

AIMS Bioengineering, 5 (2): 106–132. DOI: 10.3934/bioeng.2018.2.106 Received: 05 February 2018 Accepted: 10 May 2018 Published: 22 May 2018

http://www.aimspress.com/journal/Bioengineering

Research article

Chemotherapeutic loading via tailoring of drug-carrier interactions in

poly (sialic acid) micelles

Gerald Pawlish¹, Kyle Spivack², Adam Gabriel², Zuyi Huang² and Noelle Comolli^{2,*}

- ¹ Department of Bioengineering, College of Engineering, Temple University, 1947 N 12th St, Philadelphia, PA 19122, USA
- ² Department of Chemical Engineering, College of Engineering, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, USA
- * Correspondence: Email: Noelle.Comolli@villanova.edu; Tel: +6105197134.

Supplementary

Group	δ ppm	Letter	Group	δ ppm	Letter
HO-CH ₂ -CHOH-CHOH-C			HO-CH ₂ -CHOH- <u>CH</u> OH- <u>C</u>		
HO-C ₂ O ₂ Na-CH ₂ - <u>CH</u> OH-	4.18	с	<u>H</u> O-C ₂ O ₂ Na-CH ₂ -CHOH-C	3.65	dfh'
CH-CONH-CH ₃			H-CONH-CH ₃		
HO-CH ₂ -CHOH-CHOH-C			HO-CH ₂ -CHOH-CHOH-C		
HO-C ₂ O ₂ Na-CH ₂ -CHOH-	4.11	e	HO-C ₂ O ₂ Na- <u>CH</u> 2-CHOH-C	2.68	a
<u>CH</u> -CONH-CH ₃			H-CONH-CH ₃		
HO-CH ₂ - <u>CH</u> OH-CHOH-C			HO-CH ₂ -CHOH-CHOH-C		
HO-C ₂ O ₂ Na-CH ₂ -CHOH-	3.90	g	HO-C ₂ O ₂ Na-CH ₂ -CHOH-C	2.09	i
CH-CONH-CH ₃			H-CONH- <u>CH</u> 3		
HO- <u>CH</u> 2-CHOH-CHOH-C			HO-CH ₂ -CHOH-CHOH-C		
HO-C ₂ O ₂ Na-CH ₂ -CHOH-	3.83	h	HO-C ₂ O ₂ Na- <u>CH</u> 2-CHOH-C	1.75	b
CH-CONH-CH ₃			H-CONH-CH ₃		

Table S1. ¹H-NMR peak shifts of PSA in D₂O.

Group	δ ppm	Letter	Group	δ ppm	Letter
CH ₃ CH ₃ N-CH ₂ -CH ₂ -C			<u>CH₃CH₃N-CH₂-CH₂-C</u>		
H ₂ -NHCO-CH ₃ CH ₂ N-C	3.20	g	H ₂ -NHCO-CH ₃ CH ₂ N-C	2.90	e
O-PSA			O-PSA		
CH ₃ CH ₃ N-CH ₂ -CH ₂ -C			CH ₃ CH ₃ N-CH ₂ -CH ₂ -C		
<u>H2</u> -NHCO-CH3CH2N-C	3.15	h	H ₂ -NHCO-CH ₃ CH ₂ N-C	1.90	i
O-PSA			O-PSA		
CH ₃ CH ₃ N- <u>CH₂</u> -CH ₂ -C			CH ₃ CH ₃ N-CH ₂ -CH ₂ -C		
H ₂ -NHCO-CH ₃ CH ₂ N-C	3.10	k	H2-NHCO- <u>CH3</u> CH2N-C	1.09	f
O-PSA			O-PSA		

Table S2. ¹H-NMR peak shifts of PSA + EDC/NHS in D_2O .

Table S3. ¹H-NMR peak shifts of PEA-*g*-PSA in D₂O.

Group	δ ppm	Letter	Group	δ ppm	Letter	
PSA-NH-CH ₂ -CH ₂ - <u>C₆</u>	7.44	d	PSA-NH- <u>CH2</u> -CH2-C6	3.02	0	
<u>H_{5-META}</u>	/.44	d ₁	H_5	5.02	a_1	
PSA-NH-CH ₂ -CH ₂ - <u>C₆</u>	7.36	a /a	PSA-NH-CH ₂ -C ₆	2.78	h	
<u>H5-ORTHO/PARA</u>	7.30	c_{1}/e_{1}	H_5	2.78	b ₁	

Table S4. ¹H-NMR peak shifts of PPA-*g*-PSA in D₂O.

Group	δ ppm	Letter	Group	δ ppm	Letter
PSA-NH-CH ₂ -CH ₂ -CH ₂ -	7.40	0	PSA-NH-CH2-CH2-CH2-	2.75	0
<u>C₆H_{5-META}</u>	7.40	e_2	C_6H_5	2.15	c ₂
PSA-NH-CH ₂ -CH ₂ -CH ₂ -	7.32	d_2/f_2	PSA-NH-CH ₂ -CH ₂ -CH ₂ -	2.00	b ₂
<u>C₆H_{5-ORTHO/PARA}</u>	1.52	$u_2/1_2$	C_6H_5	2.00	02
PSA-NH- <u>CH2</u> -CH2-CH2-CH2-	3.02	9.			
C_6H_5	5.02	a_2			

Table S5. ¹H-NMR peak shifts of PBA-*g*-PSA in D₂O.

Group	δ ppm	Letter	Group	δ ppm	Letter
PSA-NH-CH ₂ -CH ₂ -CH ₂ -	7.38	f_3	PSA-NH-CH ₂ -CH ₂ -CH ₂ -	2.68	d ₃
CH ₂ - <u>C₆H_{5-META}</u>	7.30	13	<u><i>CH</i></u> ₂ -C ₆ H ₅	2.08	u ₃
PSA-NH-CH ₂ -CH ₂ -CH ₂ -	7.30	e_{a}/σ_{a}	PSA-NH-CH ₂ -CH ₂ -CH ₂ -	1.70	b_{3}/c_{3}
CH ₂ - <u>C₆H_{5-ORTHO/PARA}</u>	7.50	e_{3}/g_{3}	CH_2 - C_6H_5	1.70	03/03
PSA-NH- <u>CH2</u> -CH2-CH2-CH2-	3.02	9.			
CH ₂ -C ₆ H ₅	5.02	a_3			

Group	δ ppm	Letter	Group	δ ppm	Letter	
PSA-NH-CH ₂ -CH ₂ O-	7.41	d_4	PSA-NH-CH ₂ - <u>CH₂</u> O-	4.30	b_4	
<u>C₆H_{5-META}</u>	/.+1	\mathbf{u}_4	C_6H_5	4.50	04	
PSA-NH-CH ₂ -CH ₂ O-	7.10	C_4	PSA-NH- <u>CH2</u> -CH2O-	3.40	a_4	
<u>C₆H_{5-ORTHO}</u>	7.10	C 4	C_6H_5	5.40	u 4	
PSA-NH-CH ₂ -CH ₂ O-	7.06	e_4				
$\underline{C_6H_{5-PARA}}$	7.00	•4				

Table S6. ¹H-NMR peak shifts of POE-g-PSA in D₂O.

Table S7. ¹H-NMR peak shifts of 33DPP-*g*-PSA in D₂O.

Group	δ ppm	Letter	Group	δ ppm	Letter
PSA-NH-CH ₂ -CH ₂ -CH <u>C₆</u> <u>H_{5-META}C₆H_{5-META}</u>	7.41	e ₅	PSA-NH- <u>CH2</u> -CH2-CHC6H5 C6H5	2.95	a ₅
PSA-NH-CH ₂ -CH ₂ -CH <u>C₆</u> <u>H₅- ortho/paraC₆H₅- ortho/para</u>	7.29	d_{5}/f_{5}	PSA-NH-CH ₂ - <u>CH₂</u> -CHC ₆ H ₅ C ₆ H ₅	2.48	b_5
PSA-NH-CH ₂ -CH ₂ - <u>CH</u> C ₆ H ₅ C ₆ H ₅	4.12	c ₅			

Table S8. LD_{50} Values of PTAG-*g*-PSA micelles towards LBC3 GMB cell type are proportional to PTAG alkyl chain length and composition. LD_{50} values will decrease as increased hydrophobicity is added to the PTAG group either by longer chain length or added grafting (DOS) as a result of interaction with the cell membrane.

PTAG-g-PSA	LD ₅₀ (µg/mL)					
	20-30%	50-60%	90–100%			
PEA-g-PSA	$1033~\pm99$	751 ± 2	640 ± 7			
PPA-g-PSA	$763\ \pm 26$	556 ± 30	576 ±44			
PBA-g-PSA	$702~\pm78$	$699\ \pm 14$	$418\ \pm 155$			
POE-g-PSA	>1000	>1000	>1000			
33DPP-g-PSA	$278~{\pm}34$	118 ± 2	-			

Table S9. LC/EC of DOX Loaded POE-*g*-PSA and 33DPP-*g*-PSA Micelles with Varying DOS. Differences between formulations of different DOS were compared for both POE-*g*-PSA and 33DPP-*g*-PSA formulations through a one-way ANOVA with a post-hoc Tukey HSD test.

	POE-g-PSA			33DPP-g-PSA		
Group	DOS	p-value	Group	DOS	p-value	
\mathbf{P}_1	20-30% vs. 50-60%	n.s.	D_1	20-30% vs. 50-60%	< 0.0001	
P_2	20-30% vs. 90-100%	< 0.01	D_2	20–30% vs. 90–100%	< 0.0001	
P ₃	50–60% vs. 90–100%	< 0.05	D_3	50–60% vs. 90–100%	< 0.0001	

POE-g-PSA			33DPP-g-PSA		
Group	DOX _{FEED}	p-value	Group	DOX _{FEED}	p-value
\mathbf{P}_1	5% vs. 10%	< 0.05	D_1	5% vs. 10%	< 0.01
P_2	5% vs. 15%	n.s.	D_2	5% vs. 15%	n.s.
P ₃	10% vs. 15%	n.s.	D_3	10% vs. 15%	< 0.01

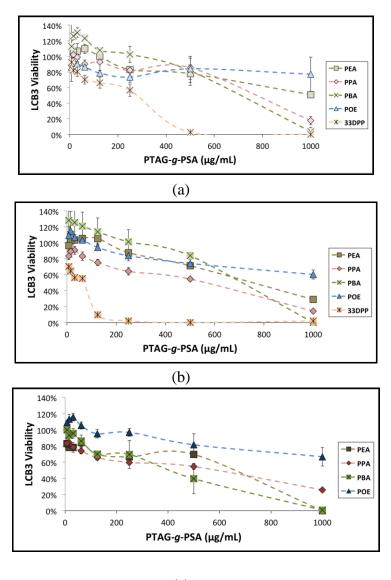
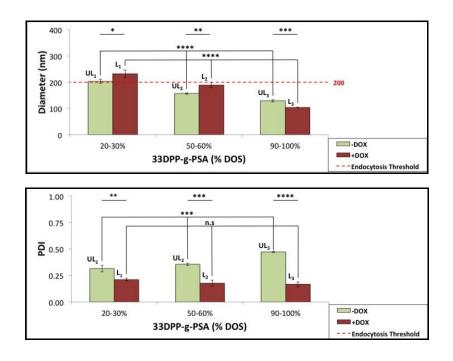

Table S10. LC/EC of POE-*g*-PSA and 33DPP-*g*-PSA Micelles at Varying DOX Feed Rates (90–100% DOS). Differences between the same formulation though at different DOX feed rates was compared through a one-way ANOVA with a post-hoc Tukey HSD test.

Table S11. Sizes of POE-*g*-PSA and 33DPP-*g*-PSA Micelles at Varying DOX Feed Rates (90–100% DOS). Differences between the same formulation though at different DOX feed rates was compared through a one-way ANOVA with a post-hoc Tukey HSD test. 33DPP D_0 ; D_5 ; D_{10} ; D_{15} : post-hoc Tukey HSD test not performed based upon ANOVA results.

	POE-g-PSA							
Group	DOX _{FEED}	p-value	Group	DOX _{FEED}	p-value			
\mathbf{P}_0	0% vs. 5%	< 0.01	P_{10}	10% vs. 15%	< 0.01			
\mathbf{P}_0	0% vs. 10%	< 0.01	P ₁₅	15% vs. 0%	< 0.01			
P_5	5% vs. 10%	< 0.01						


Table S12. Stability of POE-*g*-PSA and 33DPP-*g*-PSA Micelles at Varying DOX Feed Rates (90–100% DOS). Differences between the same formulation though at different DOX feed rates was compared through a one-way ANOVA with a post-hoc Tukey HSD test.

POE-g-PSA			33DPP-g-PSA		
Group	DOX _{FEED}	p-value	Group	DOX _{FEED}	p-value
\mathbf{P}_0	0% vs. 5%	n.s.	D_0	0% vs. 5%	n.s.
\mathbf{P}_0	0% vs. 10%	< 0.01	D_0	0% vs. 10%	n.s.
P ₅	5% vs. 10%	< 0.01	D_5	5% vs. 10%	n.s.
P ₁₀	10% vs. 15%	< 0.01	D_{10}	10% vs. 15%	< 0.01
P ₁₅	15% vs. 0%	< 0.01	D ₁₅	15% vs. 0%	< 0.01

(c)

Figure S1. Cytotoxicity of PTAG-*g*-PSA micelles towards LBC3 GMB cell type is highly dependent upon PTAG composition and DOS. Cell toxicity increases with higher DOS of each PTAG group; (a) 20-30%; (b) 50-60%; (c) 90-100%. Decreasing the alkyl chain length or enhancing the polarity of the PTAG group effectively decreases the cytotoxic response of LBC3 cells.

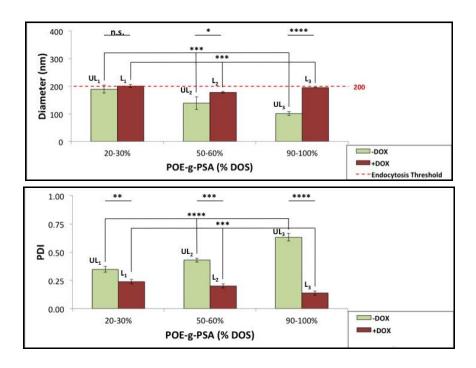


Figure S2. Size and stability of 33DPP-*g*-PSA/DOX Micelles with Varying DOS. Variation in the DOS (20–30%, 50–60%, 90–100%) of 33DPP-*g*-PSA results in tailorable sizes of both unloaded and DOX-loaded micelles. Stability was greatly increased as a result of DOX loading within the micelle core.

Differences between loaded and unloaded samples at each DOS were statistically analyzed by an F-Test (p < 0.05) followed by a Student's *t* test assuming equal or unequal variance. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; n.s. no significance. Differences between formulations of different DOS were compared for both unloaded and DOX-loaded formulations through a one-way ANOVA with a post-hoc Tukey HSD test.

Size: L_1 : 20–30% (DOX) vs. 50–60% (DOX) p < 0.01; L_2 : 20–30% (DOX) vs. 90–100% (DOX) p < 0.01; L_3 : 50–60% (DOX) vs. 90–100% (DOX) p < 0.01; UL_1 : 20–30% vs. 50–60% p < 0.01; UL_2 : 20–30% vs. 90–100% p < 0.01; UL_3 : 50–60% vs. 90–100% p < 0.01. Data presentation as mean \pm SD (n = 3).

PDI: L_1 : 20–30% (DOX) vs. 50–60% (DOX) n.s; L_2 : 20–30% (DOX) vs. 90–100% (DOX) n.s.; L_3 : 50–60% (DOX) vs. 90–100% (DOX) n.s.; UL_1 : 20–30% vs. 50–60% n.s.; UL_2 : 20–30% vs. 90–100% p < 0.01; UL_3 : 50–60% vs. 90–100% p < 0.01. Data presentation as mean ±SD (n = 3).

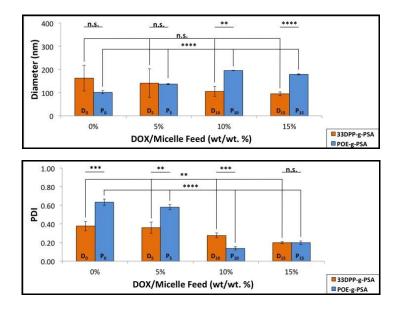


Figure S3. Size and stability of POE-*g*-PSA/DOX Micelles with Varying DOS. Variation in the DOS (20–30%, 50–60%, 90–100%) of POE-*g*-PSA results in tailorable sizes of both unloaded and DOX-loaded micelles. Stability was greatly increased as a result of DOX loading within the micelle core.

Differences between loaded and unloaded samples at each DOS were statistically analyzed by an F-Test (p < 0.05) followed by a student's *t* test assuming equal or unequal variance. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; n.s. no significance. Differences between formulations of different DOS were compared for both unloaded and DOX-loaded formulations through a one-way ANOVA with a post-hoc Tukey HSD test.

Size: L_1 : 20–30% (DOX) vs. 50–60% (DOX) p < 0.01; L_2 : 20–30% (DOX) vs. 90–100% (DOX) n.s.; L_3 : 50–60% (DOX) vs. 90–100% (DOX) p < 0.01; UL_1 : 20–30% vs. 50–60% p < 0.05; UL_2 : 20–30% vs. 90–100% p < 0.01; UL_3 : 50–60% vs. 90–100% n.s.

PDI: L_1 : 20–30% (DOX) vs. 50–60% (DOX) n.s; L_2 : 20–30% (DOX) vs. 90–100% (DOX) p < 0.01; L_3 : 50–60% (DOX) vs. 90–100% (DOX) p < 0.05; UL_1 : 20–30% vs. 50–60% p < 0.05; UL_2 : 20–30% vs. 90–100% p < 0.01; UL_3 : 50–60% vs. 90–100% p < 0.01.

Figure S4. Sizes of POE-*g*-PSA and 33DPP-*g*-PSA Micelles at Varying DOX Feed Rates (90–100% DOS). Micelles form at different sizes based upon the composition of the core. 33DPP-*g*-PSA formulations already contain sufficient hydrophobicity can form smaller micelles at higher feed rates due to earlier micelle formation. POE-*g*-PSA micelles are more polar within their cores, allowing for more DOX to be entrapped on a per micelle basis and leading to larger sizes upon DOX encapsulation based upon later micelle formation. The stabilizing of the micelle core is initiated only at a feed rate greater than 10% DOX. POE micelles stabilize greater than 33DPP formulations at 10% while both reach saturation at 15%.

Differences between POE-*g*-PSA and 33DPP-*g*-PSA micelles at each feed rate were statistically analyzed by an F-Test (p < 0.05) followed by a student's *t* test assuming equal or unequal variance. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; n.s. no significance. Differences between the same formulation though at different DOX feed rates was compared through a one-way ANOVA with a post-hoc Tukey HSD test.

Size: POE P₀: 0% vs. 5% (DOX) p < 0.01; P₀: 0% vs. 10% (DOX) p < 0.01; P₅: 5% vs. 10% (DOX) p < 0.01; P₁₀: 10% vs. 15% (DOX) p < 0.01; P₁₅: 15% vs. 0% (DOX) p < 0.01. 33DPP D_0 ; D_5 ; D_{10} ; D_{15} : Post-hoc Tukey HSD test not performed based upon ANOVA results. Data presentation as mean \pm SD (n = 3).

PDI: POE P₀: 0% vs. 5% (DOX) n.s.; P₀: 0% vs. 10% (DOX) p < 0.01; P₅: 5% vs. 10% (DOX) p < 0.01; P₁₀: 10% vs. 15% (DOX) p < 0.01; P₁₅: 15% vs. 0% (DOX) p < 0.01. 33DPP D₀: 0% vs. 5% (DOX) n.s.; D₀: 0% vs. 10% (DOX) n.s.; P₅: 5% vs. 10% (DOX) n.s.; P₁₀: 10% vs. 15% (DOX) p < 0.01; P₁₅: 15% vs. 0% (DOX) p < 0.01. Data presentation as mean ±SD (n = 3).

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)