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Low nitrogen (N) availability is a major limiting factor for tree growth and development.
N uptake, assimilation, storage and remobilization are key processes in the economy
of this essential nutrient, and its efficient metabolic use largely determines vascular
development, tree productivity and biomass production. Recently, advances have
been made that improve our knowledge about the molecular regulation of acquisition,
assimilation and internal recycling of N in forest trees. In poplar, a model tree widely
used for molecular and functional studies, the biosynthesis of glutamine plays a central
role in N metabolism, influencing multiple pathways both in primary and secondary
metabolism. Moreover, the molecular regulation of glutamine biosynthesis is particularly
relevant for accumulation of N reserves during dormancy and in N remobilization
that takes place at the onset of the next growing season. The characterization of
transgenic poplars overexpressing structural and regulatory genes involved in glutamine
biosynthesis has provided insights into how glutamine metabolism may influence the
N economy and biomass production in forest trees. Here, a general overview of this
research topic is outlined, recent progress are analyzed and challenges for future
research are discussed.
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INTRODUCTION

Forest trees include a large group of gymnosperm and angiosperm species that play a crucial role
in the overall balance of ecosystems. Forest species also have great economic importance in the
production of wood, paper pulp, biofuels and a variety of resins and secondary metabolites. The
biorefinery and nanotechnology of forest products are emerging areas of industrial interest in
Europe within the so-called bioeconomy of the forestry sector (Horizons – Vision 2030 for the
European Forest-based Sector1). Despite the relevance of forest species from the environmental,
economic and social point of view, our knowledge of the mechanisms underlying forest growth,
development, and productivity is still limited when compared to crop plants. However, recent
developments in genomics and biotechnology are providing new tools to unravel key regulatory
processes in fundamental tree biology (Tuskan et al., 2006; De la Torre et al., 2014; Plomion et al.,
2016; Tsai et al., 2018).

A sustainable management of forest resources is needed to satisfy the increasing demand of
forest-derived products and to preserve natural forest stands. For example, highly productive

1http://www.forestplatform.org/
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plantations with increased levels of tree biomass production are
necessary to meet the demands of second-generation bioenergy
and other forest resources (Hinchee et al., 2009; Allwright and
Taylor, 2016). These new forests will require a sustainable use
of fertilizers with N as one of the most relevant components.
N use efficiency (NUE) is defined in general terms as the
amount of plant product per unit of N fertilizer supplied (Good
et al., 2004), and trees with improved NUE will be required to
enhance the yield of future plantations. Nitrogen acquisition and
metabolism are therefore important targets to improve forest
biomass production, and key genes involved in N acquisition
from soil and assimilation into amino acids have been studied
(Cánovas et al., 2007; de la Torre et al., 2014; Castro-Rodríguez
et al., 2016a, 2017). In addition, processes of N storage and
recycling are particularly relevant in forest species with long life
cycles exhibiting seasonal periods of growth and development
(Cantón et al., 2005; Minocha et al., 2015). In deciduous trees,
most of the leaf N that is present in the stromal and thylakoidal
proteins and chlorophylls of green plastids is allocated and stored
in the stem during seasonal dormancy; these N reserves are
rapidly mobilized to sustain metabolic activities in the next
growing season (Babst and Coleman, 2018).

The genus Populus (poplars) include a variety of tree species
with fast growth in temperate habitats. In fact, poplars are widely
used for biomass production and considered to be one of the
most important bioenergy crops (Ye et al., 2011; Allwright and
Taylor, 2016). In addition, Populus has become a model tree
due to its favorable characteristics for experimental analyses and
the advances made during the last 15 years in its structural
and functional genomics (Jansson and Douglas, 2007; Douglas,
2017). In this article, the functional genomics of N metabolism
in Populus is reviewed. The relevance of these studies to enhance
biomass production is highlighted. Finally, potential avenues for
future research on this topic are discussed.

N ACQUISITION AND METABOLISM IN
POPLAR

Poplars are able to acquire inorganic N forms from soil,
such as NH4

+ and NO3
−, and its relative preference will

depend on the soil pH (Rennenberg et al., 2010). The genome
of Populus trichocarpa contains an abundant repertoire of
genes encoding low- and high-affinity transporters involved
in N uptake and allocation. NO3

− uptake is mediated by
a large family of transporters consisting of 68 PtNPF genes
encoding nitrate and peptide transporters and a smaller family
of 11 PtNRT2/NRT3 genes also encoding nitrate transport
systems (Bai et al., 2013). NH4

+ transporters (AMT) are
encoded by 22 genes distributed in two separate subfamilies
(AMT1 and AMT2) (Couturier et al., 2007; Wu et al., 2015;
Calabrese et al., 2017). Interestingly, the number of AMT2
members in poplar is much higher than in Arabidopsis,
suggesting differences in the way that these plants incorporate
and transport NH4

+ ions (Castro-Rodríguez et al., 2017;
Gojon, 2017). The specific expression patterns of these genes
strongly suggest that they play non-overlapping roles in N

acquisition and intercellular transport (Castro-Rodríguez et al.,
2017).

Regardless of the source of inorganic N that is taken up by
the roots, NH4

+ is the ultimate N form to be assimilated into
amino acids. The main step for N entry in plant metabolism is
catalyzed by the enzyme glutamine synthetase (GS; EC 6.3.1.2)
and it involves the ATP-dependent condensation of NH4

+

and glutamate for the biosynthesis of glutamine. Unlike that
found in other plant species, GS is encoded by a duplicated
gene family in Populus consisting of 4 groups of genes, 3 of
which code for GS isoforms of cytosolic localization (GS1.1,
GS1.2, and GS1.3) and one group that codes for a plastid-
located isoform (GS2). Duplicated GS genes display similar
structures with well conserved regulatory regions and intron-
exon boundaries. However, they are dispersed in the poplar
genome and distributed on separate chromosomes (Castro-
Rodríguez et al., 2011). Functional analyses of recombinant
duplicates revealed that they exhibit similar molecular and kinetic
properties and therefore are functionally equivalent enzymes
(Castro-Rodríguez et al., 2015). The specific spatial and seasonal
patterns of expression of GS genes support non-overlapping roles
in poplar N metabolism (Castro-Rodríguez et al., 2011).

In situ hybridization and laser capture microdissection of
the whole GS family disclosed that the expression of duplicates
is confined to specific cell-types, confirming and extending
previous findings (Castro-Rodríguez et al., 2015). Expression
studies supported a relevant role of the GS1.1 isoforms in
N metabolism of photosynthetic cells in coordination with
the role of the chloroplast-located GS2, for example, in the
reassimilation of NH4

+ released during photorespiration (Betti
et al., 2006). In contrast, the role of the GS1.2 enzymes could
be related to N mobilization during seasonal N recycling
at the onset of dormancy and with senescence associated
with pathogen attack. Finally, the expression patterns of the
GS1.3 isoforms are consistent with playing an essential role
in the biosynthesis of glutamine for N transport (Cánovas
et al., 2007) and reassimilation of NH4

+ released in the
metabolism of phenylalanine during wood formation (Craven-
Bartle et al., 2013). Interestingly, genes encoding glutamate
synthases (GOGAT, EC 1.4.7.1, and EC 1.4.1.14) and cytosolic
isocitrate dehydrogenase (ICDH, EC 1.1.1.42) are also duplicated
in poplar. The main players in N uptake and metabolism are
shown in Figure 1. Gene IDs are listed in Supplementary
Table S1.

Enzyme redundancy in glutamine biosynthesis occurs in
particular cell types of poplar. Paralogous genes may have
been retained in the poplar genome to increase the amount of
enzyme because their expression is restricted to specific cell-
types, and the accumulation of a GS isoform could contribute to
maintaining the homeostasis of the N metabolism in a particular
cell-type. Glutamine biosynthesis is at the crossroad of many
metabolic pathways, and according to the above hypothesis,
functions associated with glutamine-derived metabolic products
would be enhanced in specialized tissues such as meristems,
photosynthetic parenchyma, xylem, and phloem of vascular
bundles. The availability of enhanced levels of organic N in the
form of glutamine could have boosted the growth and vigor of
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FIGURE 1 | Nitrogen transporters and enzymes involved in N acquisition and metabolism in poplar. (A) leaves, (B) stem, and (C) roots. AMT1, ammonium
transporter 1; AMT2, ammonium transporter 2; NRT1, nitrate transporter 1 (NPF); NRT2, nitrate transporter 2; NRT3, nitrate transporter 3; GS1.1, cytosolic
glutamine synthetase, isoform 1; GS1.2, cytosolic glutamine synthetase, isoform 2; GS1.3, cytosolic glutamine synthetase, isoform 3; GS2, glutamine synthetase,
chloroplastic isoform; Fd-GOGAT, ferredoxin-dependent glutamate synthase; NADH-GOGAT, NADH-dependent glutamate synthase; ICDH, cytosolic isocitrate
dehydrogenase; NiR, nitrite reductase; NR, nitrate reductase.
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these plants, favoring adaptability to changes in environmental
conditions and colonization of new habitats.

GENE FUNCTIONAL ANALYSIS IN
TRANSGENIC TREES

Classical breeding has been widely used for tree improvement but
new developments in genomics and biotechnology can accelerate
the process. In regard to N nutrition, the above results point to
GS as a key enzyme in N metabolism; however, it is important
to elucidate which GS isoform contributes to a major extent
to poplar growth and biomass production. Transgenic hybrid
poplars (P. tremula x P. alba) overexpressing a cytosolic GS of
pine exhibited enhanced growth and increased levels of proteins
and chlorophylls (Fu et al., 2003; Figure 2A). Furthermore, the
observed phenotype as a consequence of transgene expression
was related to the correct assembly of GS1 subunits in the cytosol
of photosynthetic cells. Further characterization showed that GS
transgenics had a better NUE (Man et al., 2005; Castro-Rodríguez
et al., 2017) and enhanced tolerance to abiotic stress (El-Khatib
et al., 2004; Pascual et al., 2008; Shestibratov et al., 2010; Molina-
Rueda and Kirby, 2015). A similar approach, overexpressing GS1,
has also been used to improve NUE in birch species (Lebedev
et al., 2017).

Enhanced growth of GS transgenics was associated with
increases in the transcript and protein levels of anthranilate
synthase, the enzyme catalyzing the biosynthesis of tryptophan, a
precursor of auxin biosynthesis (Man et al., 2011). These findings
highlight the paramount importance of GS1 in poplar growth
and biomass production, which has also been demonstrated in
herbaceous plant models such as maize (Hirel et al., 2007) and
rice (Tabuchi et al., 2007). In contrast, chloroplastic GS plays a
well-established role in reassimilation of NH4+ released in the
photorespiratory pathway as determined by characterization of
photorespiratory mutants lacking GS2 (Blackwell et al., 1987;
Betti et al., 2006).

The ability of a regulatory gene to influence growth and
biomass production has also been tested in poplar. Dof
factors are regulators of N metabolism and potential targets to
enhance N assimilation and plant growth (Rueda-López et al.,
2008; Tsujimoto-Inui et al., 2009; Wang Y. et al., 2013). The
transcription factor Dof5 that regulates GS1 isoforms in maritime
pine (Rueda-López et al., 2008) was overexpressed in hybrid
poplars (Figure 2B). In comparison to untransformed controls,
young transgenic plants exhibited enhanced growth, an increased
capacity for inorganic N uptake, and accumulated significantly
more carbohydrates and lignin (Rueda-López et al., 2017).

The assimilation of NH4
+ into amino acids by the GS/GOGAT

pathway also requires the provision of carbon skeletons in
the form of 2-oxoglutarate (2-OG) (Hodges, 2002). The role
of ICDH, a key enzyme in the provision of 2-OG, has been
investigated in hybrid poplar and overexpression of ICDH causes
an alteration in vascular development (Pascual et al., 2018).
Transgenic trees with higher levels of ICDH also displayed
increased expression of GS1.3 and other genes associated
with vascular differentiation. Phenotypic characterization of the

transgenic plants showed increased growth in height, longer
internodes and enhanced development in young leaves and the
apical region of the stem (Figures 2C,D). ICDH overexpression
altered the contents of organic acids including citrate, malate
and 2-OG, and the levels of glutamate and γ-aminobutyric acid.
These results show that the provision of carbon skeletons for
NH4

+ assimilation and glutamine biosynthesis is a key metabolic
process for growth and vascular development in poplar.

Field trials of genetically modified trees are extremely
important to assess transgene behavior under natural
conditions and potential risks of transgenes spreading before
commercialization. A field trial of independently transformed
lines expressing GS1 was established, and the performance of
these transgenic lines was studied in natural conditions over
3 years (Jing et al., 2004; Figure 2E). The transgene was stably
expressed in the field resulting in enhanced vegetative growth
of transgenic poplars reaching average heights that were 41%
greater than non-transformed controls (Jing et al., 2004; Cánovas
et al., 2006). These results likely reflect a higher capacity of
transgenic trees for N remobilization and N recycling, resulting
in a better exploitation of nutrient resources. Interestingly,
analysis of wood samples from these 3-year-old trees revealed
alterations in cell wall characteristics resulting in improved
attributes for pulp and paper production (Coleman et al., 2012).
GS1 transgenics also tolerate high levels of NO3

− supply,
exhibiting greater NUE and accumulating increased biomass,
particularly enriched in cellulose in the above-ground part of
the plant (Castro-Rodríguez et al., 2016b). These results are
consistent with an efficient N allocation and metabolism in the
transgenics. Transcriptomic analysis revealed that transgenic
trees are able to reprogramme the transcriptome in response
to N excess by differential expression of a greater number of
genes than untransformed plants. The above findings strongly
support the potential use of these genetically modified trees for
phytoremediation of NO3

− pollution with enhanced production
of biomass and cellulose for bioenergy applications.

The performance of transgenic trees overexpressing Dof5
was also studied in a field trial during two growing seasons
(Figure 2D). Interestingly, these transgenic lines showed
attenuated growth and no modification of carbon or N
metabolism when growing under natural conditions. As the
expression of the transgene was stable during the period of study
the observed differences in the performance of transgenic trees
were attributed to the low levels of N nutrients available in
the soil (Rueda-López et al., 2017). These findings reinforce the
importance of field studies and indicate that the manipulation of
structural rather than regulatory genes has been more effective for
increasing biomass production and forest productivity. Figure 2
illustrates the phenotypes of genetically modified poplars growing
under controlled and natural conditions.

PERSPECTIVES AND FUTURE
DEVELOPMENTS

Recent advances made in model and crop plants highlight
the importance of NO3

− and NH4
+ transporters as key
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FIGURE 2 | Photographs of transgenics in the laboratory and field trials (Populus tremula x P. alba). (A) Wild-type and GS transgenic lines. (B) Wild-type and Dof
transgenic lines. Scanning electron micrographs of transversal sections of young leaves from wild-type (C) and transgenic (D) poplars overexpressing ICDH; UE,
upper epidermis; LE, lower epidermis; SP, spongy parenchyma; PP, palisade parenchyma. Palisade mesophyll cells were longer in the transgenics than in control
plants (arrows). (E) GS transgenic trees growing in natural conditions. (F) Field trial of Dof transgenic trees. Histograms of growth are shown in the insets.
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components of NUE. Consequently, manipulation of N
acquisition and intercellular transport should be addressed
to explore potential benefits in growth and productivity. In
rice plants, overexpression of NO3

− transporters such as
OsNRT1.1B (Hu et al., 2015) and OsNRT2.3a (Fan et al.,
2017) led to an accumulation of more biomass and increased
yield. The identification of potential orthologs of these genes
in poplar and subsequent functional analysis will deserve
special attention to increasing tree productivity. Additional
efforts are also needed to characterize amino acid transporters,
particularly those involved in mechanisms of N allocation and
recycling (Babst and Coleman, 2018). A strict coordination
between N transporters and GS isoforms needs to exist to
sustain the glutamine flux that is necessary for the biosynthesis
of all nitrogenous compounds during poplar growth and
development. A comparative analysis of gene expression in
poplar showed co-expression profiles for several AMT1, AMT2,
and GS1 genes in young leaves, mature leaves and stems
(Castro-Rodríguez et al., 2017). The coordinated function
of N transporters and GS1 in different poplar tissues need
to be investigated in future studies. Interestingly, Zhang
et al. (2018) reported that under low nitrogen, the excess
of carbon is redirected to the biosynthesis of aromatic
amino acids and lignin, resulting in improved NUE that
could be of practical value in terms of biomass production.
Deciphering of regulatory networks involved in the response
of roots to nitrogen availability is also deserving special
attention (Wei et al., 2013; Dash et al., 2015; Luo et al.,
2015).

As previously discussed, the manipulation of glutamine
biosynthesis is a reasonable strategy to improve NUE and
biomass production in poplar. According to the currently
available data, the overproduction of GS1 isoforms in particular
cell-types is largely beneficial; however, further studies are
necessary to fully understand how the increase in glutamine
biosynthesis influences tree growth and biomass production.
For example, the specific contribution of the GS1 duplicates,
GS1.1, GS1.2, and GS1.3, should be explored by performing
functional studies using classic transformation strategies, or
alternatively, by using the powerful CRISPR-Cas9 technology
(Zhou et al., 2015). A recent study reported that overexpression
of poplar GS1.2 in tobacco altered secondary cell wall
and fiber characteristics and accelerated auxin biosynthesis
(Lu et al., 2018), but unfortunately, we still do not know
what the impact of GS1.2 manipulation in poplar may
be. Of particular interest will be to specifically elucidate
how the GS1.1 duplicates are associated with photosynthetic
primary and/or secondary NH4

+ assimilation in mature
leaves. The impact of GS1 overproduction can be further
studied with refined approaches using tissue-specific and
inducible promoters (Filichkin et al., 2006; Wang L. et al.,
2013).

Nevertheless, the existence of intrinsic regulatory mechanisms
in planta cannot be ruled out. GS1 expression driven by
the constitutive 35S promoter is potentially modulated in
photosynthetic tissues through the interaction with a microRNA
leading to improved biomass production (Fu et al., 2012).

Furthermore, the co-transformation of GS1 transgenics
with cellulase genes driven by inducible promoters could
facilitate processing of feedstocks for bioenergy applications.
Another challenge for the future is the identification and
molecular dissection of QTLs potentially associated with
GS1/glutamine biosynthesis. QTLs for biomass production
under nitrogen limitation and excess have been mapped
in poplar but candidate genes of N metabolism were not
identified (Novaes et al., 2009). In contrast, interactions
have been shown between genes involved in glutamine
and glutamate metabolism and QTLs associated to yield
traits in maize (Hirel et al., 2007) and rice (Yamaya et al.,
2002).

It is worth mentioning that the observed effects of
GS1 transgene expression are explained by the altered
expression of other genes involved in primary and secondary
metabolism. Significant changes in the leaf transcriptome
were observed when growing trees at high NO3

− levels with
a high number of genes differentially expressed, including
those involved in photosynthesis, cell wall formation and
phenylpropanoid biosynthesis (Castro-Rodríguez et al.,
2016b). In turn, the upregulation of transcription factors
strongly suggests that chromatin organization differs in
transgenics and wild-type plants, particularly in the response
of trees to N availability. Genome-wide identification of
regions containing targeted genes involved in the nutritional
responses can be achieved by conducting comparative ChiP-
Seq analysis in poplar (Liu et al., 2015). A recent genomic
resource will facilitate this task, the whole genome-assembly
of the P. tremula x P. alba clone INRA 717-1B4 that is
used as a tree model in transgenic experiments (Mader
et al., 2016). New knowledge derived from these studies
and/or those derived from the molecular dissection of
QTLs will facilitate the identification of genes linking
GS1/glutamine biosynthesis and biomass production. Using
gene capture approaches (Seoane-Zonjic et al., 2016),
structural variability in these genes can be analyzed in
poplar genotypes with a contrasted ability for biomass
production. In fact, a recent study has confirmed substantial
structural variation in the poplar pan-genome (Pinosio et al.,
2016).

CONCLUSION

A combination of functional genomic approaches, including
transgenic and gene editing technology, chromatin analysis, and
systematic identification of genome regions involved in NUE,
will facilitate the exploration of the molecular basis of how N
metabolism influences biomass production in forest trees.
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