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The neural principles behind semantic category representation are still under debate.

Dominant theories mostly focus on distinguishing concrete from abstract concepts but,

in such theories, divisions into categories of concrete concepts are more developed

than for their abstract counterparts. An encompassing theory on semantic category

representation could be within reach when charting the semantic attributes that are

capable of describing both concept types. A good candidate are the three semantic

dimensions defined by Osgood (potency, valence, arousal). However, to show to

what extent they affect semantic processing, specific neuroimaging tools are required.

Electroencephalography (EEG) is on par with the temporal resolution of cognitive

behavior and source reconstruction. Using high-density set-ups, it is able to yield

a spatial resolution in the scale of millimeters, sufficient to identify anatomical brain

parcellations that could differentially contribute to semantic category representation.

Cognitive neuroscientists traditionally focus on scalp domain analysis and turn to source

reconstruction when an effect in the scalp domain has been detected. Traditional

methods will potentially miss out on the fine-grained effects of semantic features as they

are possibly obscured by the mixing of source activity due to volume conduction. For

this reason, we have developed a mass-univariate analysis in the source domain using a

mixed linear effect model. Our analyses reveal distinct networks of sources for different

semantic features that are active during different stages of lexico-semantic processing of

single words. With our method we identified differences in the spatio-temporal activation

patterns of abstract and concrete words, high and low potency words, high and low

valence words, and high and low arousal words, and in this way shed light on how word

categories are represented in the brain.

Keywords: high-density EEG, source localization, semantic category representation, single word processing,

linear mixed effect model

INTRODUCTION

Different cortical areas are involved in representing semantic categories and concepts, collectively
known as the “semantic system” (Binder et al., 2009), and word representation (“semantic
map”) has recently been mapped comprehensively with fMRI (Huth et al., 2016). Much of
our understanding comes from the vast amount of neuroimaging and electrophysiological data
recorded from both healthy subjects and neurogenerative disorder patients as well as the occasional
invasive recording in patients during or in the work-up of surgery. However, despite this evidence,
it is still not clear on what basis these representations differ.
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One of the most prominent theories of semantic word
processing is the grounded cognition or embodied cognition
model. This model suggests that semantic knowledge resides
in high-level perception and motor representation systems
(Barsalou, 2008, 2010). In other words, a word is comprehended
based on the modality-specific neural systems (for example,
visual features such as color, shape and motor actions) that
are associated with the definition of the word. Indeed, a
number of fMRI studies have demonstrated that, for example,
animate objects tend to cluster in the lateral part of the
fusiform gyrus while inanimate or manmade objects cluster
in the medial part (Martin and Chao, 2015). Furthermore,
it has been shown that certain category mappings are based
on specific shapes, such as “face” and “body” patches (Tsao
et al., 2008). However, the embodied cognition framework has
received considerable criticism, too (Mahon and Caramazza,
2008). For example, a number of lesion studies have been
reported where damage to the brain’s modal system led to
category-specific deficits and to disproportionately preserved
categories such as animals, foods, or artifacts (Barsalou et al.,
2003; Caramazza and Mahon, 2003). An attempt to explain this
along the lines of embodied cognition would need to resort
to the most prevalent modality behind these categories, e.g.
artifacts separated from animals and food as they call upon
systems involved in manipulation or the action in response to
experiencing the word, as evidenced by a larger activation in
the left premotor cortex and the pre- and post-central gyrus
(Hwang et al., 2009). However, category-specific deficits are hard
to explain when relying only on embodied cognition, since many
modality-specific systems might overlap between categories, and
a single category might contain several distinct modality-specific
features. This raises the question of how these modality-specific
features are linked within one category and, conversely, when
they span several categories, how they can be distinguished
between categories. Increasing evidence suggests the existence of
a modality-invariant integrative mechanism in addition to the
modality-specific neural systems described in the classical model.
This integrative component is called the semantic “hub,” and
modality-specific neural systems are referred to as the “spokes”
of the model. The hub and spoke model is regarded as the middle
ground between the embodied and disembodied hypotheses
(Mahon and Caramazza, 2008; Lambon Ralph, 2013).

However, the grounded cognition model, with its hub and
spoke extension model (Lambon Ralph, 2013), can be criticized
from several angles. First of all, modality-specific features of
a concept are much less variant between different subjects
when shown as a clear visual stimulus (image). However, when
stimuli are conceptual in nature (such as words presented in
written or spoken form), the perceptual and motor-sensory
functions they refer to are much more difficult to control as
the experience designated to the specific entities is to a large
degree subject-dependent (Kemmerer, 2014). Secondly, which
is particularly relevant to our study, the grounded cognition
model only explains features that are rooted in the physical
experience with the concept, limiting its applicability to concrete
concepts. However, abstract concepts such as “democracy”
or “emotions” are not explained by this theory, despite of

their prominent presence in human language (Kemmerer,
2014).

The difference between processing abstract and concrete
words has been addressed by a number of theories, the main ones
being the dual coding and context availability theories (Kounios
and Holcomb, 1994; Wang et al., 2010). The dual coding theory
claims that two separate systems reside in the brain: a nonverbal
“imagery” system that implements the modality-specific aspects
of a concept (similar to the grounded cognition model), and a
purely verbal “linguistic” system that is involved in the abstract
form of language. According to the context availability theory,
the processing of concrete and abstract words rarely occurs in
isolation, but rather in the context in which they are understood.
Since the context of concrete words is mainly constrained by
the words’ physical properties, understanding these words will
again involve modality-specific brain systems as defined in the
grounded cognition model. In the case of abstract concepts,
however, context is more variable and experience-dependent.

Both theories put the grounded cognition model for different
categories of concrete words into a larger framework that would
also include abstract concepts. For example, some studies have
attempted to define the “hub” of the previously mentioned hub
and spoke model, and considered the anterior temporal lobes
as a pan-modal hub for all concepts (so as to also include
abstract concepts; Hoffman and Ralph, 2018). However, none
of the aforementioned theories discuss the possibility of also
having categories for abstract concepts and considers them
homogeneous, despite the gamut of semantically significant
subdivisions such as numbers, emotions, etc. The question
remains whether an embodying ground can be defined for
abstract concepts by means of well-defined domains. Despite
some efforts in this regard (defining different abstract categories
such as numbers and emotions; Kemmerer, 2014), we believe a
good approach would be to search for a semantic space that can
describe both abstract and concrete words. An important set of
semantic attributes are the three dimensions according to the
semantic differential scale proposed by Osgood and colleagues
(Osgood et al., 1975). According to the study by Osgood,
the affective meaning of linguistic terms can be quantified
in three independent dimensions marked by the following
polar adjectives: “evaluation” or “valence” (good- bad, pleasant-
unpleasant, positive-negative), “potency” (strong-weak, heavy-
strong, large-small), and “activity,” also called “arousal” in most
current models (active-passive, fast-slow, sharp-dull) (Fontaine
et al., 2013) thereby avoiding possible confusion with motor
activity. These semantic attributes proved to be robust across age
groups, cultures, and languages. Specifically, the neural correlates
of valence and arousal for word processing have been investigated
extensively in the past decade in the framework of emotion
word processing (Kuchinke et al., 2005; Kissler et al., 2006; Lewis
et al., 2007; Citron et al., 2013). For example, valence has already
been suggested to ground abstract concepts in the same neural
systems underlying basic emotions (Kousta et al., 2011; Vigliocco
et al., 2014) since there seems to be a high level of interaction
between abstractness and valence. In this study we extend
this research by including the two other Osgood dimensions:
arousal and potency. To the best of our knowledge, we are
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the first to propose these dimensions to dissociate their neural
representation from that of abstract and concrete concepts. In
order to unveil the networks activated by the Osgood dimensions,
but also by abstract vs. concrete categories, and to detect any
differences in the evoked spatio-temporal activity patterns, we
need tools that match the temporal resolution of the underlying
neural mechanisms. The temporal course of word processing is
crucial for the functional interpretation of brain activity, e.g., to
determine during which process we can see the effect of lexical or
semantic properties.

A crucial limitation of all the aforementioned theories is
that they have predominantly relied on functional neuroimaging
techniques such as fMRI and PET, which are limited in temporal
resolution (Bookheimer, 2002). As word recognition involves
stages that unfold on a scale of milliseconds, such as visual
encoding, lexical activation, and semantic presentation (Laszlo
and Federmeier, 2014), the temporal resolution should be on
par with the dynamics of these processes. Whether these stages
are sequential or partially parallel and interactive is still debated
(Hauk et al., 2006; Grainger and Holcomb, 2009), however it
is clear that hemodynamic imaging cannot track the activity
progression or resolve differences in activity patterns between
words (Helenius et al., 1998; Bentin et al., 1999). On the other
hand, studies that involve lesions and electrical stimulations do
not provide the proper scope for the large-scale networks that are
possibly involved.

By virtue of its excellent temporal resolution, the EEG
technique has been hailed for gauging the brain’s semantic
processes. Studies using EEG/ERP recordings have successfully
distinguished differences in word categories in different stages of
semantic processing, starting from detecting differences in word
length and word frequency around 100 and 200ms (Hauk et al.,
2006) to the distinction in processing semantic categories, such
as abstract vs. concrete concepts (Bentin et al., 1999), animals vs.
tools (Simanova et al., 2010) and more generally natural objects
vs. artifacts (Kiefer, 2001), around 400–500ms (N400 potential).

The main drawback of traditional scalp EEG is its relatively
low spatial resolution, which falls short in detecting differences
in cortical network activation. For example, different aspects
of semantic activity and language comprehension could be
coded by different neural generators during the same time
period, but go unnoticed when inspecting the N400 scalp
distribution (Nobre and McCarthy, 1995; Lau et al., 2008). It is
clear that spatial resolution is equally important for obtaining
a complete picture of the neural activations underlying the
semantic processes. However, by using high density EEG and
source localization, one can reconcile the temporal and spatial
resolution requirements needed to uncover the spatio-temporal
dynamics of neural activity with an accuracy in the range of
millimeters and milliseconds. We have adopted this technique
to investigate the contribution of lexico-semantic features of
word processing (orthographic/phonological, lexical access and
semantic processing) and their spatio-temporal distribution in
the brain. We hypothesize that, by performing statistical analysis
directly on the sources as opposed to scalp-level analysis, fine-
grained differences previously obscured in EEG studies due to
volume conduction can be revealed. In order to identify patterns

of cortical activation we caution against scalp-level analysis,
since many effects might be overlooked, as shown in this paper.
To evaluate our paradigm, which calls upon the said semantic
features, we developed a mass-univariate analysis approach on
source level to discriminate between the different patterns of
cortical activation.

MATERIALS AND METHODS

Participants
Twenty-two paid, healthy, native Dutch-speaking volunteers (9
males, 3 left-handed, average age 22 ± 4 years) participated in
the study. The study was approved by the UZ Leuven ethics
committee and conducted according to the latest version of the
Declaration of Helsinki. All recruited subjects were first informed
about the goal of the experiment, what would be expected
from them, and what would be done with the collected data
(privacy), after which they were invited to read and sign the
informed consent form. No participant reported any history of
neurological or psychiatric disorders. All participants had normal
or corrected to normal vision.

Word Stimuli
We used 159 Dutch nouns combined from various categories:
emotions and other abstract concepts, shapes, tools, colors,
vegetables, food, fish, insects, furniture, sport disciplines, birds,
and mammals.

We use the following semantic dimensions to discern our
categories: word abstractness, potency, valence, and arousal. For
our analysis all nouns were grouped based on these dimensions
(note that within a single trial during the experiment, words
could belong to any of the aforementioned semantic dimensions),
and these dimensions were based on the three Osgood ratings
(Moors et al., 2013) as well as on the concreteness ratings of
Dutch words (Brysbaert et al., 2014). The words were chosen
to have a score below 3.5 or above 4.5 for both poles of each
dimension of the Osgood ratings, so as to ensure a statistically
significant difference between the two groups on the same
dimension (e.g., weak vs. strong for potency). The same principle
applied to the abstractness ratings, abstract words should have a
concreteness score below 2.5 and concrete words above 3.5. A t-
test analysis showed a statistically significant difference between
the two groups of each semantic dimension and the abstract and
concrete groups based on their concreteness rating (p < 0.05,
high valence: m = 4.98, std = 0.50, low valence: m = 2.66,
std = 0.52, high arousal: m = 5.13, std = 0.40, low arousal:
m = 3.18, std = 0.23, high potency: m = 5.07, std = 0.37, low
potency: m = 3.10, std = 0.24, abstract: m = 1.89, std = 0.43,
concrete: m = 4.77, std = 0.28). These semantic categories
were then further controlled along each dimension for word
frequency, orthographic neighborhood size and word length (i.e.,
number of letters in a word) ratings taken from the Dutch
CLEARPOND software (Marian et al., 2012): repeated measure
ANOVA showed no significant difference between dimensions
for word frequency and orthographic neighborhood size (for
all dimensions, p > 0.05). In the case of number of letters,
no significant difference was between dimension potency and
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valence (p > 0.05), while differences in word length between
abstract and concrete words and high and low arousal words
were significant (p = 0.0043 for abstractness and p = 0.0027
for arousal). For these two word dimensions, for which we
were not able to entirely control for word length, we repeated
the same analysis by also including word length as a random
factor. This analysis did not result in an elimination of any of
the previous outcomes; however, in one case, these dimensions
yielded additional activity regions (cf. discussion section). The
entire dataset can be found in the Supplementary Material in
Appendix A.

Experimental Paradigm and Set-Up
Participants were tested in a sound-attenuated and darkened
room with a constant temperature of 20 degrees Celsius, sitting
in front of an LCD screen at a distance of about 70 cm. EEG data
was recorded using 128 active Ag/AgCl electrodes (SynampsRT,
Compumedics, France) according to the international 10-5
system. Two of these electrodes served as ground (AFz) and
reference (FCz). The EEG signal was recorded at a 2KHz
sampling rate and down sampled to 500Hz. All electrodes were
mounted in an electrode cap, placed on the subject’s head,
for which we established the position of electrode Cz as the
central point between inion, nasion, and the two pre-auricular
points (Easycap, Germany). The cap was later used to obtain the
electrode positions as pre-specified in the Brainstorm toolbox for
source reconstruction. Conductive gel was applied in each of the
electrode holes to ensure contact with the scalp.

During the experiment, in each trial, four white words on
a black background were shown consecutively for 500ms each,
separated by a black screen for 1.2 s (inter-stimulus interval)
with a jitter of ±200ms. Three of these words were members
of the same semantic category and the remaining word (called
“filler”) could either be a member of the same or a different
semantic category. The order of this filler in the 4-word trial was
randomized. Examples of such trials are shown in Table 1. We
will refer to the remaining 3 words in the trial as “target words”
since they will be analyzed and the filler word discarded.

Each trial started with a fixation cross that would cue the
subject to gaze at the middle of the screen. After that, words
were displayed and a cue was shown to prompt the subject to
press the left mouse button if they thought all four words came
from the same category (homogeneous trials) or the right button
if otherwise (non-homogeneous trials). This semantic category
matching task was chosen in order to ensure the proper depth
of word-processing in our subjects (semantic processing, instead
of mere lexical access, as would be expected for a lexical decision
task). Note that the identification of these categories was not the
goal of our study but rather used as a task for the subject. Subjects
were asked not to click the button before the cue appeared in
order to prevent contamination of our ERPs-of-interest with
motor-related ones. After pressing a mouse button, they received
visual feedback, which did not reflect the correctness of the trial
but rather served as a reminder for the function of each mouse
button (“goed!” (correct!) for the left button press, and “fout!”
(wrong!) for the right button press).

The order of the trials was pseudo-randomized in a way
that the same semantic category would not appear in two
consecutive trials. Every subject repeated the experiment twice,
with a break of about 20min between the two sessions during
which they performed another experiment so as to mitigate
repetition effects. In total, the experiment lasted 30–40min. The
stimuli were presented using Matlab’s Psychophysics Toolbox
(Brainard, 1997).

EEG Signal Pre-processing
EEG data was re-referenced offline from the original ground
and reference electrodes to a linked mastoid one and filtered
using a 4th order Butterworth filter in the range of 0.1–30Hz.
Even though the choice of the reference does not affect the
inverse localization of neural active sources (Geselowitz, 1998;
Pascual-marqui, 2007), we chose the linked mastoid reference
because it was shown to yield a clearer N400 scalp response,
which is one of the main ERP components used in the study
of semantics (Marí-beffa et al., 2007; Kutas and Federmeier,
2011). For this reason, the linked-mastoid reference is the most
commonly used one in linguistic ERP studies (Marí-beffa et al.,
2007). The data was epoched using a window starting 100ms
prior to the presentation of the stimulus of interest (each of the 3
target words) until 1,000ms post-onset. The average amplitude
of 100ms pre-stimulus signal was used to remove the post-
stimulus EEG signal baseline. Bad channels were eliminated
for each subject based on a visual inspection of the data (an
average of 18 channels were eliminated per subject), After this,
trials in which the EEG amplitude on any of the electrodes
exceeded±150µVwere excluded as they could be due to motion
artifacts.

Source Localization
For our source reconstruction analysis we used the Brainstorm
toolbox (Tadel et al., 2011), freely available under the GNU
general public license. The default anatomy was based on the
ICBM-152 template. For the forward model we used OpenMEEG
BEM (Gramfort et al., 2010), in which case the cortex was divided
into 15,000 dipoles. The noise covariance matrix was obtained by
merging the matrices calculated from the baseline of all selected
trials. As our inverse modeling method, we used minimum norm
estimates to estimate the sources and sLORETA (Pascual-Marqui,
2002) to normalize the estimated source density, as it has shown
to yield zero localization errors in the absence of noise and
to support the reconstruction of multiple sources. The source
density is normalized at each point by a function of the data
covariance and is unitless. Source orientation was constrained to
be orthogonal to the cortical surface. The signal-to-noise ratio
(SNR) was set to the default value suggested by the Brainstorm
Toolbox (SNR = 3). In addition, sulci are not taken into
consideration during our analysis, as accurate source localization
in these regions is implausible, as stipulated in Brainstorm’s
documentation.

In order to verify the correctness of our procedure, we
attempted to reproduce the results using different source
localization algorithms, as is recommended by Mahjoory et al.
(2017). We did not pursue the entire statistical procedure;
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TABLE 1 | Example trials.

Trial type word 1 word 2 word 3 word 4

homogeneous trial ansjovis (anchovy) kabeljauw (codfish) inktvis (squid) snoek (pike)

knoflook (garlic) ui (onion) asperge (asparagus) selderij (celery)

tang (pliers) zaag (saw) bijl (ax) schop (shovel)

libel (dragonfly) vlieg (fly) mier (ant) wesp (wasp)

non-homogeneous trial adelaar (eagle) kanarie (canary) specht (woodpecker) kokosnoot (coconut)

zilver (silver) brand (fire) groen (green) bruin (brown)

piano (piano) konijn (rabbit) kalkoen (turkey) tijger (tiger)

jaloezie (jealousy) vreugde (joy) afkeer (aversion) acteur (actor)

During the experiment all words were presented in Dutch. The fillers are presented in bold-italic, with related fillers in the homogeneous trials and unrelated fillers shown in the

non-homogeneous trials. The three remaining words are the target words. English translations (between brackets) are for illustrative purposes only.

however, we did analyze our initial results by taking the average
over all trials regardless of semantic features, using the four
methods available in the brainstorm toolbox: wMNE, dSPM,
sLORETA, and unconstrained sLORETA. Manual inspection
of the results with these methods revealed that the spatial
distributions are similar over time albeit with different degrees
of spatial smoothing.

Statistical Analysis
For both scalp and source domain data, a mass-univariate
approach using a linearmixed effectmodel was adopted (Verbeke
and Molenberghs, 2000) with subjects and word length taken
as random effect and semantic feature labels as fixed effects. In
the case of the Osgood dimensions, we also corrected for the
concreteness of the word by including it as a random effect. The
dependent variable in the scalp domain was EEG amplitude and
in the source domain it was dipole amplitude. Both averaged over
50ms time bins between 0 and 900ms. The final model can be
seen in Equation 1:

‘averaged amplitude′∼semantic feature+ (1|Concreteness)

+ (1|Subjects)+ (1|WordLength), (1)

for the Osgood dimensions, and

‘averaged amplitude′∼Concreteness+ (1|Subjects)

+ (1|WordLength) (2)

for abstract vs. concrete words. In the source domain, averaging
was performed for each of the 15,000 dipoles. Test results with
p-values below 0.05 were considered significant. In cases such
as ours, where dipoles are not independent from each other,
and the number of dipoles is extremely large, Bonferroni- or
FDR corrections are not appropriate as they will eliminate
true positives (Cohen, 2014). Instead, we corrected for multiple
comparisons using cluster-based inference adapted from the
random field theory (Friston et al., 1994); as a threshold we
took 3 cm2 of cortical surface as the minimal cluster size. The
reasoning behind this threshold was based on a simulation
study of the localization accuracy and is explained below. The
same principle was applied for correcting over time, e.g., we

only took those regions into consideration that were statistically
significant for at least two consecutive time bins. When the
measurement window and electrode sites are not known a
priori, as in our case, one could rely on permutation tests
to solve the multiple comparison problem in time and space
simultaneously (Luck and Gaspelin, 2017). However, we felt
the linear mixed effect to be a more appropriate model since
it can account not only for inter-subject variability but also
variability of any additional parameters (such as word length)
and, therefore, has more power to detect small differences. Most
importantly, the model allows us to control for the concreteness
of the word when evaluating the Osgood dimensions, which is
an important feature for our claim to suggest the dimensions
as a way to ground both concrete and abstract words in the
same underlying neural systems. Additionally, as suggested in
many studies (Feise, 2002), we looked at effect size, specifically
Cohen’s d-effect size. Note that, as is the case with EEG studies,
especially single word comprehension studies, differences are
likely to be small and effect sizes of 0.01∼0.1 are to be expected
(Kutas, 1993). In the scalp domain we also used cluster-based
inference over electrodes by taking a cluster size of 10 adjacent
electrodes, and only accepted clusters that were significant for
at least 2 consecutive time bins, which would mean effects
that last about 100ms, which corresponds to the approximate
duration of transient EEG events (Koenig et al., 2002). It is very
important to note that, since we performed the statistical analysis
on relative values of dipole amplitudes (we do not rectify the
signal for the mixed effect model), our results measured the
distance between two conditions, showing the correct polarity
of the signal. This is the case since the sign of the dipole
amplitudes depends on the orientation of the source. However,
the sign is ambiguous and cannot be used to claim that the
brain response is stronger in one condition compared to another.
Once our results are acquired, when studying a particular
region of interest, rectified signals can be used to know which
condition generates a larger response. This is possible since
||A|-|B||≤|A-B|, which implies that the effect of rectified signals
will always be smaller, therefore there is no need to perform
statistical analysis on the rectified signals separately. Further
information can be found in the tutorials on difference estimation
provided by Brainstorm (http://neuroimage.usc.edu/brainstorm/
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FIGURE 1 | localization percentage error for simulated source activity.

FIGURE 2 | scalp plot for significant differences and time course for two sample electrodes as indicated in scalp plots.

Tutorials/Difference). In addition to the aforementioned, we
did not take into account regions that were located on the
bottom of the sulci or in the interhemispheric fissure (we
did take into account the wall of the gyri, but eliminated
results at the bottom of the sulci as defined by Brainstorm),

as source localization in these regions is suggested to be
implausible and difficult to detect from EEG-based source
localization.

The average localization error using the high-density EEG
method applied in this study has previously been reported to be
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FIGURE 3 | temporal plot for single word processing averaged over all groups of words (grand average of all trials). The plot shows the quality of ERP data used for

source analysis.

10.5mm for realistically shaped head models (Cuffin et al., 2001).
However, these results are still under dispute (Song et al., 2015).
Therefore, to ensure that the results of our statistical test are
not merely localization inaccuracies, we performed a simulation
study to measure the amount of crosstalk between source-
localized areas as a function of the spreading of activation. We
simulated a signal consisting of a linear combination of sinusoids
with frequencies ranging from 10 to 100Hz. We applied this
signal to randomly chosen regions on the cortical surface with
different square sizes. We chose 20 random areas for each
simulated size of 1, 2, up to 7 cm2 of cortical surface. For each of
these simulated regions, we applied the forward model to obtain
simulated EEG signals on the scalp, and then applied the inverse
solution to obtain an estimate of the spread of activity on the
cortical surface. Since the activation of methods that employ L2
regularization, such as sLORETA’s, will exhibit nonzero activity
at all-time points and spatial locations (Gramfort et al., 2012),
we defined the spreading of activation as the area outside which
the amplitude of the dipoles falls below 50% of the maximum
amplitude. The area of activity after determining the forward
and inverse solutions was compared with the initially simulated
activity in order to obtain a measure of the crosstalk (or spatial
accuracy of the model). Figure 1 shows the percentage error

(calculated as abs(calculated cortical area−simulated cortical area)
simulated cortical area

) between
the initially simulated and calculated area for surface region
sizes between 1 and 7 cm2. As one can observe, the statistical
difference between the region sizes drops below significance after
3 cm2 of simulated activity. Our cross-talk simulations confirmed
that, for cortical surface activity above 3 cm2, the extent of
spatial spreading does not differ significantly between any two
cortical areas larger than 3 cm2. Therefore, in our linear mixed

effect model on the cortical surface, we only retained areas of
significance that where larger than 3 cm2.

RESULTS

Scalp Analysis
The scalp results obtained from the statistical analysis described
previously are shown in Figure 2. A grand average of all trials
shown in Figure 3 confirms the quality of our ERP data.

For abstractness, significant differences can be seen during
the time course of 300–500ms on a cluster of 23–28 channels
(P = 0.0106, Cohen’s d = 0.042), and for potency during 500–
700 with a cluster size of 21–24 electrodes (P = 0.0383, Cohen’s
d = 0.0642). No results remained after correcting for multiple
comparisons for the dimensions of arousal and valence. This does
not mean that no differences could be found on scalp level, but
rather that our threshold for the cluster size is conservative.

Source Analysis
In order to evaluate any theory on word processing, a spatio-
temporal view of brain activity is needed. When a single word
is processed, categorized, and stored in semantic memory, a
distributed network of cortical activity will emerge, starting to
spread from the occipital areas toward the anterior temporal
lobe (Borghesani, 2017). The entire activation network has been
proposed to involve the left temporoparietal, angular, inferior
and middle temporal gyri. When subjects are required to relate
word meanings then several regions of the frontal lobe are
additionally activated (Silva-pereyra et al., 2003).

When averaging across all word groups, source-localized
brain activity can be seen (Figure 4) at different stages of
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FIGURE 4 | scalp plot of time course of single word processing averaged over all groups, with associated source localization maps.

lexico-semantic processing. The early stages start with visual
processing in the occipital lobe, then areas are recruited along
the ventral stream, specifically the posterior occipital area of the
left hemisphere around 200ms, until the posterior temporal lobe
is reached in the time window of semantic processing (400ms),
and onwards anterior temporal, inferior frontal and orbital gyrus
are included at later stages. This stream of activation has been
previously shown with source localization studies (Borghesani,
2017). Therefore, together with the fact that our trials have only

restricted variability in terms of noise as can be seen in Figure 3,
this confirms the quality of source localization entering our
statistical analysis.

Results of Statistical Analysis on Source
Data
Abstract vs. Concrete
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TABLE 2 | Statistical results for significance map of Figure 5 (abstractness).

Region Time window

(ms)

P value

(corrected)

Polarity Stronger

condition

Cohen′s d Size (cm2) Estimate

(10−10 )

Confidence

interval (10−10 )

1 right posterior MTG 100–200 0.013 A>C |A|>|C| 0.040 4.42 5.31 [2.86 23.70]

2 right medial orbital gyrus 450–650 0.020 A>C |A|<|C| 0.025 22.96 10.80 [3.18 39.17]

3 right anterior inferior

temporal gyrus and MTG

350–650 0.023 A>C |A|>|C| 0.036 24.18 15.86 [4.63 66.84]

4 left anterior MTG and ITG 300–550 0.029 A>C |A|>|C| 0.032 37.04 14.96 [1.02 59.71]

5 left STG/STS* 250–700 0.015 A>C |A|>|C| 0.041 12.71 7.72 [4.68 34.95]

6 left superior parietal gyrus 700–1,000 0.018 A>C |A|<|C| 0.038 10.25 6.74 [2.89 29.33]

7 right inferior parietal gyrus 0–100 0.018 A<C |A|<|C| 0.040 4.68 2.87 [−12.77 −1.50]

8 right postcentral gyrus 0–100 0.010 A<C |A|>|C| 0.045 9.01 2.33 [−11.16 −2.00]

9 left MTG/MTS* 300–700 0.018 A<C |A|>|C| 0.039 14.17 9.33 [−40.83 −4.22]

10 left middle parietal gyrus 700–1,000 0.019 A<C |A|<|C| 0.036 9.91 7.47 [−31.53 −2.22]

A, Abstract; C: Concrete.

* The activation is located on the wall of sulcus but does not include the bottom.

FIGURE 5 | significance map for abstractness.

Arousal

FIGURE 6 | significance map for arousal.

Potency

FIGURE 7 | significance map for potency.

Valence

FIGURE 8 | significance map for valence.

DISCUSSION

Effect of Abstractness: Abstract vs.
Concrete Words
A large difference was observed in the scalp domain during the
time window of semantic processing, located centro-parietally
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(Figure 2, 300–500ms), in agreement with previous reports on
the effect of abstractness in word processing (West and Holcomb,
2000; Kanske and Kotz, 2007). This result translated to a few
regions in the source analysis (Figure 5: regions 2 and 3, and
Table 2). Significant differences in sources between abstract and
concrete words are present very early on in the posterior parietal
areas (the time-interval for visual and orthographic processing)
followed by the left and right temporal cortex and the right
inferior frontal cortex (time-interval of semantic processing),
and the occipito-parietal areas toward the end of the 900ms
time-window. Regions located in the left hemisphere such as
the fusiform and middle temporal gyrus are akin to those
found with fMRI studies (Wang et al., 2013). Additionally, a
large involvement of the right temporal cortex in processing
abstract words, especially during the time interval of semantic
retrieval, suggests the involvement of more brain areas in the
processing of abstract concepts in the right hemisphere. This
is similar to the work of Kiehl et al. (1999), who suggested a
right hemisphere neural pathway for processing abstract words.
For most brain areas that were, according to Perani et al.
(1999), involved in processing abstractness, we observed larger
activity in response to abstract compared to concrete words.
However, unlike their study, where activity was observed only
in the left posterior temporal and bilateral frontal cortices, we
observed additional activity in the right temporal cortex and the
occipito-parietal cortices in the right hemisphere, consistent with
some PET studies suggesting an interpretative role of the right
hemisphere in processing abstract language (Beauregard et al.,
1997; D’Esposito et al., 1997). A possible reason for why our study
revealed more areas in the right hemisphere, compared to similar
fMRI studies such as Kiehl’s (Kiehl et al., 1999), could be that
with EEG, given its excellent temporal resolution, short-lasting
activations are more visible than with fMRI.

Another important fact to mention is the time window of
semantic processing, usually linked to a scalp ERP component
referred to as the N400, a negative amplitude deflection that
peaks around 300–500ms in response to a potentially meaningful
stimulus (Lau et al., 2008; Kutas and Federmeier, 2011). Most
studies observe a larger N400 amplitude for concrete words than
for abstract ones (Kounios andHolcomb, 1994), as is also the case
with our study (Figure 2). However, there is no consensus on the
location of this difference as some suggest it to be in the right
hemisphere (Kounios and Holcomb, 1994) while others suggest
the opposite (Kiehl et al., 1999). Kiehl argues that this apparent
contradiction could be mainly due to a different choice in
electrode referencing. We suggest to take this one step further by
arguing that, in addition to the choice of the electrode reference,
the lateral direction of scalp activity is not always an indication
of the underlying source as, depending on the orientation of
dipole activity, scalp activity can originate from a region that
is not directly beneath it (Gloor, 1985). However, this issue can
be resolved when using source reconstruction as the location of
the neural sources is reference-independent (Michel et al., 2004).
Therefore, we claim our results to be more objective than those of
previous scalp ERP studies and, in this way, we can conclude that
the right hemisphere plays a bigger role in the difference between
brain activation in response to abstract and concrete words.

Effect of Arousal: Active vs. Passive Words
Arousal and valence have been suggested to be part of a two-
dimensional model of emotional word processing (Citron, 2012;
Citron et al., 2013). In this framework, some studies have
questioned whether these dimensions are actually distinct or
correlated (Bradley and Lang, 1999). However, in our study no
correlation was found between the Osgood ratings of arousal
and valence in our word dataset. In the temporal domain,
we did not observe any difference large enough to outlive
correction between high and low arousal words. Similar EEG
studies, using a lexical decision task to investigate the effect of
arousal in single word processing, did observe ERPs in early
time windows to be modulated by arousal (Hofmann et al., 2009;
Conrad et al., 2014) but in these studies stimuli are controlled
for valence (words were all negative), which was not the case
with our study. Additionally in these studies, window selection
was less conservative compared to ours. When using alternative
modalities such as images of brand logos instead of written
stimuli, again no effect of arousal was observed (Schaefer and
Rotte, 2010). Other studies (Lewis et al., 2007; Aryani et al., 2018)
observed effects of increasing arousal in deep structures such as
the amygdala and putamen, which is very difficult to observe
with EEG (see discussion). However, in our source localization
analysis (results shown in Figure 6 and Table 3), we did observe
two localized areas in the left hemisphere similar to those seen
by Aryani et al. (2018), temporal pole and medial orbital gyrus,
that were modulated by word arousal. These areas resemble the
left superior and middle temporal gyrus and the middle frontal
gyrus reported by Kawachi et al. (2011), which was closest to
ours although it was done with fMRI. Differences for both these
regions occur relatively late in word processing, around 650–
800ms. The late effect can be explained by the claim that during
the integration process of a word in working memory (600–
800ms), words with high arousal require more activation from
the brain area involved in word integration (Lau et al., 2008),
which can be seen only in the medial orbital gyrus. On the
other hand, the left temporal pole, including the anterior superior
temporal gyrus, shows increased activity for passive words. Note
that in this study, the parietal gyrus was also mentioned to exhibit
more activity, a plausible result since the superior parietal cortex
is suggested to be involved in attention allocation (Ptak, 2012;
Gonzalez et al., 2015). Given this, we can assume that for the
initial processing of active words less attention is needed and
therefore their retrieval easier. It is interesting to mention that
when we took word length as an additional random variable into
account in our model, the superior parietal cortex indeed showed
significantly higher activation for passive words in the early time
windows (100–200ms, results not shown).

Effect of Potency: Strong vs. Weak Words
We did not observe any effect of potency during the time
window of semantic processing in either the scalp or the source
domain, but in a later window an effect was observed, mainly
a smaller amplitude for high potency stimuli compared to low
ones that were lateralized in the left hemisphere, specifically the
inferior parietal and the superior frontal and inferior precentral
gyrus, where only the inferior parietal lobe showed higher
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activation for stimuli with a high potency value. The inferior
parietal region was mirrored in the right hemisphere, albeit
in an earlier time-window than the left hemisphere, since
it was activated in response to word potency during lexical
access and semantic retrieval, while other areas were activated
starting from a late time window (550ms) and lasted until
the late stages of word processing (around 800ms), (scalp
domain results shown in Figure 2, source domain in Figure 7

and Table 4). The larger activation for low compared to high
potency in the superior frontal cortex has been reported in
several other studies, using both fMRI and EEG (Skrandies,
1998; Schaefer and Rotte, 2010; Kawachi et al., 2011). This could
be because high potency words are processed easier (lexical
access and semantic retrieval), as evidenced by physiological
responses recorded during behavioral tests (Bradley et al., 2001),
reducing the load of working memory and cognitive control
and the involvement of the pre-frontal cortex (Macdonald et al.,
2000). Considering these studies involve both written and visual
stimuli, we believe this activation to be independent of modality.
Studies involving this dimension have been generally scarce,
since the majority of studies investigating the neural mechanism
of emotional processing focus on Osgood’s two other affective
meaning dimensions, valence and activity (Fontaine et al., 2013).
However, as our study shows, the potency dimension should not
be overlooked.

Effect of Valence: Negative vs. Positive
Words
The effect of valence in the temporal domain was significant
starting from 200ms until around 500ms (results shown in
Figure 8, and Table 5). This effect starts slightly earlier compared
to some previous studies, where the effect was observed starting
from 250 to 290ms (Palazova et al., 2013; Imbir et al., 2016).
This could be due to the used task, as in both cited studies
a lexical decision task was adopted instead of a categorization
task, as in our case, which calls upon semantic processing. One
comprehensive overview of written emotion word processing
using both fMRI and EEG (Citron, 2012) showed that, for the
majority of the cited studies that adopted a lexical decision
task, a time window of 200–300ms marked the onset of
the effect of emotional content of verbal material (i.e., a
larger amplitude for emotionally charged words over neutral
words). However, the same review also suggested a later time
window of 500–800ms which we did not observe. In our
source localization analysis, we observed the early time window
effect in the left lateral occipital cortex, the right occipito-
parietal, middle frontal and superior temporal gyrus, and the
prefrontal (frontopolar) cortex bihemispherically. The overall
effect was therefore more lateralized in the right hemisphere,
which is in line with the commonly accepted processing of
emotion in the right hemisphere, including fMRI studies with
similar paradigms (Kuchinke et al., 2005; Citron, 2012). In
the occipital, prefrontal and occipito-parietal areas, similar to
previous ERP studies (Kawachi et al., 2011; Palazova et al.,
2013), words with high valence evoke a higher activation in

early time windows compared to words with low valence. In
the processing of valence, unlike other semantic features, the
temporal cortex was involved to a considerably lesser degree
and mainly only in the right hemisphere (anterior part of
superior temporal gyrus). Activation in the middle frontal
cortex was confirmed by similar fMRI studies (Schaefer and
Rotte, 2010). On the other hand, also unlike other semantic
features, the right superior parietal lobule was primarily involved
in processing valence specifically during lexical access and
semantic processing (250–500ms). This could be explained by
the involvement of the parietal cortex in processing emotionally
salient stimuli (Barbaro et al., 2017). It is interesting to note that
many studies have suggested valence as an embodied approach
toward the neural representation of abstract concepts (Kousta
et al., 2011; Vigliocco et al., 2014). Our study shows the same
distinct neural patterns to represent both abstract and concrete
concepts when correcting for levels of concreteness in the mixed
model.

GENERAL DISCUSSION

In order to shed light on the possible neural correlates of semantic
category representation, we sat out to chart the networks whose
activity differs when processing different semantic features.
When evaluating the processing of semantic features, mainly
techniques with either good temporal (ERP) or spatial (fMRI)
resolution have been adopted, thus addressing either the when or
where questions. We believe that high-density EEG with source
localization yields the best of both worlds as it combines spatial
with temporal resolution. To this end, we have developed a mass-
univariate analysis technique in the source domain using a mixed
linear effect model.

To summarize our results, a few regions seem to be playing
an important role in processing semantic features. First, we
identified the left inferior frontal lobe, which is in line with
the increased fMRI activation observed in the lateral inferior
prefrontal cortex during deep semantic encoding (Demb et al.,
1995; Bookheimer, 2002), from which the authors argued that
it might play a central executive role in retrieving semantic
information. Indeed, the activity of the inferior frontal lobe
seems to differ between different semantic features such as
abstractness and activity. In agreement with clinical observations,
early functional brain imaging studies of semantic processing
revealed activity in broad regions of the left prefrontal, parietal
and posterior temporal lobes, commonly including ventral and
lateral regions of the temporal cortex (Martin and Chao, 2015).
Studies have shown that the ventral and lateral regions of the
posterior temporal cortex can be differently engaged in semantic
processing, depending on the type of information retrieved. This
is consistent with the results from our study, where the temporal
cortex seems to be prominently active when processing various
semantic features.

On the same note, we believe that the role of the right
hemisphere in word processing should be more acknowledged
since, in the current study, we found a number of brain areas, in
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particular in the right temporal cortex, that were largely involved
in processing a number of semantic features (i.e., abstractness and
valence). This activation was mainly present during lexical access
and semantic processing (300–600ms), providing evidence of
the role of the right hemisphere in the semantic processing
of a word, as previously reported using mono-hemispheric
stimulation studies (Coulson et al., 2005). Finally, certain brain
areas participate in the processing of several word features.
For instance, the involvement of fronto-temporal areas in our
study, similar to some previous investigations (Lau et al., 2008;
Brouwer and Hoeks, 2013), was observed in the processing of
most features-of-interest. However, it is worth noting that none
of the listed areas participated in the processing of all features.

Processing abstract and concrete words involves partially
overlapping brain networks. The larger engagement of the left
hemisphere over the right when processing abstract words seems
to be in favor of the dual coding theory (Binder et al., 2005),
but overall we did not observe a consistently larger activation of
the right hemisphere for concrete words and cannot support this
theory exclusively. When considering the size of the differences,
the total area with a stronger activation for abstract words
was twice the amount in the opposite condition, and this
ratio increased to quadruple the original amount when taking
into account only the approximate time window for semantic
processing (Table 4). These findings suggest a richer network
of brain activation for processing abstract concepts. To the best
of our knowledge, we are the first to demonstrate this, and we
believe the richer activation can explain the behavioral effect of
concreteness, since a larger network would imply more effort
and therefore a longer response time for abstract concepts. Since
abstract words depend on a looser set of associated knowledge
than concrete words, previous research (Binder et al., 2005)
has speculated this would transform into stronger activation for
concrete words. However, stronger associated knowledge would
imply less processing effort. Other studies have also suggested
a more extensive spatial distribution in the absence of strong
semantic context during single word processing (Wang et al.,
2013). Therefore, we believe our result of stronger activation
for abstract concepts to be in support of the context availability
theory. In the end, our results do not entirely support one single
theory over another but combine aspects of both.

The semantic dimensions defined by Osgood show a
distributed network of differences. In the current study,
dimensions of valence and potency had a higher effect size and
occurred earlier in the processing chain compared to activity.
This points in the direction of a higher biological value for
valence and potency over activity, as their evaluation does
not require language since we have evolved to react to more
biologically significant stimuli to preserve our lives (Imbir et al.,
2016). As such, these dimensions could indeed serve as the
necessary semantic space to describe both abstract and concrete
concepts. Though we did include concreteness as a random
factor in our model, further study is necessary to investigate
the interaction between concreteness and these dimensions also
to establish whether (which part of) the distributed network is
shared by the two dimensions. Additionally, some studies have
questioned the distinction of the dimensions and have suggested

that there is in fact a high correlation between arousal and valence
ratings, which we did not find in our database. Other studies
have reported that the self-assessment ratings of potency (as we
used in our study) diverge from the original semantic differential
scale suggested by Osgood since subjects are rating their own
feeling of dominance rather than the dominant meaning of the
word (Bradley and Lang, 1994). As for the Moors et al. database
we used, the dominant meaning of the word was rated (Moors
et al., 2013). Since the correlations between dimensions were also
reported, we could verify them for our dataset. We found a weak
but significant positive correlation between potency and arousal.
To investigate the possible implications of such interactions
between these dimensions would constitute a study on its own
and is beyond the scope of the present study. Regardless, we do
not believe the outcome would undermine our hypothesis, since
our purpose was to unveil the spatio-temporal activation patterns
for individual Osgood dimensions when processing abstract and
concrete words.

On a final note, in EEG source reconstruction twomainstream
techniques are used: the equivalent current dipole modeling
(parametric) and distributed source models (nonparametric,
Grech et al., 2008). The former requires prior specification of
the number of neural sources and will solve the inverse solution
to find the location and orientation for these sources. The latter
assumes the entire cortical surface (or brain volume) to consist of
fixed source locations and will solve the issue of their amplitude,
but these sources are by no means assumed to be independent
and can therefore not be regarded as different neural generators.
Since we had no prior knowledge of where to expect our effect
(as language processes generally involves a large area of activity;
Price, 2015), we used distributed source analysis instead of
equivalent current dipoles. However, since we did not perform
any analysis to estimate how many sources are interacting, we
do not claim that differences in source localization are due to
different neural generators, for example both areas located in the
inferior parietal lobe of the left hemisphere for potency are likely
to originate from the same generator.

LIMITATION AND FUTURE STUDY

One limitation of our study was that the solution space
for source localization was confined to the cortical surface.
This prevented us from investigating activity from deeper
structures. Several studies suggested that such activity could be
detected from EEG source reconstruction (Attal et al., 2009;
Cebolla et al., 2016). Admittedly, the results of our statistical
analysis also included medial areas of the cerebral cortex such
as the frontopolar gyrus and gyrus rectus, located in the
frontal part of the interhemispheric fissure (mainly abstract
words, see Supplementary Material in Appendix B, for detailed
representation). However, since the contribution of these sources
to EEG scalp activity is still under much debate (Attal et al.,
2012), we did not include these results in the main manuscript.
In addition, because our head model is confined to the cortical
surface, it is possible that the activity we observe does in fact
originate from subcortical regions, forcedly mapped onto the

Frontiers in Human Neuroscience | www.frontiersin.org 13 December 2018 | Volume 12 | Article 503

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Fahimi Hnazaee et al. Semantic Features of Word Processing

most nearby cortical surface. To understand where this activation
truly comes from, future studies would be necessary to perform
source localization on the entire cortical volume, including
deeper structures such as the thalamus and cerebellum.

CONCLUSION

The purpose of our study was to demonstrate differences in
source activation when processing abstract and concrete words
also when scoring extremally along the valence, arousal, and
potency semantic dimensions defined by Osgood. Our results
show that each dimension has a distinct spatio-temporal pattern
of activation for the low and high values of a given dimension
when correcting for the concreteness of the word. These results
are promising in that they could indeed provide evidence
for grounding both abstract and concrete words in the same
underlying neural system and, in this way, pave the way toward a
unified theory on semantic category representation. Since each
EEG electrode records a mix of activity from multiple sources
(Nunez and Srinivasan, 2006), we believe that the un-mixing
performed by source localization can reveal effects previously
unnoticed. With the current study, we showed that different
neural populations respond to different semantic dimensions.
Here, we studied the temporal and spatial dynamics of processing
the semantic features of a word. We did not consider words
as plain linguistic entities, but rather as complex combinations
of lexical and semantic characteristics. Given that our source
localization technique allowed us to identify the brain areas
involved in semantic feature processing during different stages of
word processing, we are in a position to update or alter existing
models of spatio-temporal dynamics of word processing.

AUTHOR CONTRIBUTIONS

MF conceived and conducted the experiments and performed the
analysis. EK, MF, andMMVH participated equally in writing and
reviewing the manuscript.

FUNDING

MF is supported by the Hermes Fund of the National Fund for
Scientific Research Flanders (SB/ 151022). EK is supported by
the Belgian Fund for Scientific Research–Flanders (G088314N).
MMVH is supported by research grants received from the
Financing program (PFV/10/008), the interdisciplinary research
fund (IDO/12/007) and the special research fund of the
KU Leuven (C24/18/098), the Belgian Fund for Scientific
Research–Flanders (G088314N, G0A0914N, G0A4118N), the
Interuniversity Attraction Poles Programme–Belgian Science
Policy (IUAP P7/11), the Flemish Regional Ministry of Education
(Belgium) (GOA10/019), and the Hercules Foundation (AKUL
043).

ACKNOWLEDGMENTS

We would also like to thank Mathias Sjerps for proofreading the
manuscript and giving his comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2018.00503/full#supplementary-material

REFERENCES

Aryani, A., Hsu, C. T., and Jacobs, A. M. (2018). The sound of words evokes

affective brain responses. Brain Sci. 8:94. doi: 10.3390/brainsci8060094

Attal, Y., Bhattacharjee, M., Yelnik, J., Cottereau, B., Okada, Y., Lefevre, J., et al.

(2009). Modelling and detecting deep brain activity with MEG and EEG. IRBM

30, 133–138. doi: 10.1016/j.irbm.2009.01.005

Attal, Y., Maess, B., Friederici, A., and David, O. (2012). Head

models and dynamic causal modeling of subcortical activity using

magnetoencephalographic/electroencephalographic data. Rev. Neurosci.

23, 85–95. doi: 10.1515/rns.2011.056

Barbaro, L., Peelen, M. V., and Hickey, C. (2017). Valence, not utility,

underlies reward-driven prioritization in human vision. J. Neurosci. 1128–17.

doi: 10.1523/JNEUROSCI.1128-17.2017

Barsalou, L. W. (2008). Grounded cognition. Annu. Rev. Psychol. 617–745.

doi: 10.1146/annurev.psych.59.103006.093639

Barsalou, L.W. (2010). Grounded Cognition : Past, Present, and Future. Top. Cogn.

Sci. 2, 716–724. doi: 10.1111/j.1756-8765.2010.01115.x

Barsalou, L. W., Simmons, W. K., Barbey, A. K., and Wilson, C. D. (2003).

Grounding conceptual knowledge in modality-specific systems. Trends Cogn.

Sci. 7, 84–91. doi: 10.1016/S1364-6613(02)00029-3

Beauregard, M., Chertkow, H., Bub, D., Murtha, S., Dixon, R., and Evans,

A. (1997). The neural substrate for concrete, abstract, and emotional word

lexica: a positron emission tomography study. J. Cogn. Neurosci. 9, 441–461.

doi: 10.1162/jocn.1997.9.4.441

Bentin, S., Mouchetant-Rostaing, Y., Giard, M. H., Echallier, J. F., and Pernier,

J. (1999). ERP manifestations of processing printed words at different

psycholinguistic levels : time course and scalp distribution. J. Cogn. Neurosci.

11, 235–260. doi: 10.1162/089892999563373

Binder, J. R., Desai, R. H., Graves, W. W., and Conant, L. L. (2009).

Where is the semantic system ? A critical review and meta-analysis

of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796.

doi: 10.1093/cercor/bhp055

Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T., and Medler, D. A.

(2005). Distinct brain systems for processing abstract and concrete concepts.

J. Cogn. Neurosci. 17, 905–917. doi: 10.1162/0898929054021102

Bookheimer, S. (2002). FUNCTIONALMRI OF LANGUAGE : new approaches to

understanding the cortical organization of semantic processing. Annu. Rev.

Neurosci. 25, 151–188. doi: 10.1146/annurev.neuro.25.112701.142946

Borghesani, V. (2017). The Neuro-Cognitive Representation of Word Meaning

Resolved in Space and Time. Trento: University of Trento.

Bradley, M.M., Codispoti, M., Cuthbert, B. N., and Lang, P. J. (2001). Emotion and

motivation I : defensive and appetitive reactions in picture processing. Emotion

1, 276–298. doi: 10.1037/1528-3542.1.3.276

Bradley, M. M., and Lang, P. J. (1994). Measuring emotion : the self-

assessment semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59.

doi: 10.1016/0005-7916(94)90063-9

Bradley, M. M., and Lang, P. J. (1999). Affective norms for English words

(ANEW): instruction manual and affective ratings. Tech. Rep. C-1, Cent. Res.

Psychophysiol. 30, 25–36.

Brainard, D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436.

doi: 10.1163/156856897X00357

Brouwer, H., and Hoeks, J. C. (2013). A time and place for language

comprehension: mapping the N400 and the P600 to a minimal cortical

Frontiers in Human Neuroscience | www.frontiersin.org 14 December 2018 | Volume 12 | Article 503

https://www.frontiersin.org/articles/10.3389/fnhum.2018.00503/full#supplementary-material
https://doi.org/10.3390/brainsci8060094
https://doi.org/10.1016/j.irbm.2009.01.005
https://doi.org/10.1515/rns.2011.056
https://doi.org/10.1523/JNEUROSCI.1128-17.2017
https://doi.org/10.1146/annurev.psych.59.103006.093639
https://doi.org/10.1111/j.1756-8765.2010.01115.x
https://doi.org/10.1016/S1364-6613(02)00029-3
https://doi.org/10.1162/jocn.1997.9.4.441
https://doi.org/10.1162/089892999563373
https://doi.org/10.1093/cercor/bhp055
https://doi.org/10.1162/0898929054021102
https://doi.org/10.1146/annurev.neuro.25.112701.142946
https://doi.org/10.1037/1528-3542.1.3.276
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.1163/156856897X00357
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Fahimi Hnazaee et al. Semantic Features of Word Processing

network. Front. Hum. Neurosci. 7:758. doi: 10.3389/fnhum.2013.

00758

Brysbaert, M., Stevens, M., De Deyne, S., Voorspoels, W., and Storms, G. (2014).

Norms of age of acquisition and concreteness for 30, 000 Dutch words. Acta

Psychol. 150, 80–84. doi: 10.1016/j.actpsy.2014.04.010

Caramazza, A., and Mahon, B. Z. (2003). The organization of conceptual

knowledge : the evidence from category-specific semantic deficits. Trends Cogn.

Sci. 7, 354–361. doi: 10.1016/S1364-6613(03)00159-1

Cebolla, A. M., Petieau, M., Dan, B., Balazs, L., McIntyre, J., and Cheron, G.

(2016). Cerebellar contribution to visuo-attentional alpha rhythm: insights

from weightlessness. Sci. Rep. 6, 37824. doi: 10.1038/srep37824

Citron, F. M. (2012). Neural correlates of written emotion word processing : a

review of recent electrophysiological and hemodynamic neuroimaging studies.

Brain Lang. 49, 1–49. doi: 10.1016/j.bandl.2011.12.007

Citron, F. M. M., Weekes, B. S., and Ferstl, E. C. (2013). Effects of valence and

arousal on written word recognition : time course and ERP correlates.Neurosci.

Lett. 533, 90–95. doi: 10.1016/j.neulet.2012.10.054

Cohen, M. X. (2014). “Advantages and limitations of different statistical

procedures,” in Analyzing Neural Time Series Data. (London, UK: MIT Press).

Conrad, M., Recio, G., Conrad, M., Hansen, L. B., and Jacobs, A. M. (2014). On

pleasure and thrill : the interplay between arousal and valence during visual

word recognition Brain & Language On pleasure and thrill : the interplay

between arousal and valence during visual word recognition. Brain Lang. 134,

34–43. doi: 10.1016/j.bandl.2014.03.009

Coulson, S., Federmeier, K. D., Van Petten, C., and Kutas, M. (2005). Right

hemisphere sensitivity to word- and sentence-level context: evidence from

event-related brain potentials. J. Exp. Psychol. Learn. Mem. Cogn. 31, 129–147.

doi: 10.1037/0278-7393.31.1.129

Cuffin, B. N., Schomer, D. L., Ives, J. R., and Blume, H. (2001). Experimental tests

of EEG source localization accuracy in realistically shaped head models. Clin.

Neurophysiol. 112, 2288–2292. doi: 10.1016/S1388-2457(01)00669-1

Demb, J. B., Desmond, john, E., Wagner, A. D., Vaidya, C. J., and

Glover, G. H., Gabrieli, J. D. (1995). Semantic encoding and retrieval

in the left inferior prefrontal cortex : a functional MRI study of

task difficulty and process specificity. J. Neurosci. 15, 5870–5878.

doi: 10.1523/JNEUROSCI.15-09-05870.1995

D’Esposito, M., Detre, J. A., Aguirre, G. K., Stallcup, M., Alsop, D. C., Tippet,

L. J. et al. (1997). A functional MRI study of mental image generation.

Neuropsychologia 35, 725–730.

Feise, R. J. (2002). Do multiple outcome measures require p-value adjustment ?

BMCMed. Res. Methodol. 4:8. doi: 10.1186/1471-2288-2-8

Fontaine, J. J., Scherer, K. R., and Soriano, C. (2013). “Reviving a forgotten

dimension—potency in affective neuroscience,” in Components of Emotional

Meaning: A Sourcebook. Oxford: Oxford University Press.

Friston, K. J., Worsley, K. J., Frackowiak, R. S. J., Mazziotta, J. C., and Evans, A. C.

(1994). Assessing the significance of focal activations using their spatial extent.

Hum. Brain Mapp. 1, 210–220. doi: 10.1002/hbm.460010306

Geselowitz, D. B. (1998). The zero of potential. IEEE Eng. Med. Biol. Mag. 17,

128–136. doi: 10.1109/51.646230

Gloor, P. (1985). Neuronal generators and the problem of localization

in electroencephalography: application of volume conductor

theory to electroencephalography. J. Clin. Psychol. 2, 327–354.

doi: 10.1097/00004691-198510000-00002

Gonzalez, A., Hutchinson, J. B., Uncapher, M. R., Chen, J., Larocque, K. F.,

and Foster, B. L. (2015). Electrocorticography reveals the temporal dynamics

of posterior parietal cortical activity during recognition memory decisions.

Proc. Natl. Acad. Sci. U.S.A. 112, 11066–11071. doi: 10.1073/pnas.15107

49112

Grainger, J., and Holcomb, P. J. (2009). Watching the word go by: on

the time-course of component processes in visual word recognition.

Lang. Linguist. Compass 3, 128–156. doi: 10.1111/j.1749-818X.2008.

00121.x

Gramfort, A., Kowalski, M., and Matti, H. (2012). Mixed-norm estimates for the

M/EEG inverse problem using accelerated gradient methods. Phys. Med. Biol.

57, 1937–1961. doi: 10.1088/0031-9155/57/7/1937

Gramfort, A., Papadopoulo, T., Olivi, E., and Clerc, M. (2010). OpenMEEG :

opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online

9:45. doi: 10.1186/1475-925X-9-45

Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S., Zervakis, M., et al.

(2008). Review on solving the inverse problem in EEG source analysis.

J. Neuroeng. Rehabil. 5:25. doi: 10.1186/1743-0003-5-25

Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., and Marslen-Wilson,

W. D. (2006). The time course of visual word recognition as revealed

by linear regression analysis of ERP data. Neuroimage 30, 1383–1400.

doi: 10.1016/j.neuroimage.2005.11.048

Helenius, P., Salmelin, R., Service, E., and Connolly, J. F. (1998). Distinct time

courses of word and context comprehension in the left temporal cortex Pa.

Brain 121, 1133–1142. doi: 10.1093/brain/121.6.1133

Hoffman, P., and Ralph, M. A. L. (2018). Reverse concreteness effects are

not a typical feature of semantic dementia : evidence for the hub-and-

spoke model of conceptual representation. Cereb Cortex 21, 2103–2112.

doi: 10.1093/cercor/bhq288

Hofmann, M. J., Kuchinke, L., Tamm, S., Võ, M. L., and Jacobs, A. M. (2009).

Affective processing within 1/10th of a second : high arousal is necessary for

early facilitative. Cogn. Affect. Behav. Neurosci. 9, 389–397. doi: 10.3758/9.4.389

Huth, A. G., De Heer, W. A., Griffiths, T. L., Theunissen, F. E., and Gallant, J.

L. (2016). Natural speech reveals the semantic maps that tile human cerebral

cortex. Nature 532, 453–458. doi: 10.1038/nature17637

Hwang, K., Palmer, E. D., Basho, S., Zadra, J. R., andMüller, R. A. (2009). Category-

specific activations during word generation reflect experiential sensorimotor

modalities. Neuroimage 48, 717–725. doi: 10.1016/j.neuroimage.2009.06.042

Imbir, K. K., Spustek, T., and Zygierewicz, J. (2016). Effects of valence and origin

of emotions in word processing evidenced by event related potential correlates

in a lexical decision task. Front. Psychol. 7:217. doi: 10.3389/fpsyg.2016.00271

Kanske, P., and Kotz, S. A. (2007). Concreteness in emotional words

: ERP evidence from a hemifield study. Brain Res. 1148, 138–148.

doi: 10.1016/j.brainres.2007.02.044

Kawachi, Y., Kawabata, H., Kitamura, M. S., Shibata, M., Imaizumi, O., and

Gyoba, J. (2011). Topographic distribution of brain activities corresponding to

psychological structures underlying affective meanings : an fMRI study. Jpn.

Psychol. Res. 53, 361–371. doi: 10.1111/j.1468-5884.2011.00485.x

Kemmerer, D. (2014). Cognitive Neuroscience of Language. New York, NY;

London: Psychology Press.

Kiefer, M. (2001). Perceptual and semantic sources of category-specific effects :

event-related potentials during picture and word categorization. Mem. Cogn.

29, 100–116. doi: 10.3758/BF03195745

Kiehl, K. A., Liddle, P. F., Smith, A. M., Mendrek, A., Forster, B. B., and

Hare, R. D. (1999). Neural pathways involved in the processing of concrete

and abstract words. Hum. Brain Mapp. 7, 225–233. doi: 10.1002/(SICI)1097-

0193(1999)7:4<225::AID-HBM1>3.0.CO;2-P

Kissler, J., Assadollahi, R., and Herbert, C. (2006). Emotional and semantic

networks in visual word processing: insights from ERP studies. Prog. Brain Res.

156, 147–183. doi: 10.1016/S0079-6123(06)56008-X

Koenig, T., Prichep, L., Lehmann, D., Sosa, P. V., Braeker, E., Kleinlogel, H., et al.

(2002). Millisecond by millisecond, year by year: normative EEG microstates

and developmental stages.Neuroimage 16, 41–48. doi: 10.1006/nimg.2002.1070

Kounios, J., andHolcomb, P. J. (1994). Concreteness effects in semantic processing:

ERP evidence Supporting dual-coding theory. J. Exp. Psychol. Learn. Mem.

Cogn. 20, 804–823. doi: 10.1037/0278-7393.20.4.804

Kousta, S., Vigliocco, G., Vinson, D. P., Andrews, M., and Del Campo, E. (2011).

The representation of abstract words : why emotion matters. J. Exp. Psychol.

Gen. 140, 14–34. doi: 10.1037/a0021446

Kuchinke, L., Jacobs, A. M., Grubich, C., Võ, M. L., Conrad, M., and Herrmann,

M. (2005). Incidental effects of emotional valence in single word processing : an

fMRI study.Neuroimage 28, 1022–1032. doi: 10.1016/j.neuroimage.2005.06.050

Kutas, M. (1993). In the company of other words: electrophysiological evidence

for single-word and sentence context effects. Lang. Cogn. Process. 8, 533–572.

doi: 10.1080/01690969308407587

Kutas, M., and Federmeier, K. D. (2011). Thirty years and counting : finding

meaning in the N400 component of the event-related brain potential (ERP).

Annu. Rev. Psychol. 62, 621–647. doi: 10.1146/annurev.psych.093008.131123

Lambon Ralph, M. A. (2013). Neurocognitive insights on conceptual knowledge

and its breakdown. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20120392.

doi: 10.1098/rstb.2012.0392

Laszlo, S., and Federmeier, K. D. (2014). Never seem to find the time:

evaluating the physiological time course of visual word recognition with

Frontiers in Human Neuroscience | www.frontiersin.org 15 December 2018 | Volume 12 | Article 503

https://doi.org/10.3389/fnhum.2013.00758
https://doi.org/10.1016/j.actpsy.2014.04.010
https://doi.org/10.1016/S1364-6613(03)00159-1
https://doi.org/10.1038/srep37824
https://doi.org/10.1016/j.bandl.2011.12.007
https://doi.org/10.1016/j.neulet.2012.10.054
https://doi.org/10.1016/j.bandl.2014.03.009
https://doi.org/10.1037/0278-7393.31.1.129
https://doi.org/10.1016/S1388-2457(01)00669-1
https://doi.org/10.1523/JNEUROSCI.15-09-05870.1995
https://doi.org/10.1186/1471-2288-2-8
https://doi.org/10.1002/hbm.460010306
https://doi.org/10.1109/51.646230
https://doi.org/10.1097/00004691-198510000-00002
https://doi.org/10.1073/pnas.1510749112
https://doi.org/10.1111/j.1749-818X.2008.00121.x
https://doi.org/10.1088/0031-9155/57/7/1937
https://doi.org/10.1186/1475-925X-9-45
https://doi.org/10.1186/1743-0003-5-25
https://doi.org/10.1016/j.neuroimage.2005.11.048
https://doi.org/10.1093/brain/121.6.1133
https://doi.org/10.1093/cercor/bhq288
https://doi.org/10.3758/9.4.389
https://doi.org/10.1038/nature17637
https://doi.org/10.1016/j.neuroimage.2009.06.042
https://doi.org/10.3389/fpsyg.2016.00271
https://doi.org/10.1016/j.brainres.2007.02.044
https://doi.org/10.1111/j.1468-5884.2011.00485.x
https://doi.org/10.3758/BF03195745
https://doi.org/10.1002/(SICI)1097-0193(1999)7:4<225::AID-HBM1>3.0.CO;2-P
https://doi.org/10.1016/S0079-6123(06)56008-X
https://doi.org/10.1006/nimg.2002.1070
https://doi.org/10.1037/0278-7393.20.4.804
https://doi.org/10.1037/a0021446
https://doi.org/10.1016/j.neuroimage.2005.06.050
https://doi.org/10.1080/01690969308407587
https://doi.org/10.1146/annurev.psych.093008.131123
https://doi.org/10.1098/rstb.2012.0392
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Fahimi Hnazaee et al. Semantic Features of Word Processing

regression analysis of single item ERPs. Lang. Cogn. Process 29, 642–661.

doi: 10.1080/01690965.2013.866259

Lau, E. F., Phillips, C., and Poeppel, D. (2008). A cortical network for

semantics: (de)constructing the N400. Nat. Rev. Neurosci. 9, 920–933.

doi: 10.1038/nrn2532

Lewis, P. A., Critchley, H. D., Rotshtein, P., and Dolan, R. J. (2007). Neural

correlates of processing valence and arousal in affective words. Cereb Cortex.

17, 742–748. doi: 10.1093/cercor/bhk024

Luck, S. J., and Gaspelin, N. (2017). How to get statistically significant effects in

any ERP experiment ( and why you shouldn ’ t ). Psychophysiology 54, 146–157.

doi: 10.1111/psyp.12639

Macdonald, A. W., Cohen, J. D., Stenger, A. V., and Carter, C. S.

(2000). Dissociating the role of the dorsolateral prefrontal and

anterior cingulate cortex in cognitive control. Science 288, 1835–1838.

doi: 10.1126/science.288.5472.1835

Mahjoory, K., Nikulin, V. V., Botrel, L., Linkenkaer-hansen, K., Fato, M. M.,

and Haufe, S. (2017). Consistency of EEG source localization and connectivity

estimates. Neuroimage 152, 590–601. doi: 10.1016/j.neuroimage.2017.02.076

Mahon, B. Z., and Caramazza, A. (2008). A critical look at the embodied cognition

hypothesis and a new proposal for grounding conceptual content. J. Physiol.

102, 59–70. doi: 10.1016/j.jphysparis.2008.03.004

Marian, V., Bartolotti, J., Chabal, S., and Shook, A. (2012).

Clearpond: cross-linguistic easy-access resource for phonological

and orthographic neighborhood densities. PLoS ONE 7:e43230.

doi: 10.1371/journal.pone.0043230

Marí-beffa, P., Catena, A., Valdés, B., Cullen, D., and Houghton, G. (2007).

N400, the reference electrode, and the semantic activation in prime-task

experiments: a reply to Dombrowski and Heil (2006). Brain Res. 1147, 209–212.

doi: 10.1016/j.brainres.2007.01.124

Martin, A., and Chao, L. L. (2015). Semantic memory and the brain : Structure

and processes Semantic memory and the brain : structure and processes. Curr.

Opin. Neurobiol. 11, 194–201. doi: 10.1016/S0959-4388(00)00196-3

Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., and Grave De

Peralta, R. (2004). EEG source imaging. Clin. Neurophysiol. 115, 2195–2222.

doi: 10.1016/j.clinph.2004.06.001

Moors, A., De Houwer, J., Hermans, D., Winne, J., and De, Brysbaert, M. (2013).

Norms of valence, arousal, dominance, and age of acquisition for 4, 300

Dutch words. Behav. Res. Methods 45, 169–177. doi: 10.3758/s13428-012-

0243-8

Nobre, a. C., and McCarthy, G. (1995). Language-related field potentials in

the anterior-medial temporal lobe: II. Effects of word type and semantic

priming. J. Neurosci. 15, 1090–1098. doi: 10.1523/JNEUROSCI.15-02-01090.

1995

Nunez, P. L., and Srinivasan, R. (2006). Electric Fields of the Brain: The

Neurophysics Of EEG. New York, NY: Oxford University Press.

Osgood, C. E., May, W. H., and Miron, M. S. (1975). Cross-Cultural Universals

of Affective Meaning. Vol. 1. Urbana, IL; Chicago, IL; London: University of

Illinois Press.

Palazova, M., Sommer, W., and Schacht, A. (2013). Brain & Language

Interplay of emotional valence and concreteness in word processing :

an event-related potential study with verbs. Brain Lang. 125, 264–271.

doi: 10.1016/j.bandl.2013.02.008

Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic

tomography (sLORETA): technical details.Methods Find. Exp. Clin. Pharmacol.

24, 5–12.

Pascual-marqui, R. D. (2007). Discrete, 3D distributed linear imaging methods of

electric neuronal activity. Part 1: exact, zero error localization. arXiv:0710.3341.

Perani, D., Cappa, S. F., Schnur, T., Tettamanti, M., Collina, S., Rosa, M., et al.

(1999). The neural correlates of verb and noun processing A PET study. Brain

122, 2337–2344. doi: 10.1093/brain/122.12.2337

Price, C. J. (2015). The anatomy of language: contributions from functional

neuroimaging. J. Anat. 44, 335–359. doi: 10.1046/j.1469-7580.2000.19730335.x

Ptak, R. (2012). The frontoparietal attention network of the human brain: action,

saliency, and a priority map of the environment. Neuroscience 18, 502–515.

doi: 10.1177/1073858411409051

Schaefer, M., and Rotte, M. (2010). Combining a semantic differential with fMRI to

investigate brands as cultural symbols. Soc. Cogn. Affect. Neurosci. 5, 274–281.

doi: 10.1093/scan/nsp055

Silva-pereyra, J., Rivera-Gaxiola, M., Aubert, E., Bosch, J., Galan, L., and Salazar, A.

(2003). N400 during lexical decision tasks : a current source localization study.

Clin. Neurophysiol. 114, 2469–2486. doi: 10.1016/S1388-2457(03)00248-7

Simanova, I., Gerven, M., Van Oostenveld, R., and Hagoort, P. (2010). Identifying

object categories from event-related EEG: toward decoding of conceptual

representations. PLoS ONE 5:e14465. doi: 10.1371/journal.pone.0014465

Skrandies, W. (1998). Evoked potential correlates of semantic

meaning—A brain mapping study. Cogn. Brain Res. 6, 173–183.

doi: 10.1016/S0926-6410(97)00033-5

Song, J., Davey, C., Poulsen, C., Luu, P., Turovets, S., Anderson, E., et al. (2015).

EEG source localization : sensor density and head surface coverage. J. Neurosci.

Methods 256, 9–21. doi: 10.1016/j.jneumeth.2015.08.015

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R.M. (2011). Brainstorm

: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci.

13: 879716. doi: 10.1155/2011/879716

Tsao, D. Y., Moeller, S., and Freiwald, W. A. (2008). Comparing face patch systems

in macaques and humans. Proc. Natl. Acad. Sci. U.S.A. 105, 19514–19519.

doi: 10.1073/pnas.0809662105

Verbeke, G., and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal

Data. Springer: Springer, 19–26.

Vigliocco, G., Kousta, S., Anthony, P., Rosa, D., Vinson, D. P., Tettamanti, M., et al.

(2014). The neural representation of abstract words : the role of emotion. Cereb

Cortex. 24, 1767–1777. doi: 10.1093/cercor/bht025

Wang, J., Baucom, L. B., and Shinkareva, S. V. (2013). Decoding abstract and

concrete concept representations based on single-trial fMRI data. Hum. Brain

Mapp. 34, 1133–1147. doi: 10.1002/hbm.21498

Wang, J., Conder, J. A., Blitzer, D. N., and Shinkareva, S. V. (2010).

Neural representation of abstract and concrete concepts : a meta-

analysis of neuroimaging studies. Hum. Brain Mapp. 1468, 1459–1468.

doi: 10.1002/hbm.20950

West, W. C., and Holcomb, P. J. (2000). Imaginal, semantic, and surface-

level processing of concrete and abstract words : an electrophysiological

investigation. J. Cogn. Neurosci. 12, 1024–1037. doi: 10.1162/0898

9290051137558

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Fahimi Hnazaee, Khachatryan and Van Hulle. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 16 December 2018 | Volume 12 | Article 503

https://doi.org/10.1080/01690965.2013.866259
https://doi.org/10.1038/nrn2532
https://doi.org/10.1093/cercor/bhk024
https://doi.org/10.1111/psyp.12639
https://doi.org/10.1126/science.288.5472.1835
https://doi.org/10.1016/j.neuroimage.2017.02.076
https://doi.org/10.1016/j.jphysparis.2008.03.004
https://doi.org/10.1371/journal.pone.0043230
https://doi.org/10.1016/j.brainres.2007.01.124
https://doi.org/10.1016/S0959-4388(00)00196-3
https://doi.org/10.1016/j.clinph.2004.06.001
https://doi.org/10.3758/s13428-012-0243-8
https://doi.org/10.1523/JNEUROSCI.15-02-01090.1995
https://doi.org/10.1016/j.bandl.2013.02.008
https://doi.org/10.1093/brain/122.12.2337
https://doi.org/10.1046/j.1469-7580.2000.19730335.x
https://doi.org/10.1177/1073858411409051
https://doi.org/10.1093/scan/nsp055
https://doi.org/10.1016/S1388-2457(03)00248-7
https://doi.org/10.1371/journal.pone.0014465
https://doi.org/10.1016/S0926-6410(97)00033-5
https://doi.org/10.1016/j.jneumeth.2015.08.015
https://doi.org/10.1155/2011/879716
https://doi.org/10.1073/pnas.0809662105
https://doi.org/10.1093/cercor/bht025
https://doi.org/10.1002/hbm.21498
https://doi.org/10.1002/hbm.20950
https://doi.org/10.1162/08989290051137558
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Semantic Features Reveal Different Networks During Word Processing: An EEG Source Localization Study
	Introduction
	Materials and Methods
	Participants
	Word Stimuli
	Experimental Paradigm and Set-Up
	EEG Signal Pre-processing
	Source Localization
	Statistical Analysis

	Results
	Scalp Analysis
	Source Analysis
	Results of Statistical Analysis on Source Data
	Abstract vs. Concrete
	Arousal
	Potency
	Valence


	Discussion
	Effect of Abstractness: Abstract vs. Concrete Words
	Effect of Arousal: Active vs. Passive Words
	Effect of Potency: Strong vs. Weak Words
	Effect of Valence: Negative vs. Positive Words

	General Discussion
	Limitation and Future Study
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


