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Phenotyping under field environmental conditions is often considered as a bottleneck
in crop breeding. Unmanned aerial vehicle high throughput phenotypic platform (UAV-
HTPP) mounted with multi-sensors offers an efficiency, non-invasive, flexible and
low-cost solution in large-scale breeding programs compared to ground investigation,
especially where measurements are time-sensitive. This study was conducted at the
research station of the Xiao Tangshan National Precision Agriculture Research Center
of China. Using the UAV-HTPP, RGB and multispectral images were acquired during
four critical growth stages of maize. We present a method of extracting plant height
(PH) at the plot scale using UAV-HTPP based on the spatial structure of the maize
canopy. The core steps of this method are segmentation and spatial Kriging interpolation
based on multiple neighboring maximum pixels from multiple plants in a plot. Then,
the relationships between the PH extracted from imagery collected using UAV-HTPP
and the ground truth were examined. We developed a semi-automated pipeline for
extracting, analyzing and evaluating multiple phenotypic traits: canopy cover (CC),
normalized vegetation index (NDVI), PH, average growth rate of plant height (AGRPH),
and contribution rate of plant height (CRPH). For these traits, we identify genotypic
differences and analyze and evaluate dynamics and development trends during different
maize growth stages. Furthermore, we introduce a time series data clustering analysis
method into breeding programs as a tool to obtain a novel representative trait: typical
curve. We classified and named nine types of typical curves of these traits based on
curve morphological features. We found that typical curves can detect differences in the
genetic background of traits. For the best results, the recognition rate of an NDVI typical
curve is 59%, far less than the 82.3% of the CRPH typical curve. Our study provides
evidence that the PH trait is among the most heritable and the NDVI trait is among the
most easily affected by the external environment in maize.

Keywords: unmanned aerial vehicles, high-throughput phenotyping platform, time series clustering, breeding,
development, maize, typical curve
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INTRODUCTION

Numerous studies have shown that global food production must
be doubled by 2050 to meet the rising demand. However, the
output of the world’s major food crops is not growing at this
rate (Ray et al., 2013). Increasing crop yield by breeding is an
effective means to solve the global food security problem. To meet
the future need and accelerate progress in breeding for novel
traits, plant breeders wish to phenotype large numbers of lines
rapidly and accurately to identify the best progeny (Araus and
Cairns, 2014). However, phenotyping under field environmental
conditions is often considered as a bottleneck in crop breeding
(Cobb et al., 2013; Yang et al., 2017).

To break this bottleneck, over the past few years, several
field-based, high throughput phenotyping platforms (HTPPs)
have been applied to successfully measure phenotypic traits
for different crop breeding, such as soybean (Bai et al., 2016),
wheat (Crain et al., 2016), cereals (Busemeyer et al., 2013),
and cotton (Andrade-Sanchez et al., 2013). These ground-based
HTPPs are assembled by modified vehicles, proximity sensors
and other devices. They have the advantages of high resolution,
flexible design and large payload. However, these ground-based
HTPPs do have several limitations in terms of scale, efficiency,
and redeployment in different fields, which increase the cost
of promotion (Haghighattalab et al., 2016). Taking maize as an
example, due to the plant height (PH) restrictions, its use is not
very feasible, except for during the early growth stages (Montes
et al., 2011). In recent years, unmanned aerial vehicle high-
throughput phenotypic platforms (UAV-HTPPs) have gradually
become a powerful tool for acquiring field crop phenotypic
information, with advantages of maneuverability, suitability for
a complex farmland environment, high operational efficiency,
non-invasiveness and low cost (Yang et al., 2017). UAV-HTPPs
have been applied to different crops, such as Haghighattalab et al.
(2016) and Holman et al. (2016) for wheat; Chapman et al. (2014)
and Potgieter et al. (2017) for sorghum; and Shi et al. (2016) for
maize, sorghum, and winter wheat.

Different phenotypic traits can be acquired using UAV-HTPPs
mounted with different types of cameras. Some of the cameras
used include RGB, multispectral, hyperspectral, and thermal
cameras and airborne LiDAR (light detection and ranging).
Consumer level digital RGB cameras allow estimation of green
biomass, senescence, and yield (Sakamoto et al., 2012; Casadesus
and Villegas, 2014). Multispectral or hyperspectral images can
be formulated using different spectral indices for pigment
degradation, senescence evaluation, photosynthetic efficiency,
nutrient status or water content (Gutierrez et al., 2010; Fritsche-
Neto et al., 2015). Thermal images allow measurement of plant
water status for phenotyping in the context of water-stress (Jones
et al., 2009). LiDAR sensors can directly measure the three-
dimensional distribution of plant canopies and estimate PH and
canopy structure (Bouvier et al., 2015; Roussel et al., 2017).

High throughput phenotyping techniques in crop breeding
are generally used to screen for architectural and physiological
traits and early detection of desirable genotypes (Shakoor et al.,
2017). Normalized difference vegetation index (NDVI) can be
considered as a leaf greenness indicator for trait detection and

phenotyping (Walter et al., 2015). NDVI is closely correlated
with stay-green and senescence (Liebisch et al., 2015; Duan et al.,
2017a). As senescence is a dynamic process, genotypes with
different senescence patterns may exhibit a similar final NDVI
(Christopher et al., 2014). By acquiring multi-temporal NDVI
maps, analysis of senescence dynamics allows for improvement of
genotypic stay-green variation discernment. NDVI has also been
applied to study crop phenology detection (Lunetta et al., 2009;
Verbesselt et al., 2010; De Moura et al., 2017) and environmental
stress feedback (Stagakis et al., 2012; Behmann et al., 2014).
At the plot scale, an NDVI map derived from UAV-HTPPs
includes both plant and soil information; thus, removing soil
background from the images can improve the results (Liebisch
et al., 2015; Duan et al., 2017a). Canopy cover (CC) traits can
be used to assess temporal and genotypic differences and to
correlate important plant traits used for crop breeding such as
early vigor and senescence (Walter et al., 2015). At the plot
scale, CC simply refers to the ratio of plant area to the total
area. CC can be calculated from an RGB image or an NDVI
map by classification or band operation (Ritchie et al., 2010;
Geipel et al., 2014; Duan et al., 2017b). PH is one of the most
heritable and easily measured traits in maize (Peiffer et al., 2014).
Breeders often select dwarfed cultivars to reduce lodging, select
taller plants to produce bioenergy, or select suitable parental lines
for hybrid breeding (Barmeier et al., 2016). PH can be obtained
from multi-temporal crop surface models (CSMs) derived from
three-dimensional (3D) point clouds generated from UAV-HTPP
images using structure from motion (SFM) techniques (Westoby
et al., 2012). Several studies have already used CSM to estimate
PH for different crops including maize (Geipel et al., 2014), barley
(Bendig et al., 2015), wheat (Holman et al., 2016), and sorghum
(Watanabe et al., 2017).

Turner et al. (2012) found that ground control points (GCPs)
can provide significant spatial accuracy improvements. Using the
method of CSM with GCPs, Roth and Streit (2017) reported
a strong and significant overall correlation of PH to ground
truth values measured using a meter stick during the different
growth stages. At the plot scale, CSM mixed with soil and plant
pixels can lead to underestimation of PH, which has not been
sufficiently addressed, especially for small-plot and low-density
planting maize breeding programs.

Although the use of an UAV-HTPP has been successfully
demonstrated in many experiments, many studies have been
limited to a single date. In addition, the dynamic development
and the relationship between plant growth and environmental
variables will form an important focus of the next generation
phenotyping (Walter et al., 2015). Actually, UAV-HTPPs not
only can provide single measurements to evaluate traits
but they can also combine multi-temporal trait datasets
to assess the dynamics of plant growth and development.
Liebisch et al. (2015) used a Zeppelin airship as a remote-
sensing platform to acquire RGB, NDVI and thermal images
throughout the maize growing season and to analyze the
seasonal development of CC, NDVI and canopy temperature
among 16 maize genotypes. Clear differences between genotypes
were detected for these traits, but no detailed discussion was
given.
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Cluster analysis is an exploratory data analysis tool in
agronomy which aims to group and select different agronomic
traits in such a way that the degree of relation between
the two traits is maximal if they belong to the same group
and minimal otherwise. Clustering is commonly considered
as an unsupervised procedure. The definition of clusters
depends on the user with obvious subjectivity (Aghabozorgi
et al., 2015), and thus clustering evaluations can also be
rather subjective. Cluster validity indices (CVIs) can provide
standardized cluster evaluation metrics, avoiding subjectivity in
the selection of a cluster number (Maulik and Bandyopadhyay,
2002).

The core of time-series clustering analysis is the distance
measurement between samples of different time series (Montero
and Vilar, 2014). The shape-based distance (SBD) measure
derived from the K-shape algorithm was used in this study,
because a k-Shape creates homogeneous and well-separated
clusters, and outperforms partitional, hierarchical, and spectral
clustering approaches (Paparrizos and Gravano, 2016). Dynamic
cluster analysis through time series data can assess the
development rules and changing rules of traits in the time-
space dimension, and provide a comprehensive evaluation of
traits.

To date, only a few studies have reported attempts to
use UAV-HTPP remote sensing for multiple-trait measurement
as well as analyze and evaluate dynamics and development
trends of phenotypic traits among large-scale genotypes. This
work presents a proof of concept exercise of how a UAV-
HTPP mounted with multi-sensors could be used for acquiring
field maize phenotyping in a large-scale genotype breeding
program. We used a time series data analysis method to
analyze, identify and evaluate genotypic differences and dynamic
changes in traits during different maize growth stages. More
specific objectives in this study include: (1) developing a semi-
automated pipeline for extracting, analyzing and evaluating
multiple phenotypic traits derived from UAV-HTPP; (2)
identifying genotypic differences in dynamics and development
trends of traits during different maize growth stages by time
series clustering; and 3) discussing some potential problems
associated with measurement by UAV-HTPP and the effect
of genotype-by-environment interaction on the expression of
traits.

MATERIALS AND METHODS

Study Area
This study was conducted at the research station of the Xiao
Tangshan National Precision Agriculture Research Center
of China, which covers an area of approximately 2 km2 in
Changping District (115◦50′17′′–116◦29′49′′E, 40◦20′18′′–
40◦23′13′′N) of Beijing City. There are relatively flat terrain
and homogeneous soil at the experimental field site. To
minimize the effect of environmental factors, a single-
factor experimental design and the same field management
practices were implemented. Meteorological data were
acquired from the QT-1060 open-path eddy-covariance

systems (Channel Technology Group Limited, China) in
the field. Four hundred and eighty-seven maize breeding
plots with a size of 2.4 m × 2 m were used to observe
phenotypic expression of maize. These plots were planted
using a seeding density of 6 plants/m2 and a row spacing
of 0.6 m (Figure 1B). According to the genetic background
difference of maize seeds, these plots were divided into
four groups: GRP1 (lower stiffness of stalk), GRP2 (higher
stiffness of stalk), GRP3 (longer growing period), GRP4 (mixed
group).

Platform and Image Acquisition
The UAV-HTPP consisted of four parts: UAV, ground station
(GS), radio control system (RC), and sensors (Figure 1A). DJI
Spreading Wings S1000 (SZ DJI Technology Co., Shenzhen,
China) is a low-cost octocopter UAV with a maximum takeoff
weight of 10 kg. The eight propeller arms are completely foldable
for easier transport and allowing for more power and stability.
FUTABA-T14SG RC (Futaba Corp., Chiba, Japan) was used
to manually control takeoff and landing of the UAV and to
adjust routes in case of emergency. DJI GS was programmed to
automatically generate efficient flight paths for UAV and gather
images with 80% forward overlap and 75% side overlap at a
flight altitude above ground level (AGL) of approximately 40–
60 m, on clear days. Each flight speed was set to 6 m per second.
ISO and shutter were set to a fixed value (i.e., 160 and 1/2000,
respectively).

Equipped with both an optical RGB and a multi-spectral
camera, UAV-HTPP collected images simultaneously, including
spatial and spectral information during the four critical growth
stages. A Sony Cyber-shot DSC-QX100 (Sony Electronics
Inc., Tokyo, Japan) and Parrot Sequoia served as optical
RGB and multispectral sensors, respectively. In particular, the
Parrot Sequoia had another sunshine sensor for radiometric
calibration, which recorded the intensity of light emanating
from the sun during flight. The Sony RGB camera has a 20.2-
megapixel resolution. The Parrot Sequoia camera (MicaSense
Inc., Seattle, WA, United States) recorded images in four different
spectral bands with the same resolution (1.2 megapixels): green
(wavelength 550 nm; bandwidth 40 nm), red (wavelength 660 nm;
bandwidth 40 nm), red-edge (wavelength 735 nm; bandwidth
10 nm) and near infrared (wavelength 790 nm; bandwidth
40 nm). To obtain more accurate reflectance values, the
radiometric calibration images (RCIs) of the multispectral sensor
were captured for a calibrated reflectance panel (MicaSense Inc.,
Seattle, WA, United States) on the ground before and after each
flight.

Sixteen GCPs distributed evenly within the field were
used to obtain accurate geographical references on multiple
dates, and measured by the position with a differential global
positioning system (DGPS, South Surveying and Mapping
Instrument Co., Ltd., China) with millimeter accuracy.
A reference ball was designed to verify whether the process
of PH extraction contains systematic error (Figure 1C). Due
to the limitation of the ball’s size and the flight altitude,
the reference ball was not clearly identified in the images
obtained; thus, these were not effectively used in this
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FIGURE 1 | Filed phenotype data collection and multi-temporal image processing results. (A) Components of UAV-HTPP: (a) Parrot Sequoia camera (b) Sony
Cyber-shot DSC-QX100 digital camera (c) radio control system (d) ground station. (B) An overview of the experimental site (487 plots) and part of the plot details.
(C) GCP markers and plant height reference ball. (D) Multi-temporal images of NDVI, PH, and CC. This indicates dynamic change in the trait difference between
genotypes. CC, canopy cover; NDVI, normalized difference vegetation index; PH, plant height; DAS, days after sowing.

study. The details of the UAV data acquisition are listed in
Table 1.

Developing a Trait-Extraction Pipeline for
HTPP
To analyze and evaluate the dynamic changes and heterogeneity
of CC, PH, and NDVI at the plot scale among different genotypes,

we developed a semi-automated image pipeline to acquire,
analyze and evaluate the traits extracted from images captured
by the UAV-HTPP. This included four main steps: (1) Pre-
processing, to check image quality and select usable images.
(2) Mosaic reconstruction, to produce digital surface models
(DSMs) and NDVI maps. (3) Segmentation and extraction, to
divide the image into individual plots, extract the traits from the
segmentation result and create trait datasets. (4) Evaluation, to

TABLE 1 | Details of UAV-HTPP image acquisition.

Date AGL (m) DAS Orthomosaic
resolution (cm/pix)

DSM resolution
(cm/pix)

Point density
(points/cm2)

GCPs RMSE (cm)

June 8th, 2017 40 24 0.72 1.44 47.9 1.43

June 28th, 2017 60 44 1.33 2.45 14.2 2.17

July 11th, 2017 60 57 1.35 2.47 13.7 2.23

August 7th, 2017 50 84 1.11 2.12 20.2 2.51

DAS, days after sowing; AGL, flight altitude above ground level; RMSE, root mean square error; DSM, digital surface model; GCPs, ground control points.
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FIGURE 2 | The workflow for extraction, analysis and evaluation the genotypic difference and dynamics and development trend of traits derived from a UAV-HTPP.
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FIGURE 3 | Grouped scatter plot of plant height derived from a UAV-HTPP (PHuav) versus ground truth ruler measurements (PHgrd). Data are based on a subset
(removing the data that is affected by lodging) of sampling plots measured during three growth stages. The black solid line represents the regression line, the red
solid line an implied 1:1 relationship, and the dotted line represents 95% confidence interval. P-value < 0.001 at the 0.01 level (two-tailed). A total of 162 samples
were taken from three different growth stages. The discrete degree of plant height during different growth stages is different. Data are more discrete during later
stages of growth.

analyze and cluster time-series traits and explain the causes of
changes and clustering results. PH and NDVI (and CC) were
acquired from optical and multispectral images, respectively.
The overall workflow of the developed pipeline is presented in
Figure 2, and a detailed description is provided separately.

In the field breeding trials, the field plots were designed to
be small and tightly arranged due to the wide variety of maize
genotypes and the scarcity of seeds of different genotypes. During
the later growth stage, the leaves at the edge of the adjacent plot
crossed each other, which could easily cause PH or vegetation
index extraction error, so the border of each plot was scaled to
the center by 0.25 m. New borders served as masks to clip and
save a region of interest (ROIplot) for each plot.

Canopy Plant Height
By using structure-from-motion (SFM) software Agisoft
PhotoScan 1.3 free trial (Agisoft LLC, St. Petersburg, Russia),
DSMs and orthomosaic were produced from optical images shot
by UAV with GCPs. This process mainly included feature point
matching, dense point cloud generation, DSM and orthomosaic
output. Digital elevation model (DEM) (i.e., a non-vegetation
ground model) was constructed from the first set of aerial images
collected on June 8th by interpolation method. CSMs were
calculated by subtracting DSM at different growth stages from
DEM. 3D root mean square error (RMSE), point cloud density,
orthomosaic resolution and DSM resolution reflected the quality

of the mosaiced output during each growth stage (Table 1). CSM
is a raster dataset that mixes soils and plants, and two steps were
taken to acquire PH at the plot scale.

(1) Segment plants from soils
A Normalized Green–Red Difference Index (NGRDI) was used
to segment plants from bare soil. NGRDI values for soils
are always recorded as negative (Shimada et al., 2012). To
create a segmentation mask that contained only plants, image
binarization was performed according to positive and negative
NGRDI values. NGRDI can be calculated using formula (1) as
follows:

NGRDI =
ρgreen − ρred

ρgreen + ρred
(1)

ArcGIS spatial Analyst Tools were used to overlay the ROIplot
and a segmentation mask to obtain 487 individual ROIPH (ROI
of PH), which covered only the plant area of each plot. Extracting
the plant pixel from the CSM, we created a new raster dataset
CSMPH.

(2) Calculate the representative value of plant height
Due to the structural characteristics of maize canopy, CSMPH
simultaneously covers the imaged pixels from the high and
low leaves of multiple plants. Calculating the average value will
result in serious PH underestimation. The most ideal method
is to calculate the PH by using the imaged pixels in the upper
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FIGURE 4 | Traits (CC, NDVI, and PH) relationships and distributions during four different growth stages. Numerical values represent Pearson’s correlation
coefficients between two traits. Asterisks indicate significant correlations using a two-tailed t-test (∗∗∗P < 0.001; ∗P < 0.05). Black ellipses represent correlation
ellipses around the mean to reflect the correlation. The red line in the scatter plot represents a linear or non-linear regression line. Histograms and density plots reflect
the distributions of different traits. CC, canopy cover; NDVI, normalized difference vegetation index; PH, plant height.

leaves of multiple plants, which requires consideration of the
spatial distribution of multiple plants in a plot. We proposed
a new solution. First, the CSMPH was resampled to reduce the
number of pixels, and split into 3× 3-pixel windows. Second, the

maximum height value in the neighborhood was found to create
a set of maximum points. These points had three-dimensional
spatial coordinates. Resampling controlled the number of pixels
used to calculate the PH at the plot scale. Whether to reduce or

TABLE 2 | Descriptive statistics, normal distribution, and difference in three phenotypic traits during four growth stages.

Stage Trait Mean SD Minimum Maximum CV Q1 Q2 Q3 Skewness Kurtosis W-test

S1 PH 9.62 4.77 0 26 53.0 6 9 12 0.81 0.42 0.000

NDVI 0.21 0.02 0.13 0.28 9.5 0.20 0.21 0.23 0.09 0.65 0.064

CC 0.18 0.07 0.09 0.48 38.9 0.13 0.18 0.22 0.59 1.21 0.000

S2 PH 124.99 16.70 69 184 13.4 114 125 136 0.09 0.64 0.126

NDVI 0.29 0.06 0.15 0.53 21.4 0.25 0.28 0.31 0.89 1.43 0.000

CC 0.68 0.22 0.05 1.00 31.4 0.52 0.70 0.87 −0.43 −0.68 0.000

S3 PH 185.98 21.51 117 251 11.6 173 187 200 −0.19 0.28 0.071

NDVI 0.51 0.06 0.30 0.66 11.8 0.46 0.51 0.55 −0.22 −0.31 0.062

CC 1.00 0.01 0.05 1.00 1.0 0.99 1.00 1.00 −5.87 41.87 0.000

S4 PH 253.45 36.80 148 365 14.5 231 251 279 0.10 0.14 0.450

NDVI 0.40 0.09 0.18 0.63 23.0 0.34 0.39 0.45 0.38 −0.28 0.000

CC 0.94 0.09 0.38 1.00 9.2 0.91 0.98 1.00 −2.51 8.06 0.000

Significant at P < 0.05 using a two-tailed t-test, if P < 0.05, rejecting the null hypothesis, and there is significant difference between the data and that originating from a
normal distribution. CC, canopy cover; NDVI, normalized difference vegetation index; PH, plant height; SD, standard deviation; CV, coefficient of variation; Q1, quantile
25%; Q2, quantile 50%; Q3, quantile 75%; W-test, Shapiro–Wilk test.
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FIGURE 5 | The naming convention of different typical curves and examples in this study.

increase the number of pixels depends on the spatial resolution of
the DSM. Finally, space Kriging interpolation was performed on
the points, and the maximum value was taken as a representative
value of PH at the plot scale. Using this method, a time series of
PH dataset was obtained for later dynamic analysis (Figure 1D).

NDVI and Canopy Cover
NDVI Maps were automatically produced by using Pix4DMapper
Pro, which converted Sequoia images into a reflectance map.
Given the setting of the albedo values for RCIs and using
calibration parameters from the Parrot Sequoia sunshine sensor,
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FIGURE 6 | Clustering analysis for CC time series (A) and four clusters and
typical curve of CC trait (B). (A) The horizontal X-axis represents four growth
stages, and the vertical Y-axis represents the shape-based distance. (B) The
horizontal X-axis represents four growth stages, and the vertical Y-axis
represents the mean value of CC at a specific growth stage. Zenith point lies
at the S3 growth stage and its adjacent point lies at the S2 growth stage.
Typical curves are based on mean values with a 95% confidence interval. CC,
canopy cover; SBD, shape-based distance.

radiometric calibration produced more reliable and accurate
NDVI maps1. NDVI can be calculated using formula (2) as
follows:

NDVI =
ρnir − ρred

ρnir + ρred
(2)

To segment plants from soil, a concept proposed by Liebisch
et al. (2015) was adopted as follows: using an NDVI threshold
of 0.1 to discriminate non-plant and plant. A segmentation mask
was produced by masking parts with an NDVI > 0.1 as plant
while all other parts were soil. Four hundred and eighty-seven
individual ROINDVI (ROI of NDVI map) were generated by
overlaying ROIplot and this mask using ArcGIS (version 9.3, Esri
Inc., Redlands, CA, United States). A mean NDVI value within
ROINDVI calculated suing ArcGIS zonal statistical analysis was
employed as an NDVI representative value of each plot. CC
was extracted as the ratio of the area between ROINDVI and
ROIplot. According to this method, the time series NDVI and
CC datasets were obtained for later dynamic analysis, respectively
(Figure 1D).

1https://www.micasense.com

Data Validation and Statistics Analysis
Data validation and statistical analysis were completed using R
software (version 3.2.4, R Core Team, 2016). In 72 sampling
plots, PH was measured manually by a telescopic leveling rod
during the S2, S3, and S4 stages. In order to reduce the influence
of marginal effects and growth competition, the average of the
three plants in the center of each sampling plot was counted as
the representative value for the ground plant height (PHgrd).
Before tasseling, the measurements were taken at 2/3 parts of
the first expanded leaf. After tasseling, the measurements were
taken on the top of the tassel. To validate the accuracy of the
UAV plant height (PHuav) measurement, a linear regression
model was applied with multiple dates (Figure 3). Parrot Sequoia
multispectral camera relies on a sunshine sensor for automatic
adjustment of readings to ambient light to minimize error during
the imagery (Hassan et al., 2018), which enables multi-temporal
NDVI to be comparable (see footnote 1).

Datasets from PH, CC, and NDVI were integrated by growth
stage and genotypes. These datasets also contained some outliers
that needed to be processed. For example, lodging makes PH
decrease first and then increase, and the low emergence rate leads
to an extremely low value of CC. Finally, 388 plots were further
analyzed and discussed. Of these plots, 107 plots originated from
GRP1, 28 plots originated from GRP2, 163 plots originated from
GRP3 and 90 plots originated from the GRP4.

PH, CC, and NDVI represent potential indicators of growth
traits. These traits in breeding programs are used to monitor
genotypic differences and dynamic development. The purpose of
this study is to obtain multi-temporal data from a UAV-HTPP
to extract phenotypic traits among different genotypes and to
conduct a comprehensive evaluation of the dynamic changes
of traits and genotypic difference. The evaluation includes four
aspects:

(1) Data distribution and phenotypic trait variation during
different growth stages.
To explore trait data distribution, descriptive statistics and the
Shapiro–Wilk test (SW test) were performed on three phenotypic
trait data, according to the four growth stages. The SW test
was applied to check whether continuous variables (traits) had a
normal distribution. The test rejects the hypothesis of normality
when the p-value is less than or equal to 0.05, and the data does
not fit the normal distribution with 95% confidence. Skewness
and kurtosis are used to describe the degree of distinctness
between the data and data originating from a normal distribution.
Mean, standard deviation (SD), coefficient variation (CV), and
interquartile range (IQR) were used to describe the central
tendency and dispersion of phenotypic traits. CV was used
to analyze the degree of phenotypic trait variation during the
different growth stages. When continuous variables obeyed a
normal distribution, CV was calculated with mean and SD,
otherwise it was calculated with median and SD.

(2) Correlation changes among multiple traits during
different growth stages.
Using Pearson’s correlation coefficient to measure the linear
relationship between two traits, and plotting the data to verify
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FIGURE 7 | Clustering analysis for NDVI time series (A), seven clusters and typical curve of NDVI trait (B). (A) The horizontal X-axis represents four growth stages,
and the vertical Y-axis represents the shape-based distance. (B) The horizontal X-axis represents four growth stages, and the vertical Y-axis represents the mean
value of NDVI at a specific growth stage. Zenith point all lies at the S3 growth stage and its adjacent point lies at the S2 growth stage except cluster 5. Typical curves
are based on mean values with a 95% confidence interval. NDVI, normalized difference vegetation index; SBD, shape-based distance.

the linear relationship and to identify the potential outliers, we
analyzed the dynamic changes of the relationship among multiple
traits during the different growth stages.

(3) Extracting typical curves of dynamic change of a single
trait using time series clustering analysis.
Cluster analysis was applied on time series trait datasets using
the k-Shape clustering algorithm (Paparrizos and Gravano, 2016)
to identify single trait mean dynamic change pattern, which is
called a typical curve of dynamic changes. Distance measures
provide quantification for the dissimilarity between two time
series. The SBD was recently proposed as part of the k-Shape

clustering algorithm (Sardá-Espinosa, 2017). The dtwclust
package of R 3.2.4 provided this algorithm implementation
and clustering quality evaluation. Davies–Bouldin Index (DBI)
and Dunn Index (DI) were used as CVIs to determine the
best clustering number, avoiding subjectivity in the selection
of cluster number. The cluster number was set to 20 in
advance, and then DBI and DI were iteratively calculated.
The number of clusters most likely to minimize DBI and
maximize DI simultaneously is considered as the optimal cluster
number.

After clustering, a typical curve is generated by connecting the
mean of the trait data during the four growth stages. A typical
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FIGURE 8 | Clustering analysis for PH time series (A), two clusters and typical
curve for PH trait (B). (A) The horizontal X-axis represents four growth stages,
and the vertical Y-axis represents the shape-based distance. (B) The
horizontal X-axis represents four growth stages, and the vertical Y-axis
represents the mean value of PH at a specific growth stage. Zenith point lies
at the S4 growth stage and its adjacent point lies at the S3 growth stage.
Typical curves are based on mean values with a 95% confidence interval. PH,
plant height; SBD, shape-based distance.

curve of a single trait represents a group of genotypes that has
similar dynamic change.

RESULTS AND ANALYSIS

Data Distribution and Phenotypic Trait
Variation
In Table 2, only five datasets passed the normality test (p-
value > 0.05). In frequency histograms (Figure 4), when both
kurtosis and skewness are close to 0, they can be regarded
as approximately obeying normal distribution. Accordingly, we
draw the following conclusions. CC does not obey normal
distribution during all growth stages. During S3, kurtosis reached
41.87 and skewness−5.87, indicating that the distribution peaked
more than the corresponding normal curve and the data are
skewed to the left having a long tail that extends to the left
with more extreme values. The degree of variation in CC was
significant during S1 and S2, more than 30%. During S3 and S4,
CV decreased rapidly, to less than 10%. This indicates that the
indicative function of CC for crop growing is better during early

stages than later. Excluding during S1, the PH data obey normal
distribution. The CV of PH gradually decreased, which showed
that the heterogeneity of PH among genotypes also gradually
decreased. During S1 and S3, NDVI obeyed normal distribution.
The CV of NDVI remained greater than 20% and the symmetry
was worse during S2 and S4. Especially during the later stage, the
increase in CV may show that genotypic difference occurs during
the time to enter reproductive growth. In conclusion, the change
in CV is a reflection to the variation in the traits with crop growth.
The details of the trait data distribution are listed in Table 2.

Correlativity Changes
Although the CC was derived from the NDVI calculation,
the correlation between them is unstable. We observed a
better correlation during the early stages (S1:0.73; S2:0.81).
The Pearson’s correlation coefficient between PH and NDVI
was all less than 0.6 during the different growth stages. The
best correlation between the two is found during S2, when
vegetative growth was vigorous. A similar situation existed for
the correlation between PH and CC. Low correlation between
PH and NDVI (or CC) indicated that when a maize yield
multiple linear regression model is established, PH and NDVI (or
CC) can work together as two independent predictor variables.
Geipel et al. (2014) adopted this modeling approach. During
S2, although Pearson’s correlation coefficient between CC and
NDVI reached 0.81, the relationship between the two variables
is obviously non-linear in the scatter plot; thus, the correlation
coefficient might not be the best way to estimate the strength of
the relationship. Pearson’s correlation coefficient is 0.56 during
S2, but in the scatter plot with associated NDVI and PH, some
scattered points deviate greatly from the fitting line (Figure 4).

Typical Curves of Trait Dynamic Changes
Using time series clustering analysis, genotypes with a similar
phenotypic trait change trend during different growth stages were
clustered together, which was convenient for distinguishing the
dynamic expression of the target trait in the time dimension.
Typical curves showed the difference in shape and value of
multi-temporal phenotypic trait clustering results. To facilitate
the description and interpretation of the clusters, we created a
naming convention to classify and name typical curves of these
traits based on curve morphological feature (Figure 5), such as
zenith, slope and the relationship between points and lines. In
this study, there were nine types of typical curves, and each type
also contained some subtle differences.

Plot value of trait (i.e., PH, CC, NDVI, AGRPH, or CRPH) on
the vertical Y-axis against growth stage (i.e., S1, S2, S3, and S4)
on the horizontal X-axis. Of the four points (P1–P4), two points
played a decisive role in naming, namely the zenith point and
its adjacent point. For example, the zenith point (i.e., maximum
point) lies at S2 growth stage, so it is called Z2. Its adjacent point
located at S3 growth stage is above the Z2-P4 line, so it is called
A3. Connect the name of Z2 and A3 to form the name of the
typical curve, that is, Z2A3. By analogy, Z2O3-type has a zenith
point at S2 growth stage and an adjacent point on the Z2-P4 line.

Two types of CC typical curves were named Z3A2 and Z3B2
(Figure 6). They all reach a maximum (approximate to 1) during
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FIGURE 9 | Clustering analysis for AGRPH time series (A) and six clusters and typical curve for AGRPH trait (B). (A) The horizontal X-axis represents four growth
stages, and the vertical Y-axis represents the shape-based distance. (B) The horizontal X-axis represents four growth stages, and the vertical Y-axis represents the
mean value of AGRPH at a specific growth stage. In terms of cluster 1–2 and cluster 5–6, zenith point lies at the S2 growth stage and its adjacent point lies at the S3
growth stage. In terms of cluster 3–4, zenith point lies at the S3 growth stage and its adjacent point lies at the S2 growth stage. Typical curves are based on mean
values with a 95% confidence interval. AGRPH, average growth rate of plant height; SBD, shape-based distance.

S3, therefore the CV of CC during S3 is the lowest of all. The
Z3A2-type contains three clusters, compared to cluster 3, cluster
1 and cluster 2 increased rapidly during S2 and did not decrease
significantly during S4; whereas, cluster 4 decreased significantly
during S4. They have higher level of leaf overlapping and more
leaves during the early stage with greater vigor.

Three types of NDVI typical curves were named Z3O2, Z3B2,
and Z4O3 (Figure 7). The Z4A3-type contains only one cluster,
which presented approximately straight-line growth. Different
from the other type, the Z4O3-type strongly stays green even after
flowering. A genotypic difference in phenology may lead to this
result. Z3O2-type contains two clusters, and there is an obvious
0.19 of difference between them during S4. Z3B2-type contained

four clusters and was comparable to other types with a trough
point during S2. Excluding Z4A3-type, both the Z3O2-type and
Z3B2-type decreased during S4. This is interesting and will be
discussed further shortly. The Z3O2-type, Z3B2-type, and Z4O3-
type showed differences in slope during S1–S3, which shows the
inhomogeneous change of physiological and structural processes
among different genotypes.

Two types of typical curves of PH were named Z4A3 and Z4B3
(Figure 8). From a confidence interval point of view, the time-
series PH was well distinguished from the two clusters, but their
shape characteristics were not. This may result in an inaccurate or
inadequate sampling time point. We discovered that the average
growth rate and the contribution rate of PH during different
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FIGURE 10 | Clustering analysis for CRPH time series (A) and six clusters and typical curve for CRPH trait (B). (A) The horizontal X-axis represents four growth
stages, and the vertical Y-axis represents the shape-based distance. (B) The horizontal X-axis represents four growth stages, and the vertical Y-axis represents the
mean value of AGRPH at a specific growth stage. Zenith point all lies at the S2 growth stage and its adjacent point lies at the S3 growth stage except cluster 4.
Typical curves are based on mean values with a 95% confidence interval. CRPH, contribution rate of plant height; SBD, shape-based distance.

growth stages were better indicators. Their detailed descriptions
are as follows:

Average Growth Rate:

AGRPHGkSi =
PHGkSi+1 − PHGkSi
Datei+1 − Datei

(3)

Contribution Rate:

CRPHGkSi =
PHGkSi+1 − PHGkSi

PHGkS4

× 100% (4)

Where subscript Gk and Si represent k-th genotype and
i-th growth stage, respectively. AGRPH is the ratio of PH

increment to date increment between two adjacent growth
stages, representing the absolute variation per day. CRPH is the
percentage of PH increment to the final PH during different
stages, reflecting the incremental distribution during different
growth stages.

Four types of AGRPH typical curves were named Z2A3, Z2B3,
Z2O3, and Z3A2 (Figure 9). Z3A2-type and Z2A3 contained
two clusters, and the others contained one cluster, respectively.
Z3A2-type had the highest average growth rate during S3 and one
secondary peak during S2, which indicated that the cumulative
increment of PH was the largest and vegetative growth was the
most vigorous. The Z3A2-type showed a decreasing tendency and
with a different value during S4 (mean is 8.8 and 11, respectively).
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TABLE 3 | Trait difference between different growth stages.

Traits S1 S2 S3 S4 Sorted

CC F-statistic 8.538 14.973 4.427 2.025 S4-S3-S1-S2

Sig. ∗∗∗ ∗∗∗ 0.001 0.074

NDVI F-statistic 5.536 69.402 7.678 124.611 S1-S3-S2-S4

Sig. ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

PH F-statistic 5.280 62.556 36.188 184.266 S1-S3-S2-S4

Sig. ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

ARGPH F-statistic 3.039 39.150 17.939 50.623 S1-S3-S2-S4

Sig. 0.011 ∗∗∗ ∗∗∗ ∗∗∗

CRPH F-statistic 11.062 172.670 114.190 519.663 S1-S3-S2-S4

Sig. ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Asterisks indicate significant correlations using a two-tailed t-test (∗∗∗P < 0.001). Not statistically significant indicates that clustering boundaries cross each other during
this stage, and the trait difference is not obvious. Sorting is based on the effect of variables (stage) on clustering according to ascending order. CC, canopy cover; NDVI,
normalized difference vegetation index; PH, plant height; AGRPH, average growth rate of plant height; CRPH, contribution rate of plant height.

FIGURE 11 | Grouped boxplot for genetic background of NDVI trait. Outliers are shown as dots and asterisks. The difference of NDVI between four groups is most
obvious at the S4 growth stage. All groups achieved the largest NDVI at S3 growth stages. GRP2 and GRP3 have less NDVI decline at the S4 growth stage. NDVI,
normalized difference vegetation index.

Both the Z2A3-type and Z2B3-type had the highest average
growth rate during S2, indicating rapid growth during the early
stage. Z2B3-type first decreased during S3 and then rebounded
during S4. It was possible that most genotypes contained in this
cluster entered the reproductive growth stage later than the other
genotypes.

There are three types named Z2A3, Z2B3, and Z4B3 CRPH
typical curves (Figure 10). There is an 89.2% overlap ratio
between Z4B3-type and cluster 4 (Z3A2-type) of AGRPH,
with the GRP3 group accounting for 78%. Combining
these two clusters for analysis, during the stage from S3
to S4, AGRPH decreased from 14.0 to 11.0, and CRPH
increased from 20.1 to 39.7. This shows that the maximum

increment of PH and a longer time interval occurs during
this period. All typical curves of CRPH reached a peak
point during S2. This phenomenon is consistent with the
common recognition that the most vigorous growth occurs
during the growth stage 19 (BBCH-scale) (Lancashire et al.,
1991).

A typical curve based on time-series trait clustering analysis
can also be seen as a novel representative trait, which visually
describes a group of genotypes with similar trends during
different growth stages. As seen from the 95% confidence interval,
the boundary of the typical curve is vague during S1 and S3,
but clear during S4. Breeders also pay attention to during which
stage trait difference is the highest or lowest. The F-statistics were

Frontiers in Plant Science | www.frontiersin.org 14 November 2018 | Volume 9 | Article 1638

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01638 November 13, 2018 Time: 16:55 # 15

Han et al. Analyze Development Differences and Interrelationships

FIGURE 12 | Grouped boxplot for genetic background of CRPH trait. Outliers are shown as dots and asterisks. The vertical Y-axis represents the CRPH grouped
according to genetic background, and the horizontal X-axis represents four growth stages. The difference in CRPH between the four groups is relatively large at the
S2 and S4 growth stages. CRPH, contribution rate of plant height.

FIGURE 13 | Percentage distribution of CRPH trait in the six clusters during four growth stages. The vertical Y-axis represents the percentages distribution of CRPH
at four growth stages, and the horizontal X-axis represents six clustering results of CRPH typical curve. The cumulative value of the Y-axis is 100%. All groups
achieved the largest CRPH at the S2 growth stages. Cluster 2 and cluster 4 still retained higher plant height increment at the S4 growth stage. CRPH, contribution
rate of plant height.
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calculated and sorted, and the preliminary conclusions are in
Table 3.

DISCUSSION

Uncertainty Factor Analysis in
Measurement
We have presented a method of extracting PH at the plot
scale from a UAV-HTPP considering the spatial structure
of the maize canopy. The core steps of this method are
segmentation and spatial Kriging interpolation based on multiple
neighboring maximum pixels from different plants in a plot.
As a result, the PHuav is the interpolation of the top of
multiple plants in a plot, covering the spatial distribution
information of multiple plants. In this study, PHuav strongly
correlates with the ground measurement (PHgrd) (R2 = 0.896)
in the sampling plot during multiple growth stages. During
the later growth stage, PHgrd is greater than PHuav more
often. This may be because PHgrd was measured at the
top of tassels after tasseling, while the size of the tassel
varied with the plant population and variety (Duncan et al.,
1967). If the tassel’s point cloud by remote sensing was too
limited to completely reconstruct a tassel model, this would
lead to smaller PH value. Maresma et al. (2016) and Shi
et al. (2016) also reported that the length of the tassel may
pose influence on the PH measurement. The underestimation
of PH has also been reported for other crops, such as
barley (Araus and Cairns, 2014; Bendig et al., 2014), wheat
(Holman et al., 2016), sorghum (Watanabe et al., 2017), and
vines (Matese et al., 2017), in accordance with our study.
As previously mentioned, PH extracted from UAV images is
influenced by the size of the tassel, and this leaves room for
further improvements. One option would be, for example, to
reduce flight altitude to ensure that tassels have enough point
clouds.

Surprisingly, The NDVI trait of most genotypes decreased
during S4 after increasing to a peak during S3. There are
three reasons for the NDVI decrease as follows: fertilizer,
canopy structure and water-stress. First, because the single-factor
experiment limited fertilization throughout the growth stage,
the lack of fertilizer caused the leaves of most genotypes to
begin to senesce after entering reproductive growth. Second,
in addition to leaves, the maize canopy also included tassel
branches and flowerlets during the later growth stages, which
may have led to NDVI change. Finally, from July 11th to
August 7th, the field meteorological station recorded five
intense rainfall in the experimental area. Therefore, water-stress
may have led to premature senescence causing the NDVI to
decrease.

In addition to selecting the most appropriate traits, it is also
essential to determine the critical time for their evaluation (Araus
and Cairns, 2014). High-throughput phenotyping timepoints for
field traits of interest are critical for manageable data collection
and analysis (Shakoor et al., 2017). The sampling timepoints
may have an impact on the extraction of time-series traits,
because these traits are in continuous change among 487 different

genotypes throughout the growing season. ARGPH and CRPH
are relatively more prone to time-scale problems.

Phenotypic traits measured by remote sensing are all
on the canopy scale and are affected by observation
angle, illumination conditions, canopy structure, and leaf
morphological characteristics (Walter et al., 2015). Aasen and
Bolten (2018) have conducted in-depth research on these issues.
In theory, segmentation of plant from soil can provide more
accurate results for phenotypic trait extraction. In this study,
we adopted a simple threshold method to attain this end.
Image-based automatic phenotyping acquisition technologies
have made significant advances in recent years, Perez-Sanz
et al. (2017) has given an overview of the image segmentation
method.

Genotypic Differences
Genotype-by-environment interaction results in different
phenotypic traits which are observable at the structural
and physiological levels (Dhondt et al., 2013; Walter et al.,
2015). NDVI is closely related to leaf color. Maize leaf color
was controlled by genes. Leaf color variation is a common
mutation trait, which is usually expressed during the seedling
stage, but a few mutants do not change leaf color until the
late growth stage, responding to environmental conditions
(Zhong et al., 2015). For NDVI, leaf color differences and
mutations may lead to a large number of typical curves and
a rich phenotypic trait variation (Figure 7 and Table 2).
Genetic background also affects trait expression. The GRP2
has the characteristic of lodging-resistance. When planted in
temperate regions, GRP3 needs a prolonged growth period,
reflecting the phenological differences. Thus, GRP2 and GRP3
can limit the reduction of leaf stay-green to a certain extent
after flowering and under stress conditions (strong winds and
heavy rain), which results in a relatively higher NDVI value
during S4 (Figure 11). Cluster 5 is composed of 32 genotypes
and has the highest NDVI mean value during S4 (Figure 7);
however, it only contained 13 genotypes originating from the
GRP3, accounting for less than 41%. This figure shows that
the NDVI trait is more likely to be affected by the external
environment.

Contribution rate of plant height is a relative increment
based on the final PH, focusing on individual difference in
genotypes. This trait can effectively indicate the difference
between genetic backgrounds during different growth stages. As
previously mentioned, because the GRP3 growth period was
prolonged, the CRPH was the lowest in general during the first
three growth stages, while the highest was during S4 compared
to the other groups (Figure 12). This phenomenon showed that
the development of the GRP3 lagged, while the other groups had
entered reproductive growth, it was still in vegetative growth.
Cluster 4 and cluster 2 (Figures 10, 13) can represent this
phenomenon. Cluster 4 contains 68 genotypes, of which 56
originated from the GRP3, accounting for 82.4% in the cluster.
Cluster 2 contains 63 genotypes, of which 44 originated from the
GRP3 population, accounting for 69.8% in the cluster. Compared
to the NDVI, the difference between the genetic backgrounds of
PH is more significant.
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CONCLUSION

We developed a semi-automated pipeline for analyzing and
evaluating multiple phenotypic traits (CC, NDVI, PH, AGRPH,
and CRPH) derived from a UAV-HTPP, and introduced a time
series data clustering analysis method into breeding programs
as a tool to obtain a novel representative trait: typical curve.
Furthermore, we identified and evaluated in detail genotypic
differences and dynamic changes during different maize growth
stages. We found that typical curves can detect a difference in the
genetic background of traits. The recognition rate of the NDVI
typical curve is 59%, far less than the CRPH typical curve of
82.4%. Our study provides evidence that the PH trait is among
the most heritable and the NDVI trait is among the most easily
affected by the external environment in maize. We have verified
that a UAV-HTPP can offer an efficient, non-invasive, flexible and
low-cost solution for large-scale breeding programs compared to
ground investigation, especially where measurements are time-
sensitive.
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