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INTRODUCTION

Crop quality is of increasing concern with the expanded demands from consumers. Recently,
increasing attention has been paid on the crops rich in mineral nutrients, antioxidants, or other
metabolites, as they represent high quality and reduce the risk of chronic diseases (Li and Eunice,
2015; Timmusk et al., 2017). Such high-quality crops are more profitable for farmers compared
with conventional crops. However, the methods to improve crop quality are limited to breeding,
fertilizing regimes, and farming practices.

Soil microbiome significantly contributes to the fitness improvement of plants, in facing
abiotic/biotic stress and nutritional deficiency (Bakker et al., 2018; Oyserman et al., 2018). Crop
quality can be potentially modified by the soil microbiome. However, conventional farming
practices, e.g., tillage, over use of chemical fertilizers, pesticide and fungicide, and monoculture,
disturb the soil microbiome. The overuse of agro-chemicals is especially detrimental to agricultural
ecosystems, threatening soil quality and human health (Hartman et al., 2018). Crop quality may
subsequently decline with the degradation of the soil microbiome. Hence, it is urgent to search for
alternative methods to produce high-quality crops in an efficient, safe and environment-friendly
manner.

Beneficial soil microbes, such as plant growth promoting bacteria (PGPB), actinomycetes, and
arbuscular mycorrhizal fungi (AMF), can interact with plants and induce the accumulation of
plants’ metabolites which benefit people’s health (Gianinazzi et al., 2010; Glick, 2012). Hence, using
microbial biostimulants may be useful for producing high-quality crops sustainably (Bhardwaj
et al., 2014). However, it is not easy to replace the agro-chemicals by biostimulants to produce
nutritional crop safely. Natural rhizosphere communities are complex and diverse, comprising an
entire food web (Bender et al., 2016). Commercially available biostimulants, however, are generally
limited to one, or few, microbial taxa. While these products have yet to be thoroughly tested, it is
unlikely that they will sufficiently compensate for reduced microbial diversity in farmlands due to
human activity (Hart et al., 2018).

Borrowing from the ideas of synthetic biology, synthetic microbial consortia (SMC)
could potentially replace and/or reshape the structure and function of plant microbiome.
It is possible to construct SMC consisting of a microbial guild (rather than limited
microbial taxa in the existing biofertilizers) with multiple functions to promote crop
growth and quality (Wallenstein, 2017). In this regard, using SMC could potentially
solve the drawbacks of traditional biofertilizers (Qin et al., 2016), such as ineffectiveness
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in competing with indigenous microbes, incompatibility with
host plants and inadaptation to the local conditions (Hart et al.,
2018). Here, we summarize how SMC may be used to produce
high-quality crops, focusing on: (1) constructing the desired
SMC; (2) assessing the efficacy of SMC; (3) assessing ecological
impacts of SMC.

HOW TO CONSTRUCT THE DESIRED
SMC?

Previously, developing SMC was largely based on combining
specific microbial genotypes with desirable traits (Whipps, 2001;
Dodd and Ruiz-Lozano, 2012; Thijs et al., 2014). Currently, the
typical SMC often include PGPB and AMF, targeting to enhance
the metabolites contents (e.g., essential oil, zein, glucosinolate,
sugar, ascorbic and folic acid, volatile compounds, vitamin, and
anthocyanin) and nutrients (N, Ca, P, Mg, K, Na, Fe, Mn, Cu,
Zn, and B), which represent higher nutraceutical values in crops
(Hart and Forsythe, 2012; Berta et al., 2014; Cosme et al., 2014;
Bona et al., 2015, 2017; Hart et al., 2015; Weisany et al., 2015;
Battini et al., 2016; Torres et al., 2016; Avio et al., 2017). However,
previous studies dealing with SMC have reported a range of
plant responses and contradictory results (Lucas García et al.,
2004; Estévez et al., 2009; Rosier et al., 2016), suggesting that
different microbes may not have additive effects. Importantly,
the compatibility within microbes and with new environment
is an essential consideration for constructing SMC. Given the
variability among microbes and soil heterogeneity, this is no
small task. Clearly, the way forward must capitalize on existing
co-adapted SMC.

Firstly, the origin of microbes is critical to construct SMC.
Indigenous microbes were reported to be more efficient in
augmenting plant stress tolerance (Estrada et al., 2013; Armada
et al., 2014; Ortiz et al., 2015). The environmental adaptation of
autochthonous microbes might underlie their ability to improve
plant fitness. Thus it is expected that the soil microbiome from
high-quality crops is an ideal origin for SMC to confer the same
plants better growth and quality. Further, the rhizosphere is a
hotspot for selecting members for SMC, due to their intensive
interactions with plants. Moreover, the endophytes beneficial to
plants can also be used to devise SMC (Huang et al., 2018), since
they are more likely to persist in environments (Kong and Glick,
2017).

Secondly, how can we obtain the core microorganisms? Now,
next generation sequencing (NGS) allows us to perceive the
whole microbial community of crops using meta-genomics,
which was previously impossible (Figure 1). However, it is
unnecessary to inoculate the whole soil microbiome to target
fields. The functional redundancy in microbial communities
indicates that only the core microbes are needed to fulfill
their ecological services to plants (Qin et al., 2016). Microbial
network analysis is a powerful tool for identifying the “hubs”
(also termed keystone operational taxonomic units), which are
highly associated in a microbiome (Banerjee et al., 2018). When
basic information about the topology of a microbial network is
obtained using the package “igraph” (Csardi and Nepusz, 2006)

in R software, the properties of the network structure can be
evaluated. Microbial networks can be compartmentalized into
several “network modules,” within which microbial species are
highly connected with each other. Based on network topological
properties, the “hub” species, which coexist with most other
species in each module, can be further identified (Toju et al.,
2018). These hub species of modules are the candidates of core
microorganisms. The information on hub species provides us the
very first step in core microorganisms screening.

The next step is to culture these core microbes. As is known,
about 99% of the soil microbes cannot be artificially cultured, it is
challenging to reproduce all the pure cultures included in SMC.
Finding the proper culture media is the key to get the microbial
inoculant. Web-based platforms, such as KOMODO (Known
Media Database) can be used to predict the media components
for culturing the core microbiome (Oberhardt et al., 2015).

Thirdly, the optimization of microbial interactions would
be crucial for constructing stable, efficient, and controllable
SMC. Cooperation among the SMC members is crucial to
exert additive effect in promoting crop quality. Utilizing the
positive interactions between fungi (Trichoderma reesei) and
bacteria, Hu et al. (2017) devised a synergistic SMC with
higher lignocellulolytic enzyme activity. The SMC composed of
Enterococcus and Clostridium species degrade wheat straw into
hydrogen and butanol in a two-step reaction (Valdez-Vazquez
et al., 2015). Constructed SMC using multiple Escherichia coli
strains successfully assemble 34 proteins in a single culturing,
lysis, and purification procedure (Villarreal et al., 2018). The
crop quality (metabolites, nutrients) should be integrated as a
standard to test the synergistic effect of SMC. The SMC with
larger effect than the sum effect of individual microbial taxa,
can be regarded as a synergistic SMC. Besides, plant growth
promotion activities (ACC deaminase, IAA, siderophores,
phosphate solubilization, and etc.), dynamic changes of the
core microbes provide reference for constructing a synergistic
SMC. Under environmental stresses (such as salinity, drought, or
acidity, commonly found worldwide), tolerance traits of the SMC
should also be taken into consideration.

ASSESSING THE EFFICACY OF SMC

The challenges for utilizing SMC in field are the adaptation to
new environments. As the SMC are usually isolated from one
crop species, they can be expected to positively interact with the
same plants in the original soils. A common assumption for field
applications is that the microbial inoculants are effective and they
have to adapt to a given soil or crop (Rodriguez and Sanders,
2015). Indeed, the variations of soil conditions, such as soil type,
moisture, nutrients content, and pH, may affect the functioning
and proliferation of SMC. Thus, the efficacy evaluation of SMC
mainly focusing on the magnitude in improving crop quality
should be conducted in the target field. The strategy from Hart
et al. (2018), but also previously used by other authors, as
Bona et al. (2016), can be referred to direct the evaluation. The
evaluation should start from pot culture in greenhouse involving
the factors e.g., soil properties, climatic factors and crop traits
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FIGURE 1 | The diagram of technical flow of artificial construction of synthetic microbial consortia (SMC) targeting to augment crop quality. The crops with good

quality can be a good origin of SMC. The core microbes can be isolated from the rhizospheric soils or the plant roots of crops with good quality, and their composition

can be predicted by next generation sequencing and network analysis. The network analysis will provide the core microbial taxa and hubs which are needed to fulfill

ecological services to plants. The web-based platform KOMODO (Known Media Database) can be used to predict the proper medium for the core microbes. The

synergism among the microbial members in SMC will be analyzed based on the crop quality (metabolites and nutrients). Plant growth promotion activities and

population dynamic changes of the core microbiome are tested to provide reference for constructing the SMC. After the assessment of efficacy and ecological

impacts of SMC, they can be utilized in field.

(including physiological and phenological traits). Meanwhile, the
growth, mineral nutrients and metabolites of crops should be
integrated to determine the efficacy of SMC (Figure 1). Following
the greenhouse study, plots experiments are subsequently carried
out to check the efficacy of the SMC in field. Moreover, the
relative longer period (2–3 years) is needed to determine the
consistency of the effect of SMC in practice. Based on the above
observations, the efficacy of SMC can be obtained.

ASSESSING ECOLOGICAL IMPACTS OF
SMC

In recent years, scientists have developed a much better
understanding of how various beneficial soil microbes contribute
to plant growth and health. For sustainable development of
agricultural ecosystems, it is not only necessary to improve
crop yield and quality, but also to ensure a good bioactivity
and stability of the soil microbiome in farmland. In this
regard, the ecological risks, including invasiveness and the

interactions between SMC and indigenous soil microbes should
be considered (Hart et al., 2017, 2018). Firstly, the invasiveness
should be estimated before releasing SMC in farmland. It
should be ascertained how the inoculated strains survive or
colonize the rhizosphere of host crops, how the SMC interacts
with the indigenous soil microbiome and function, and how
the indigenous soil microbiome structurally and functionally
responds to the exotic SMC. It is important to clarify all of
these issues before implementing SMC on a larger scale in
fields. For example, if the introduced soil microbes can inhibit
the pathogen populations, the antagonistic interactions would
enhance the beneficial effects of SMC to promote the crop health.
On the other hand, if the antagonistic interactions occurred
between SMC and indigenous beneficial microbes (like AMF
and rhizobia), cautions must be taken for using this SMC.
Extensive metagenomics and population genomics studies can
help assess the environmental impacts of SMC (Rodriguez and
Sanders, 2015). With this knowledge in hand, site assessment,
potentially ecological risks and regulatory acceptability would all
be simplified.
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CONCLUDING REMARKS

Using SMC is a promising way to improve crop quality in
sustainable agriculture. Though abundant studies had shown
the positive effects of beneficial soil microbes on the crop yield
and quality, the employment of SMC in practices is still infant
in developing countries. SMC possesses more merits than
individual microbial inoculant. Here, we propose a technical
flow of utilizing SMC to promote crop quality. The technical
flow starts from how to construct the SMC. The microbes
from one crop species with good quality potentially render the
same plants higher quality. The core microbes can be isolated
from the rhizospheric soils or the plant roots, predicted by
next generation sequencing and network analysis. KOMODO
can be used to predict the media components for culturing
the core microbes. The members of core microbes should
be tested for synergy, plant growth promoting activities, and
population dynamic changes. The improved crop quality is a
main principle for constructing SMC. Further, the efficacy of
SMC is needed to test in consideration of the environmental
impacts. Finally, the ecological risks evaluation of SMC

is essential to maintain the environmental sustainability.

The technical flow would be helpful for biostimulant
manufacturers and farmers to enhance crop nutritional
quality.
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