
Gandhi, 2012; Cao et al., 2018). The diversity of epiphytic algae
was positively correlated with water with high transparency and
few suspended solids (Kollar et al., 2015). Increased radiation and
spectrum would support a more heterogeneous environment for
the epiphytic algal community that would accommodate more
species of epiphytic algae (Algarte et al., 2017). The enhanced
transparency improved the richness of epiphytic algae shown
on the light pathway in the SEM; thus, the total richness of
epiphytic algae increased with the increasing P. crispus coverage.
Eutrophication has been confirmed as one of the main drivers
of biodiversity loss in recent decades (Hillebrand et al., 2007;
Isbell et al., 2013; Newbold et al., 2015; Wang et al., 2016).
Increasing P. crispus coverage was correlated with reduced the
nutrients of the water column (C = –0.50, P < 0.001, TN; C =
–0.11, P = 0.13, TP; C = –0.28, P = 0.003, COD; C = –0.29,
P = 0.003, TOC) and improved the richness of epiphytic
algae, as shown by the nutrient pathway in the SEM. The
nutrient increase can lead to cyanobacterial dominance (Dokulil
and Teubner, 2000), community structure simplification and
biodiversity loss especially in the mesotrophic and eutrophic
lakes (Qin et al., 2013). In the decline phase of P. crispus, plant
decomposition caused nutrients to be released into the water
column that led to the overgrowth and dominance of several
species epiphytic algae (such as: G. subclavatum, A. exigua,
C. vulgaris, A. flos-aquae (Lyngb.) and O. fraca; Supplementary
Table S1); many epiphytic algae were excluded due to the
competition for nutrients and space. Moreover, the TOC was the
strongest factor effected on the epiphytic algal richness. While,
most algae couldn’t utilize organic matter (Lee, 2008), but the
bacteria decomposed organic matter into inorganic carbon which
could be utilized by epiphytic algae (Jones et al., 2002; Rier and
Stevenson, 2002). The increasing inorganic carbon might led to
the overgrowth and dominance of several species epiphytic algae
which might excluded many epiphytic algae. On the other hand,

the effect of organic matters attenuated light in water column
(Babin et al., 2003) which might decrease the epiphytic algal
richness.

The pathway form the coverage of P. crispus to epiphytic
algal richness shown a non-significant effects, which indicated
that the changes of P. crispus coverage cannot direct explain
the variation of epiphytic algal richness. The path coefficient
which from the coverage of P. crispus to epiphytic algal richness
via nutrients (C = 0.38) was greater than which via light
(C = 0.18) and direct effect of P. crispus coverage (C = 0.08).
As the result of the above comparison, the indirect effects
(adjusted nutrients concentrations and transparency of water
column) of the P. crispus coverage on epiphytic algal richness
was stronger than that direct effect. The SEM clarified the
mechanism by which P. crispus improved the epiphytic algal
richness by absorbing nutrients and increasing the transmittance
of water.

We concluded that P. crispus affected the richness of epiphytic
algae by reducing nutrients concentrations (TOC, TN, and COD
decreased) and increasing transparency (Turb and SS decreased).
This result suggests that high submerged macrophyte cover can
improve the richness of the epiphytic algae community indirectly
by changing water qualities.
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