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Virtual screening (VS) has emerged in drug discovery as a powerful computational
approach to screen large libraries of small molecules for new hits with desired properties
that can then be tested experimentally. Similar to other computational approaches, VS
intention is not to replace in vitro or in vivo assays, but to speed up the discovery
process, to reduce the number of candidates to be tested experimentally, and to
rationalize their choice. Moreover, VS has become very popular in pharmaceutical
companies and academic organizations due to its time-, cost-, resources-, and labor-
saving. Among the VS approaches, quantitative structure–activity relationship (QSAR)
analysis is the most powerful method due to its high and fast throughput and
good hit rate. As the first preliminary step of a QSAR model development, relevant
chemogenomics data are collected from databases and the literature. Then, chemical
descriptors are calculated on different levels of representation of molecular structure,
ranging from 1D to nD, and then correlated with the biological property using machine
learning techniques. Once developed and validated, QSAR models are applied to
predict the biological property of novel compounds. Although the experimental testing
of computational hits is not an inherent part of QSAR methodology, it is highly desired
and should be performed as an ultimate validation of developed models. In this mini-
review, we summarize and critically analyze the recent trends of QSAR-based VS
in drug discovery and demonstrate successful applications in identifying perspective
compounds with desired properties. Moreover, we provide some recommendations
about the best practices for QSAR-based VS along with the future perspectives of this
approach.

Keywords: cheminformatics, machine learning, molecular descriptors, computer-assisted drug design, virtual
screening

INTRODUCTION

Quantitative structure–activity relationship (QSAR) analysis is a ligand-based drug design method
developed more than 50 years ago by Hansch and Fujita (1964). Since then and until now, QSAR
remains an efficient method for building mathematical models, which attempts to find a statistically
significant correlation between the chemical structure and continuous (pIC50, pEC50, Ki, etc.) or
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categorical/binary (active, inactive, toxic, nontoxic, etc.)
biological/toxicological property using regression and
classification techniques, respectively (Cherkasov et al.,
2014). In the last decades, QSAR has undergone several
transformations, ranging from the dimensionality of the
molecular descriptors (from 1D to nD) and different methods
for finding a correlation between the chemical structures and
the biological property. Initially, QSAR modeling was limited
to small series of congeneric compounds and simple regression
methods. Nowadays, QSAR modeling has grown, diversified, and
evolved to the modeling and virtual screening (VS) of very large
data sets comprising thousands of diverse chemical structures
and using a wide variety of machine learning techniques
(Cherkasov et al., 2014; Mitchell, 2014; Ekins et al., 2015; Goh
et al., 2017).

This review is devoted to (i) critical analysis of advantages
and disadvantages of QSAR-based VS in drug discovery; (ii)
demonstration of several successful QSAR-based discoveries of
compounds with desired properties; (iii) description of best
practices for the QSAR-based VS; and (iv) discussion of future
perspectives of this approach.

BEST PRACTICES IN QSAR MODELING
AND VALIDATION

High-throughput screening (HTS) technologies resulted in the
explosion of amount of data suitable for QSAR modeling. As
a result, data quality problem became one of the fundamental
questions in cheminformatics. As obvious as it seems, various
errors in both chemical structure and experimental results are
considered as major obstacle to building predictive models
(Young et al., 2008; Southan et al., 2009; Williams and Ekins,
2011).

Considering these limitations, Fourches et al. (2010; 2015;
2016) developed the guidelines for chemical and biological
data curation as a first and mandatory step of the predictive
QSAR modeling. Organized into a solid functional process,
these guidelines allow the identification, correction, or, if
needed, removal of structural and biological errors in large
data sets. Data curation procedures include the removal
of organometallics, counterions, mixtures, and inorganics, as
well as the normalization of specific chemotypes, structural
cleaning (e.g., detection of valence violations), standardization of
tautomeric forms, and ring aromatization. Additional curation
elements include averaging, aggregating, or removal of duplicates
to produce a single bioactivity result. Detailed discussion of
aforementioned data curation procedures can be found elsewhere
(Fourches et al., 2010, 2015, 2016).

The Organization for Economic Cooperation and
Development (OECD) developed a set of guidelines that the
researchers should follow to achieve the regulatory acceptance
of QSAR models. According to these principles, QSAR models
should be associated with (i) defined end point, (ii) unambiguous
algorithm, (iii) defined domain of applicability, (iv) appropriate
measures of goodness-of-fit, robustness, and predictivity, and
(v) if possible, mechanistic interpretation (OECD, 2004). In our

opinion, the additional rule requesting thorough data curation as
a mandatory preliminary step to model development should be
added there.

CONTINUING IMPORTANCE OF QSAR
AS VIRTUAL SCREENING TOOL

The current pipeline to discover hit compounds in early stages
of drug discovery is a data-driven process, which relies on
bioactivity data obtained from HTS campaigns (Nantasenamat
and Prachayasittikul, 2015). Since the cost of obtaining new
hit compounds in HTS platforms is rather high, QSAR
modeling has been playing a pivotal role in prioritizing
compounds for synthesis and/or biological evaluation. The QSAR
models can be used for both hits identification and hit-to-
lead optimization. In the latter, a favorable balance between
potency, selectivity, and pharmacokinetic and toxicological
parameters, which is required to develop a new, safe, and
effective drug, could be achieved through several optimization
cycles. As no compound need to be synthesized or tested
before computational evaluation, QSAR represents a labor-, time-
, and cost-effective method to obtain compounds with desired
biological properties. Consequently, QSAR is widely practiced in
industries, universities, and research centers around the world
(Cherkasov et al., 2014).

The general scheme of QSAR-based VS approach is
shown in Figure 1. Initially, the data sets collected from
external sources are curated and integrated to remove or
correct inconsistent data. Using these data, QSAR models
are developed and validated following OECD guidelines
and best practices of modeling. Then, QSAR models are
used to identify chemical compounds predicted to be active
against selected endpoints from large chemical libraries
(Cherkasov et al., 2014). In principle, VS is often compared
to a funnel, where a large chemical library (i.e., 105 to
107 chemical structures) is reduced by QSAR models to a
smaller number of compounds, which then will be tested
experimentally (i.e., 101 to 103 chemical structures) (Kar and
Roy, 2013; Tanrikulu et al., 2013). However, it is important
to mention that modern VS workflows incorporate additional
filtering steps, including: (i) sets of empirical rules [e.g.,
Lipinski’s (Lipinski et al., 1997) rules], (ii) chemical similarity
cutoffs, (iii) other QSAR-based filters (e.g., toxicological and
pharmacokinetic endpoints), and (iv) chemical feasibility
and/or purchasability (Cherkasov et al., 2014). Although the
experimental validation of computational hits does not represent
part of the QSAR methodology, this should be performed
as the final important step. After experimental validation, a
multi-parameter optimization (MPO) with QSAR predictions
of potency, selectivity, and pharmacokinetic parameters
can be conducted. This information will be crucial during
hit-to lead and lead optimization design of the compound
series, to find the properties balance (potency, selectivity, and
PK) related with the effect of different decoration patterns
to establish a new series of target compounds for in vivo
evaluation.
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FIGURE 1 | QSAR-based virtual screening workflow.

QSAR-BASED VIRTUAL SCREENING vs.
HIGH-THROUGHPUT SCREENING

High-throughput screening can rapidly identify large subsets of
molecules with desired activity from large screening collections
of compounds (105–106 compounds) using automated plate-
based experimental assays (Mueller et al., 2012). However, the
hit rate of HTS ranges between 0.01% and 0.1% and this
highlights the frequently encountered limitation that most of the
screened compounds are routinely reported as inactive toward
the desired bioactivity (Thorne et al., 2010). Consequently, the
drug discovery cost increases according to the number of tested
compounds (Butkiewicz et al., 2013). On the other hand, typical
hit rates from a validated VS method, including QSAR-based,
typically range between 1% and 40%. Thus, VS campaigns are
found to have a higher rate of biologically active compounds and
at a lower cost than HTS.

In this perspective, we show that QSAR-based VS could be
used to enrich hit rates of HTS campaigns. For example, Mueller
et al. (2010) employed both HTS and QSAR models to search
novel positive allosteric modulators for mGlu5, a G-protein
coupled receptor involved in disorders like schizophrenia and

Parkinson’s disease. First, the HTS of approximately 144,000
compounds resulted in a total of 1,356 hits, with a hit rate
of 0.94%. Then, this dataset was used to build continuous
QSAR models (combining physicochemical descriptors and
neural networks), which were subsequently applied to screen
a database of approximately 450,000 compounds. Finally, 824
compounds were acquired for biological testing and 232 were
confirmed as active (hit rate of 28.2%) (Mueller et al., 2010). In
another study, Rodriguez et al. (2010) screened approximately
160,000 compounds to identify 624 antagonists of mGlu5.
Further, these data were used to develop QSAR models and,
then, applied to screen near 700,000 compounds from ChemDiv
database. Among them, 88 of acquired compounds were active,
corresponding to a hit rate of 3.6% while the HTS had a hit rate
of 0.2% (Mueller et al., 2012).

PRACTICAL APPLICATIONS OF
QSAR-BASED VIRTUAL SCREENING

Despite its obvious advantages, QSAR modeling remains
underestimated as a VS tool. Unfortunately, QSAR is still seen
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as a complementary analysis to studies of synthesis and biological
evaluation, often introduced in the study without any justification
or additional perspective. Despite the small number of VS
applications available in the literature, most of them led to
the discovery of promising hits and lead candidates. Below, we
discuss some successful applications of QSAR-based VS for the
discovery of new hits and hit-to-lead optimization.

Malaria
Malaria is an infectious disease caused by five different species
of Plasmodium parasites and transmitted to humans through
the bite of infected female mosquitoes of the genus Anopheles.
The most lethal species is P. falciparum, which can lead to
severe illness and death (Phillips et al., 2017). Malaria is
a widespread disease; 91 countries and areas have ongoing
transmission. According to World Health Organization (WHO),
about 216 million cases and 445,000 deaths from malaria were
reported in 2016 (WHO, 2018c). Furthermore, the resistance
to antimalarial drugs is a common and growing issue and
constitutes a substantial threat for populations in endemic
regions (Gorobets et al., 2017; Menard and Dondorp, 2017). In
a study reported by Zhang et al. (2013), a data set of 3,133
compounds reported as active or inactive against P. falciparum
chloroquine susceptible strain (3D7) was used to develop QSAR
models. The models were built using Dragon descriptors (0D,
1D, and 2D), ISIDA-2D fragments descriptors and support
vector machines (SVM) method. During QSAR modeling and
validation, the data set was randomly divided into modeling
and external evaluation set. Additionally, the modeling set was
divided multiple times in training and test sets using the Sphere
Exclusion algorithm. Then, by using a consensus approach,
the QSAR models were applied for VS of the ChemBridge
database. After VS, 176 potential antimalarial compounds were
identified and submitted to experimental validation along with 42
putative inactive compounds, used as negative controls. Twenty-
five compounds presented antimalarial activity in P. falciparum
growth inhibition assays and low cytotoxicity in mammalian
cells. All 42 compounds predicted as inactives by the models were
confirmed experimentally (Zhang et al., 2013). The confirmed
experimental hits presented new chemical scaffolds against
P. falciparum and could be promising starting points for the
development of new optimized antimalarial agents.

Schistosomiasis
Schistosomiasis is a disease caused by flatworms of the genus
Schistosoma that affects 206 million of people worldwide (WHO,
2018d). The current reliance on only one drug, praziquantel,
for treatment and control of this disease calls for the urgent
discovery of novel anti-schistosomal drugs (Colley et al., 2014).
Aiming at discovering new drugs, our group developed binary
QSAR models for Schistosoma mansoni thioredoxin glutathione
reductase (SmTGR), a validated target for schistosomiasis (Kuntz
et al., 2007), to find new structurally dissimilar compounds with
antischistosomal activity (Neves et al., 2016). To achieve this goal,
we designed a study with the following steps: (i) curation of the
largest possible data set of SmTGR inhibitors, (ii) development
of rigorously validated and mechanistically interpretable models,

and (iii) application of generated models for VS of ChemBridge
library. Using the QSAR models, we prioritized 29 compounds
for further experimental evaluation. As a result, we found
that the QSAR models were efficient for discovery of six
novel hit compounds active against schistosomula and three
hits active against adult worms (hit rate of 20.6%). Among
them, 2-[2-(3-methyl-4-nitro-5-isoxazolyl)vinyl]pyridine
and 2-(benzylsulfonyl)-1,3-benzothiazole, two compounds
representing new chemical scaffolds have activity against
schistosomula and adult worms at low micromolar
concentrations and therefore represent promising
antischistosomal hits for further hit-to-lead optimization
(Neves et al., 2016).

In another study, we developed continuous QSAR models
for a data set of oxadiazoles inhibitors of smTGR (Melo-
Filho et al., 2016). Using a combi-QSAR approach, we built
a consensus model combining the predictions of individual
2D- and 3D-QSAR models. Then, the model was used for VS
of ChemBridge database and the 10 top ranked compounds
were further evaluated in vitro against schistosomula and adult
worms. Additionally, we applied five highly predictive in-house
QSAR models for prediction of important pharmacokinetics
and toxicity properties of the new hits. The experimental
results showed that 4-nitro-3,5-bis(1-nitro-1H-pyrazol-4-yl)-1H-
pyrazole (LabMol-17) and 3-nitro-4-{[(4-nitro-1,2,5-oxadiazol-
3-yl)oxy]methyl}-1,2,5-oxadiazole (LabMol-19), two compounds
containing new chemical scaffolds (hit rate of 20.6%), were highly
active in both life stages of the parasite at low micromolar
concentrations (Melo-Filho et al., 2016).

Tuberculosis
Mycobacterium tuberculosis, the causative agent of tuberculosis
(TB), kills about 1.6 million people every year (WHO, 2018e).
The current treatment of this disease takes approximately
9 months, which normally leads to noncompliance and, hence,
the emergence of multidrug-resistant bacteria (AlMatar et al.,
2017). Aiming the design of new anti-TB agents, our group
used QSAR models to design new series of chalcone (1,3-
diaryl-2-propen-1-ones) derivatives. Initially, we retrieved from
the literature all chalcone compounds with in vitro inhibition
data against M. tuberculosis H37Rv strain. After rigorous data
curation, these chalcones were subject to structure–activity
relationships (SAR) analysis. Based on SAR rules, bioisosteric
replacements were employed to design new chalcone derivatives
with optimized anti-TB activity. In parallel, binary QSAR models
were generated using several machine learning methods and
molecular fingerprints. The fivefold external cross-validation
procedure confirmed the high predictive power of the developed
models. Using these models, we prioritized series of chalcone
derivatives for synthesis and biological evaluation (Gomes et al.,
2017). As a result, five 5-nitro-substituted heteroaryl chalcones
were found to exhibit MICs at nanomolar concentrations
against replicating mycobacteria, as well as low micromolar
activity against nonreplicating bacteria. In addition, four of these
compounds were more potent than standard drug isoniazid.
The series also showed low cytotoxicity against commensal
bacteria and mammalian cells. These results suggest that designed
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heteroaryl chalcones, identified with the help of QSAR models,
are promising anti-TB lead candidates (Gomes et al., 2017).

Viral Infections
Yearly, influenza epidemics can seriously affect all populations
in the world. These annual epidemics are estimated to result
in about 5 million cases and 650,000 deaths (WHO, 2018b).
Influenza virus is mutating constantly, resulting in novel resistant
strains, and hence, the development of new anti-influenza
drugs active against these new strains is important to prevent
pandemics (Laborda et al., 2016). Aiming the discovery of
new anti-influenza A drugs, Lian et al. (2015) built binary
QSAR models, using SVM and Naïve Bayesian methods, to
predict neuraminidase inhibition, a validated protein target
for influenza. Then, four different combinations of machine
learning methods and molecular descriptors were applied to
screen 15,600 compounds from an in-house database, among
which 60 compounds were selected to experimental evaluation
on neuraminidase activity. Nine inhibitors were identified,
five of which were oseltamivir derivatives exhibiting potent
neuraminidase inhibition at nanomolar concentrations. Other
four active compounds belonged to novel scaffolds, with potent
inhibition at low micromolar concentrations (Lian et al.,
2015).

According to WHO, approximately 35 million people are
infected with HIV (WHO, 2018a). The treatment for HIV
infections requires a lifelong antiretroviral therapy, targeting
different stages of HIV replication cycle. Consequently, because
of the emergence of resistance and the lack of tolerability,
development of novel anti-HIV drugs is of high demand (Cihlar
and Fordyce, 2016; Garbelli et al., 2017). With the purpose
of discovering new anti-HIV-1 drugs, Kurczyk et al. (2015)
developed a two-step VS approach to prioritize compounds
against HIV integrase, an important target to viral replication
cycle. The first step was based on binary QSAR models,
and the second on privileged fragments. Then, 1.5 million
of commercially available compounds were screened, and 13
compounds were selected to be tested in vitro for inhibiting HIV-
1 replication. Among them, two novel chemotypes with moderate
anti-HIV-1 potencies were identified, and therefore, represent
new starting points for prospective structural optimization
studies.

Mood and Anxiety Disorders
The 5-hydroxytryptamine 1A (5-HT1A) serotonin receptor has
been an attractive target for treating mood and anxiety disorders
such as schizophrenia (Nichols and Nichols, 2008; Lacivita
et al., 2012). However, the currently marketed drugs targeting
5-HT1A receptor possess severe side effects. To address this,
Luo et al. (2014) developed a QSAR-based VS workflow to find
new hit compounds targeting 5-HT1A receptor. First, binary
QSAR models were generated using Dragon descriptors and
several machine learning methods. Then, developed QSAR
models were rigorously validated and applied in consensus for
VS four commercial chemical databases. Fifteen compounds
were selected for experimental testing, and nine of them have
proven to be active at low nanomolar concentrations. One

of the confirmed hits, [(8α)-6-methyl-9,10-didehydroergolin-8-
yl]methanol), showed very high binding affinity (Ki) of 2.3 nM
against 5-HT1A receptor.

Future Directions and Conclusion
To summarize, we would like to emphasize that QSAR modeling
represents a time-, labor-, and cost-effective tool to discover
hit compounds and lead candidates in the early stages of drug
discovery process. Analyzing the examples of QSAR-based VS
available in the literature, one can see that many of them led to
the identification of promising lead candidates. However, along
with success stories, many QSAR projects fail on the model
building stage. This is caused by the lack of understanding
that QSAR is highly interdisciplinary and application field as
well as general ignorance of the best practices in the field
(Tropsha, 2010; Ban et al., 2017). Earlier, we have explained this
by the undesirably high population of “button pushers,” that
is, researchers who conduct modeling without understanding
and analyzing the data and modeling process itself (Muratov
et al., 2012). This was also explained by the elusive ease of
obtaining computational model and making even advanced
calculations without understanding of the sense and limitations
of the approach (Bajorath, 2012). In addition to this, a lot of
even experienced researchers target their efforts to a “vicious
statistical cycle,” which main goal is to validate models using
as many metrics as possible. In this case, the QSAR modeling
is restricted to a single simple question: “What is the best
metrics or the best statistical method”? Although we recognize
that the right choice of statistical approach and especially
rigorous external validation are necessary and represent an
essential step in any computer-aided drug discovery study,
we want to reinforce that QSAR modeling is useful only
if it is applied for the solution of a formulated problem
and results in development of new compounds with desired
properties.

As future directions, we would like to point out that
the era of big data has just started, and it is still in the
chemical/biological data accumulation stage. Therefore, to avoid
the situation that the number of assayed compounds available
on literature exceeds the modeling capability, the development,
and implementation of new machine learning algorithms
and data curation methods capable of handling millions of
compounds are urgently needed. Finally, the overall success
of any QSAR-based VS project depends on the ability of a
scientist to think critically and prioritize the most promising
hits according to his experience. Moreover, the success rate of
collaborative drug discovery projects, where the final selection
of computational hits is done by both a modeler and an
expert in a given field, is much higher than success rate of
the projects driven solely by computational or experimental
scientists.
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