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Humans have flexible control over cognitive functions depending on the context.

Several studies suggest that the prefrontal cortex (PFC) controls this cognitive flexibility,

but the detailed underlying mechanisms remain unclear. Recent developments in

machine learning techniques allow simple PFC models written as a recurrent neural

network to perform various behavioral tasks like humans and animals. Computational

modeling allows the estimation of neuronal parameters that are crucial for performing

the tasks, which cannot be observed by biologic experiments. To identify salient

neural-network features for flexible cognition tasks, we compared four PFCmodels using

a context-dependent integration task. After training the neural networks with the task, we

observed highly plastic synapses localized to a small neuronal population in all models.

In three of the models, the neuronal units containing these highly plastic synapses

contributed most to the performance. No common tendencies were observed in the

distribution of synaptic strengths among the four models. These results suggest that

task-dependent plastic synaptic changes are more important for accomplishing flexible

cognitive tasks than the structures of the constructed synaptic networks.

Keywords: recurrent neural network, plasticity, synaptic weight, sparseness, cognitive flexibility, prefrontal cortex

INTRODUCTION

Human brains can quickly generate, and flexibly switch between, sensory-sensory and
sensory-motor associations depending on the situation, even in the same environment. The
prefrontal cortex (PFC) controls cognitive flexibility (also known as executive function) (Miller and
Cohen, 2001; Nobre and Kastner, 2014). Although numerous studies have examined the control
mechanisms of executive function using animal models, the details remain unclear. One reason for
this is the limited number of biologic variables of the brain that can be observed and manipulated.

By contrast, computational modeling allows investigators to track detailed transitions of
variables during a task. Recent developments in machine learning have established learning rules
for simple recurrent neural networks (RNNs) to perform various tasks (Jaeger and Haas, 2004;
Sussillo and Abbott, 2009; Laje and Buonomano, 2013). In fact, the activities of the PFC while
performing flexible cognitive tasks can be modeled using RNNs (Mante et al., 2013; Song et al.,
2016, 2017; Miconi, 2017).
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Mante et al. (2013) compared the neural population activity
of the PFC in monkey and RNN models during a flexible
cognitive task. To evaluate cognitive flexibility, they modified
a random-dot motion task by increasing the salience of color
(Mante et al., 2013), which is referred to as the context-dependent
integration task (Song et al., 2016). To perform this task, the
subject monkey must select one of two options based on colored
dots moving randomly across a screen. In the task, depending
on the contextual cues, the monkey selects the appropriate
answer based on either the color or the motion (Figure 1A).
The contextual cues randomly change from trial to trial. Mante
et al. (2013) then constructed an RNN model that could perform
the task, wherein the population activities during the task were
similar to those of the monkey’s PFC neurons. In the RNN
model, however, they optimized the synaptic strengths using
the Hessian-free (HF) approach, referred to as the “HF model”
(Martens, 2010; Martens and Sutskever, 2011), which is not
sufficiently biologically plausible.

Aiming for more biologically reasonable models, several
groups have suggested RNN models for context-dependent
integration tasks. Song et al. proposed an RNN model termed
the “pycog model” (Song et al., 2016), which consists of separate
excitatory and inhibitory neuronal units and employs a simpler
learning rule than the HF model. Briefly, the basic principle
is based on a modified stochastic gradient descent (SGD)
method (Pascanu et al., 2013). In addition to context-dependent
integration tasks, the pycog model allows for the investigation of
several PFC-dependent behavioral tasks.

Moreover, Song et al. (2017) developed another RNN model,
referred to as the “pyrl model,” which comprises a policy network
that selects the next behaviors and a baseline network that
evaluates future rewards, by which learning is reinforced with
reward signals (Song et al., 2017). The pyrl model is the so-called
actor-critic method (Sutton and Barto, 1998) built with a policy
gradient reinforcement learning rule known as the REINFORCE
algorithm (Williams, 1992; Wierstra et al., 2010). The baseline
network optimizes the output to predict future rewards in each
context, whereas the policy network learns to make an optimal
choice to maximize future rewards.

In addition to the above-described RNN models, Miconi
introduced the reward-modulated Hebbian rule abbreviated as
the “rHebb model” (Miconi, 2017). This model utilizes the node-
perturbation method (Fiete et al., 2007) and is biologically more
plausible than the HF or SGD models. This system also performs
several cognitive tasks.

In the present study, we compared the synaptic weight
structures of the four RNN models (HF, pycog, pyrl, and
rHebb) while performing context-dependent integration tasks
(Figure 1B). Interestingly, in the plastic changes of the synaptic
weights from the initial network state to the last learned state,
all models showed that the plastic synapses were localized to
small populations of neuronal units and the projections to a
few postsynaptic neurons were highly plastic. The highly plastic
unitsmade greater contributions to performed behaviors than the
low plastic units in the HF, pycog, and pyrl models, but not in
the rHebb model. In addition, the distributions of the synaptic
weight changes exhibited a large positive kurtosis in most of the

models. No tendencies in the synaptic strengths of the networks
were observed after learning the task (i.e., constructed networks).
The present results indicate that plastic changes induced by
task learning are more important than the constructed network
structures of the system.

MATERIALS AND METHODS

Model Descriptions
The parameter settings were set to default values based on
previous reports and scripts (Mante et al., 2013; Song et al., 2016,
2017; Miconi, 2017). The HF, pycog, and rHebb models were
expressed by the following equation:

τ ẋ(t) = −x (t − 1) +Wrecr(t − 1)+Winu(t)+ bx + ρx(t)
(1)

where, τ > 0 is the time constant, x(t) ∈ R
Nrec corresponds to

the membrane potentials of recurrent neuronal units at discrete
time step t, r(t) ∈ R

Nrecrepresents the firing rate calculated by
the rectified linear activation function r (t) = x (t) for x (t) >

0 and r (t) = 0 otherwise for the pycog and pyrl models; or
the hyperbolic tangent function r (t) = tanh (x (t)) for the HF
and rHebb models, where Nrec is the number of recurrent units.
Moreover, u(t) ∈ R

Nin is an (external) task input comprising
sensory and contextual information;Wrec ∈R

Nrec×Nrec andWin ∈

R
Nrec×Nin are the synaptic weight matrices from recurrent and

task inputs to each recurrent unit, respectively; bx ∈ R
Nrec is the

offset constant of recurrent units; and ρx(t) ∈ R
Nrec is the noisy

fluctuation of each unit following a Gaussian distribution, where
Nin corresponds to the number of input units (four channels in
the HF and rHebb models and six channels in the pycog and
pyrl models). For the pyrl model, we used a gated recurrent
unit (Chung et al., 2014) for which Equation 1 was modified
(see section pyrl Model). Note that we used Nrec = 100 for HF,
Nrec = 150for pycog (120 excitatory plus 30 inhibitory units),
and Nrec = 200 for rHebb. For pyrl, we used Nrec = 100 for the
policy network and Nrec = 100 for the baseline network.

The readout units of HF, pycog, and pyrl were given by:

z(t) = Woutr(t)+ bz (2)

where, z(t) ∈ R
Nout is the output of the system, Nout is the

number of output units (one channel in the HF model, two
channels in the pycog model, and three channels in the pyrl
model), Wout ∈ R

Nout×Nrec is the synaptic weight matrix from
recurrent units to readout units, and bz ∈ R

Nout is the offset
constant of the readout unit. In contrast, the rHebb model used
an arbitrary recurrent unit as an output. The choices of the system
were represented as the signs of the output unit [z (t) in the
HF model and the arbitrary unit r (t) in the rHebb model; one
channel in total] or the highest channel (among two channels in
the pycog model and three channels in the pyrl model) of the
output units. Only the pyrl model had another choice (like “stay”)
in addition to choice 1 and choice 2. The Nin, Nrec, and Nout of
each model are summarized in Table 1.
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FIGURE 1 | Experimental design and task performance of each model. (A) Context-dependent integration task applied to a monkey. The left panel shows a

schematic representation of the task. At the center of the screen, the green or red dots move randomly from right to left. The monkey should choose between the left

(green) or right (red) option by saccade while referring to the central moving dots. The reference (color or motion) for the correct answer depended on the contextual

cue at the bottom of the screen. The right panel indicates a variety of colored moving dot patterns and contextual cues. (B) Schematic image of RNN PFC models. All

models comprise sensory and contextual inputs and output choices. The input and output representations were simplified in a few dimensions. In the RNN, the

neuronal units are connected to each other. (C) Task performance of each system after learning. Vertical bars represent standard error of the mean (SEM).

TABLE 1 | Number of input, recurrent, and output units in each model.

Model Nin Nrec Nout

HF 4 100 1

pycog 6 150 (Ex: 120, Inh: 30) 2

pyrl (policy) 6 100 3

rHebb 4 200 1 (an arbitrary unit)

Task Descriptions
The task inputs, u(t)in Equation 1, comprise two sets of sensory
and two sets of contextual information. Sensory inputs were
defined as:

um(t) = dm + ρm(t) (3)

uc(t) = dc + ρc(t) (4)

where um(t) ∈ R
1 or 2 and uc(t) ∈ R

1 or 2 are the motion and
color sensory inputs, respectively, dm ∈ R

1 or 2and dc ∈ R
1 or 2

are the offsets, and ρm(t) ∈ R
1 or 2 and ρc(t) ∈ R

1 or 2 are
Gaussian noises with a zero mean. The amplitudes dm and dc
represent motion and color coherence. Input features (e.g., right
and left in motion, red and green in color; see Figure 1A) were
represented by a plus or minus sign for dm (e.g., right+, left–)
and dc (e.g., red +, green –) in the HF and rHebb models
(two channels in total). These input features were represented as
independent channel inputs in the pycog and pyrl models (four
channels in total). In addition, the contextual information was
modeled with a set of two binary inputs, ucm (t) ∈ {0, 1} and
ucc (t) ∈ {0, 1}, where ucm (t) = 1 and ucc (t) = 0 in the motion
context and ucm (t) = 0 and ucc (t) = 1 in the color context at
every time-stept.
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HF Model
The HF model was implemented based on a previous study
(Mante et al., 2013). HF optimization was mounted with
modifying scripts written by Boulanger-Lewandowski and
available on Github (https://github.com/boulanni/theano-hf)
(Boulanger-Lewandowski et al., 2012).

HF optimization (Shewchuk, 1994; Martens, 2010; Martens
and Sutskever, 2011) was processed by minimizing the following
objective function E(θ),

ε(θ) = L(θ)+ λRR(θ) (5)

where each component is given by:

L(θ) =
1

2Ntrial

Ntrial
∑

n=1

∑

t=0,T

(

zn (t, θ) − z
target
n (t)

)2
(6)

R(θ) = D(r, θ), r(θ + 1 θ) (7)

Note that θ is the vectorized parameter (a set of
Wrec,Win,Wout , bx, and bz). Function L (θ) indicates the
error between the target z

target
n (t) and the actual output zn(t, θ

) of the system at the first and last time-points (t = 0,T) of

all the trials (Ntrial). The target outputs z
target
n (t) of the last

time-points (t = T) presented a choice by setting 1 or−1, which
corresponded with choice 1 and choice 2, respectively. The target

outputs z
target
n (t) were initialized to 0. Function R(θ) indicates

structural damping to prevent disruptive changes of recurrent
unit activities, because even a small perturbation of the recurrent
units can result in a very large output difference (Martens and
Sutskever, 2011). D (r (θ) , r (θ + 1θ)) is the distance (cross
entropy in our script) between outputs of recurrent units with
parameter θ and θ + 1θ . Coefficient λR > 0 determines the
degree of the R(θ) penalty, and its value is determined using the
Levenberg-Marquardt algorithm (Nocedal and Wright, 1999).
An optimal θ that gives a minimum object function was resolved
with HF optimization (Martens, 2010; Martens and Sutskever,
2011).

The dimensions of Nin = 4, Nrec = 100, and Nout = 1
were used in the HF model. Because of the memory capacity, the
duration of the task was 25 times shorter (30ms) than the original
setting (750ms). The standard deviations of noises were reduced
from the original values in Mante et al. (2013) and defined such
that Std[ρx] = 0.004 in Equation 1, Std [ρm] = 0.04 in Equation
3, and Std[ρc] = 0.04 in Equation 4. The time constant τ = 10ms
and the time-step 1t = 1ms. The initial weight distribution
of the default setting was a Gaussian distribution (mean = 0,
standard deviation= 0.01) and later tested with a different setting
(Gaussian distribution, mean = 0, standard deviation = 0.15) to
make the initial weight setting comparable to that in the other
models in Supplementary Figure 4.

Pycog Model
The pycogmodel was obtained fromGithub (https://github.com/
xjwanglab/pycog) and run in its original setting as described
previously (Song et al., 2016). This system learns tasks with a

modified SGD (Pascanu et al., 2013) by minimizing the following
objective function E(θ),

E(θ) =
1

Ntrials

Ntrials
∑

n=1

(

Ln(θ)+ λ��n(θ)
)

(8)

where θ is the vectorized parameter set for the optimization,
Ntrialsis the number of trials, and Ln(θ) is the error between the

actual and target outputs (zs(t, θ) ∈ R
2 and z

target
s (t, θ) ∈ R

2,
respectively) through trial (T) and the number of output units
(Nout) given by

Ln(θ) =
1

NoutT

Nout
∑

s=1

T
∑

t=1

Merror
t [zs(t, θ)− z

target
s (t)]

2
(9)

where Merror
t ∈ {0, 1} is the error mask consisting of 0 or 1 and

determines whether the error at time-point t should be taken into
account (in a context-dependent integration task; only the last
output is considered). �n(θ) in Equation 8 is a regularization
term used to preserve the size of the gradients as errors are
propagated through time, and λ� determines the effects of the
regularization.

The values Nin = 6, Nrec = 150, and Nout = 2 were used in
the pycog model. Of note, this system includes both excitatory
and inhibitory units at an excitatory to inhibitory ratio of 4:1,
indicating that the number of excitatory units is 120 and that
of inhibitory units is 30. For our network analyses, we mainly
used excitatory-excitatory (E-E) connections. The initial weight
distribution of the default setting is a gamma distribution and
the multiplier is positive or negative depending on the input unit
type (excitatory or inhibitory). Applying a uniform distribution
as an initial weight distribution, the minimum andmaximum are
0 and 1, respectively.

pyrl Model
The pyrl model was also obtained from Github (https://github.
com/xjwanglab/pyrl) and run in its original setting (Song et al.,
2017). The network consists of policy and baseline RNN, in
which the nodes are gated recurrent units (Chung et al., 2014).
The policy network aims to maximize the expected future
rewards, which are optimized using the REINFORCE algorithm
(Williams, 1992; Wierstra et al., 2010).

E
π (θ) =

1

Ntrials

Ntrials
∑

n=1

[

−Jn (θ) + �π
n (θ)

]

(10)

Jn (θ) = EH

[

T
∑

t=0

Rt+1

]

(11)

where θ is the vectorized parameter set of the policy network for
the optimization, Eπ (θ)is the objective function of the policy
network, Ntrials is the number of trials, Jn (θ)is the expected
reward prediction, � π

n (θ) is regularization term used to preserve
the size of the gradients as errors are propagated through time
(Song et al., 2016), and EH represents the expectation of reward
Rt over all possible trial histories H.
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The baseline network minimizes the difference between the
actual and estimated reward values throughout the trial.

E
v (φ) =

1

Ntrials

Ntrials
∑

n=1

[En (φ) + �v
n(φ)] (12)

En (φ) =
1

T + 1

T
∑

t=0

[

T
∑

τ=t

Rτ+1 − vφ(π1 : t , r
π
1 : t)

]2

(13)

where φ is the vectorized parameter set of the baseline network
for the optimization, E

v (φ) is the objective function of the
baseline network, En (φ) is the error between the actual reward
Rτ (a correct decision is rewarded with Rτ = 1, if incorrect
Rτ = 0, and the duration of breaking the fixation before the
decision is negatively rewarded with Rτ = −1), vφ(π1 : t , r

π
1 : t) is

the expected (readout) reward prediction of the baseline network
under recurrent unit activities (rπ1 : t) and choice (π1 : t) of the
policy network through a trial (T), and � v

n(θ) is a regularization
term of the baseline network. This system is optimized using
Adam SGD (Kingma and Ba, 2015) with gradient clipping
(Pascanu et al., 2013).

The values Nin = 6 (task inputs), Nrec = 100, and Nout =

3 (choice) were used in the policy network, and the values
Nin = 103 [r (t)and π (t) of the policy network], Nrec = 100,
and Nout = 1 (readout reward prediction) were used in the
baseline network. We used the policy network for the main
analysis of this study because the baseline network was not
involved in performing the task (the baseline network is critical
for optimizing the system). The default initial weight distribution
was obtained from the gamma distribution (K = 4) with random
multipliers in both policy and baseline networks. The plastic
synapses were set at 10% of all synapses and the other synaptic
weights were fixed as the defaults throughout the training. We
only used plastic synapses for the weight-change distribution
analysis. This system had three output choices (choice 1, choice 2,
or stay) although the other models had only two choices (choice
1 or choice 2). When a normal distribution was used as an initial
weight distribution in Supplementary Figure 4, the mean and
standard deviation were 0 and 0.15, respectively.

rHebb Model
The rHebb model was obtained from GitHub (https://github.
com/ThomasMiconi/BiologicallyPlausibleLearningRNN) and
basically run in its original setting (Miconi, 2017). The network
pools Hebbian-like activity in every time-step as follows:

ei,j (t) = ei,j (t − 1) + S(rj (t − 1) ∗ (xi (t) − xi)) (14)

where ei,j(t) is the accumulated eligibility trace of the synapse i
(pre) and j (post), S is the monotonic superlinear function (in this
case S = x3), rj(t) is the output of unit j, xi(t) is the membrane
potential of unit i at time t, and xi is the short-time running
average of xi. The synaptic weights aremodulated with the pooled
value and reward error at the end of every trial as follows:

1Wi,j = ηei,j(R− R) (15)

where 1Wi,j is the change in synaptic weight between i and j,
η is the learning rate, R is the reward from the environment
(absolute difference from an optimal response is supplied as a
negative reward), and R̄ is the average of the previously received
reward. Three units are used as constant input units in default.
The output and constant input units are excluded from the
weight-change distribution analysis.

The values Nin = 4 and Nrec = 200 and Nout = 1
were used in the rHebb model. The output of this system is an
activity of an arbitrarily chosen unit from the recurrent units.
The initial weight distribution of the default setting is a Gaussian
distribution (mean = 0, standard deviation = 0.106) and later
tested by setting Nrec and the standard deviation of the initial
weight Gaussian distribution to 100 and 0.15, respectively, to
make the initial weight setting comparable to that in the other
models in Supplementary Figure 4.

Post-mean Weights and Weight Changes
To quantify the concentration degree of the synaptic weights
or the weight changes in each neuronal unit, we calculated the
averages of the absolute values that project to each neuron,
referred to as the post-mean weights or post-mean weight
changes, respectively. Post-mean weights are defined (Figure 2A)
by,

W
last
i =

1

N

N
∑

j=1

∣

∣

∣
W last

i,j

∣

∣

∣
, (16)

where,
∣

∣

∣
W last

i,j

∣

∣

∣
is an absolute synaptic weight of the learned

model, j is an index of a presynaptic recurrent unit projecting to
postsynaptic recurrent unit i, and N is the number of recurrent
units of the model. The post-mean weight changes are defined by

W
diff
i =

1

N

N
∑

j=1

∣

∣

∣
W

diff
i,j

∣

∣

∣
, (17)

W
diff
i,j = W last

i,j −Winit
i,j , (18)

where W last
i,j and Winit

i,j are the learned last and initial synaptic

weights of the model, respectively.

Neuronal Unit Inactivation
The scripts were modified as shown below. Selected unit outputs
were set to 0 (pycog, pyrl, and rHebb model) or a constant
value (HF model,bx) in every recurrent loop. The number of
inactivation units was increased in increments of 10 and sorted
in ascending, descending, or shuffled order of the post-mean
synaptic weight changes (Figure 6A). The trial settings, including
the number of trials and offset and noise settings of sensory
inputs, also followed default conditions in each script.

Task Learning With Smaller Network
Models learned the context-dependent integration task with
modification of the number of recurrent neuronal unitsNrec. The
learning was repeated with five different random seeds in each
condition. The Kruskal–Wallis test and Dunn’s test were applied
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FIGURE 2 | Synaptic weights after task learning. (A) Calculation and sorting of post-mean weight value. The extreme left panel shows the synaptic weight values from

pre- (horizontal axis) to post-unit (vertical axis) in the HF model after task learning. Post-mean weights were calculated with the mean absolute weight values along the

pre-axis (bidirectional-headed arrow). The neighboring right-hand panel shows the post-mean weights of the left panel. Neuronal units sorted by the post-mean

values. (B) Weight values of each model sorted by post-mean weights.

for statistics and post-hocmultiple comparisons, respectively. The
trial settings, including the number of trials and offset and noise
settings of sensory inputs, also followed the default conditions in
each script.

Statistical Analysis of Distributions
Python libraries, numpy, scipy, statsmodels, matplotlib,
seaborn, and Jupyter were used for statistical analysis. The

Shapiro-Wilk normality test, implemented as a scipy function,
was applied to evaluate the normality of the distributions.
Kurtosis and skewness were tested using the scipy functions,
stats.kurtosistest and stats.skewtest (https://docs.scipy.org).
One-way analysis of variance (ANOVA), two-way ANOVA, and
multiple comparisons (Tukey honestly significant difference)
were performed with the python library, statsmodels (http://
www.statsmodels.org). The Kruskal-Wallis test and multiple
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comparison test (Dunn’s test) were performed with functions
in the scipy and scikit-posthoc (https://pypi.python.org/pypi/
scikit-posthocs) libraries, respectively.

RESULTS

Analysis of Connection Strengths After the
Learning Task
We first confirmed that all four RNN systems successfully
learned the context-dependent integration task (Figure 1C).
They showed psychometric curves (relationship between the
sensory inputs and behavioral responses), which changed
depending on the context of the inputs. More than 85% of the
choices of all models were correct.

Next, the synaptic weight values of each learned system were
analyzed. We used E-E connections in the pycog model for
the analysis because this is the dominant connection in the
model. Additionally, we used the policy network in the pyrl
model because the baseline network was not related to the
choice behavior even though it is important for learning the
task (see Materials and Methods section). For the HF and rHebb
models, we used all synaptic connections between recurrent
neuronal units for the analysis. We detected a pattern in the
HF model indicating that high negative or positive weights were
concentrated in a small number of neuronal units, particularly
postsynaptically. To evaluate the high weight concentration in
all four models, we calculated means of absolute weight values

for each post-unit (post-mean weight, see Materials andMethods
section) and sorted postsynaptic neurons in descending order of
the post-mean weight (Figure 2A). Figure 2B illustrates synaptic
weight distributions of the four models. We confirmed that high
post-mean weights localized to a few neuronal units in the HF
model, but the postsynaptic neurons in the other three models
did not exhibit this localization.

To quantify the weight localization in a sparse population,
we analyzed the distribution of the post-mean weight values.
The distribution of the HF model was highly skewed (Figure 3,
Table 2), indicating that the positive or negative high weights
were significantly concentrated in a small number of units.
In contrast, the other three models did not show significant
skewness. These results suggest that the distribution of
the constructed network was not extremely important for
performing the task.

TABLE 2 | Distribution properties in post-mean weights after task learning.

Model n Normality Skewness Kurtosis

P W p Z Skew. p Z kurt.

HF 100 0.00 0.81 0.00 5.33 1.64 0.00 3.21 2.53

pycog (E-E) 120 0.60 0.99 0.39 0.85 0.81 0.48 0.71 0.19

pyrl (policy) 100 0.23 0.98 0.26 1.13 0.26 0.34 0.95 0.32

rHebb 196 0.55 0.99 0.34 0.96 0.16 0.34 0.95 0.26

FIGURE 3 | Distribution of post-mean weights after the task learning. Dotted red line indicates normal distribution with mean and standard deviation of the values as

reference.
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Moreover, we investigated the distribution of the
synaptic weights over all neurons (Supplementary Figure 1,
Supplementary Table 1). Synaptic weights in both the HF and
rHebb models were initialized to follow a Gaussian distribution.
The HF system showed a non-Gaussian high-kurtosis

distribution after task learning, whereas rHebb still showed
a Gaussian distribution. The synaptic weight distributions in
the pycog and pyrl models did not show Gaussian distributions
even from the initial states (see the Materials and Methods
section). Thus, no similarities were observed among the models

FIGURE 4 | Weight changes induced by task learning. (A) Color plots of weight changes sorted by post-mean weight changes. (B) Distribution of post-mean weight

changes. The dotted red line indicates a normal distribution of the mean and standard deviation of the values as reference.
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in the weight distribution parameter. Overall, we observed no
common tendencies in the constructed network structures across
all four models, although all of them succeeded at learning
the task.

Analysis of Plastic Changes With Task
Learning
We then analyzed synaptic weight changes by task learning and
their post-mean. The synaptic weight changes were defined as
the difference between the initial and final weight values (see
Materials and Methods section). Only 10% of the synapses in
the pyrl model were analyzed because only those synapses were
variable while the others were fixed through learning (as a
default setting). We found that in all models, the weight changes
were localized to a few units (Figure 4A). Quantitative analyses
of the distribution of the post-mean weight changes revealed
that all models exhibited highly positively skewed distributions
(Figure 4B, Table 3). The pycog model also displayed an
inhibitory network, whereas the pyrl model displayed a baseline
network. Most of these connections tended to show that the
synaptic changes were localized to restricted populations of
neuronal units (Supplementary Figure 2). These results indicate
that a small number of high-plasticity units largely contributed to
the learning in all four networks.

We also analyzed the distribution of the weight change over
all neurons and observed that these distributions of all four
models tended to exhibit positive kurtosis. While the shapes of
the distributions of the pyrl and rHebb models were close to a
Gaussian distribution, they still had significantly positive kurtosis
(Figure 5, Table 4).

Therefore, all models commonly exhibited high positive
skewness in the post-mean weight-change distributions and
high kurtosis in the weight-change distributions. These results
indicate that plastic changes in all models had long-tailed
distributions at both the synapse and neuronal unit levels.

Furthermore, we validated whether units with higher plasticity
had higher contributions to behavior performances. The fixed
number of units in each model was inactivated (n_inact) while
performing the behavioral task with ascending (starting from
low-plasticity units), descending (starting from high-plasticity
units), and shuffled order (sort_type) based on the post-mean
weight-change values (Figure 6, Table 5). The “n” in Table 5

indicates the number of systems used for the test with different
initial settings from different random seeds. All the models
showed significant differences in behavior performances among

TABLE 3 | Distribution properties in post-mean weight changes with task learning.

Model n Normality Skewness Kurtosis

p W p Z skew. p Z kurt.

HF 100 0.00 0.87 0.00 4.44 1.25 0.04 2.08 1.16

pycog (E-E) 120 0.00 0.93 0.00 4.09 1.01 0.05 1.97 0.97

pyrl (policy) 100 0.00 0.91 0.00 4.54 1.29 0.00 3.06 2.31

rHebb 196 0.00 0.96 0.00 4.16 0.78 0.07 1.81 0.68

sort_type x n_inact interaction and/or sort_type in a two-way
ANOVA, but there were no significant differences among sort
types in the rHebb model with post-hoc multiple comparisons.
These findings indicate that units with higher plasticity in the
HF, pycog, and pyrl models made larger contributions to task
performance; however, the rHebb model presented redundancy
for the loss of the high-plasticity units.

We also checked the weight-change distributions for the
different behavioral tasks because the features of the weight-
change distribution may depend on the behavioral task. We
analyzed models that leaned toward a working memory task
(Romo et al., 1999) in pycog, random dot motion task
(Gold and Shadlen, 2007), and multisensory task (Raposo
et al., 2014) in pyrl, and delayed non-match to sample
task (Simola et al., 2010) in rHebb (Supplementary Figure 3,
Supplementary Tables 2, 3). We selected these tasks and set
them up based on the original scripts. Most of them showed
comparable results, with highly skewed post-mean weight-
change distributions and large-positive-kurtosis weight-change
distributions. These results suggest that our findings represent
the case for a wide range of related cognitive tasks.

We also checked the weight-change distributions for different
initial conditions, which may affect the learning-induced
weight changes. To enable the comparisons, we set the
same initial distribution (Gaussian, mean = 0, standard
deviation = 0.15; original settings are described in the
Materials and Methods section) and Nrec (= 100) in the HF,
pyrl, and rHebb models. Because it was difficult to arrange
differences between models, the altered initial distributions
were uniform in the pycog model (Supplementary Figure 4;
Supplementary Tables 2, 3). Most of them also showed weight-
change results comparable to the original settings: the highly
skewed post-mean weight-change distributions and large-
positive-kurtosis weight-change distributions except the rHebb
weight-change distribution did not exhibit significant kurtosis.
The weight distribution of the learned HF network maintained
a Gaussian distribution, whereas with the default setting
it showed high positive kurtosis (Supplementary Figure 1A).
When we initialized the synaptic weights of the pyrl model
to follow a Gaussian distribution, its distribution remained
Gaussian after learning, whereas the post-mean weight-change
distribution of the model was highly skewed. The weight
distribution of the pycog model was initially uniform; however,
after learning, it became highly skewed. These data suggest
that all the models showed localized highly plastic synapses
in a small population whereas the distribution of weight
strength of the learned networks depended on the initial weight
distribution.

We finally analyzed the ability of the models to learn
with fewer neural units to examine whether smaller networks
are sufficient to achieve learning of the context-dependent
integration task. In all models, the skewness of the post-mean
weight-change distributions and correct choice rates of the
task performances decreased as the numbers of neuronal units
decreased, although they maintained high correct rates even
with small numbers of neuronal units (Supplementary Figure 5,
Supplementary Table 4). These results suggest that a large
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FIGURE 5 | Distribution of weight changes with task learning. The dotted red line indicates a normal distribution of the mean and standard deviation of the values.

TABLE 4 | Distribution properties of weight changes with task learning.

Model n Normality Skewness Kurtosis

p W p Z skew. p Z kurt.

HF 10,000 0.00 0.83 0.00 22.6 0.60 0.00 43.1 11.1

pycog (E-E) 14,400 0.00 0.62 0.00 85.4 3.40 0.00 66.1 36.8

pyrl (policy) 1,000 0.00 0.99 0.00 −2.82 −0.22 0.00 5.30 1.24

rHebb 38,416 0.00 0.99 1.00 0.01 0.00 0.00 6.04 0.16

network facilitates learning and that skewness of the post-
mean weight-change distributions is associated with task
performance.

DISCUSSION

We analyzed the network structures of four RNN models
while performing context-dependent integration tasks.We found
that all four models exhibited high positive skewness in post-
mean weight-change distributions (Figure 4), and the task
performance was sensitive to perturbation in higher plasticity
units in most models (Figure 6). No common tendencies among
the four models, however, were observed in the final weights after

task learning (Figures 2, 3). These results indicate the importance
of the plastic changes rather than the constructed connections in
performing cognitive tasks.

Significance of Highly Plastic Changes
Concentrated in a Sparse Population
The long-tailed distribution of plastic changes observed in our
simulations has been reported in numerous experimental studies.
Genes that induce neuronal plasticity (such as c-Fos and Arc)
are sparsely expressed in the cerebral cortex and hippocampus.
Thus, it was hypothesized that the plastic changes of a small
neuronal population mainly represent learning and memory,
the so-called engram hypothesis (Hebb, 1949; Tonegawa et al.,
2015). In addition, at the synapse level, only a small population
shows plastic changes associated with learning (Yang et al., 2009;
Hayashi-Takagi et al., 2015). Our findings of high-skewed, post-
mean synaptic change distribution and a high-kurtosis synaptic
change distribution are comparable to those of previous reports
(Figures 4, 5), thus supporting the engram hypothesis (Figure 6).

Moreover, the long-tailed distribution of the task-dependent
synaptic change may be explained by the superlinearity of
either the activation function or learning rule in each model.
In the rHebb model, a superlinear function of the learning
rule (but not a linear or sublinear one) leads to sparse and
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FIGURE 6 | Inactivation experiments. (A) The orders of inactivation neuronal units. Left panel shows weight changes in the HF model from Figure 5A. We inactivated

units with descending (from high plastic units, green), ascending (from low plastic units, red), or shuffled order (purple). (B) Accuracies of task performances of each

model. The vertical bars represent the SEM. Black line indicates a significant difference between the descending and ascending order conditions corresponding to the

number of inactive neurons.

precise synaptic change (Miconi, 2017), which can establish a
high-kurtosis synaptic change distribution. Moreover, the pycog
and pyrl models use the rectifier activation function (ReLU) to
calculate the firing rate. Such a rectifier unit also acts to make
neural activity sparse (Glorot et al., 2011), which allows only a
few neurons to remain active and plastic.

Our findings regarding the localization of highly plastic
synapses in a small population support the hypothesis that
RNN systems represent task information in low-dimensional
dynamics implemented with their high-dimensional network
structures (Barak, 2017). The biologic PFC and the PFC RNN
models seemed to pack important information for solving the
task in a low-dimensional space (Mante et al., 2013; Sussillo
et al., 2015). Packing the information in a few components offers
some advantages; e.g., it simplifies the solving strategy (Barak,
2017) and generalizes the task (Neyshabur et al., 2017; Wu
et al., 2017). Furthermore, elastic weight consolidation method,

preventing catastrophic forgetting, may result in localized
changes (Kirkpatrick et al., 2017). It does not, however, suggest
that a large network is useless for solving a task. Because the
RNN has no prior information of the task, the RNN should
represent inputs in high-dimensional space at the beginning
of the learning; this offers a computational advantage for
dissecting the input patterns (Rigotti et al., 2013). Indeed,
most neural network systems are over-parameterized. This
redundancy provides benefits in learning speed and memory
capacities. We also confirmed that larger network models tend
to perform the task better (Supplementary Figure 5B), and that
the shift in the performance was accompanied by a shift in
the skewness of the post-mean weight-change distribution. Our
results thus suggest that the localization of high plastic synapses
to a few units is crucial for extracting the low-dimensional
essential patterns necessary for the various task representations
obtained from high-dimensional spaces.
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TABLE 5 | Two-way ANOVA results of the inactivation experiments.

Model Test df (factor) df (error) F p

HF (n = 11) n_inact 9 300 34.9 0.00

sort_type 2 300 231 0.00

n_inact × sort_type 18 300 4.87 0.00

pycog (n = 11) n_inact 11 360 50.6 0.00

sort_type 2 360 355 0.00

n_inact × sort_type 22 360 9.63 0.00

pyrl (n = 20) n_inact 9 570 596 0.00

sort_type 2 570 24.6 0.00

n_inact × sort_type 18 570 3.16 0.00

rHebb (n = 20) n_inact 9 570 83.7 0.00

sort_type 2 570 4.24 0.01

n_inact × sort_type 18 570 0.98 0.48

The exact relationship between the sparseness of weight
change and the behavior performance is still unclear. The post-
mean weight change in all models are skewed (Figure 4), but
only the pycog and HF models, followed by pyrl, showed
highly sparse representations, though rHebb did not (Figure 6).
There are many candidate factors, which differentiate sparseness
of representation among models, such as learning algorithm
and plasticity for the external input. Actually, neuronal units
showing higher levels of plasticity also tended to exhibit increased
plasticity for the external units in the HF, pycog and pyrl models
(data not shown), while rHebb cannot change them as a setting.
One can imagine that the behavioral importance of the units with
more plastic synapses in those threemodels is, at least in part, due
to the input weights onto them being stronger.

In contrast to the above-mentioned properties in synaptic
change distributions, the shapes of the synaptic weight
distribution after learning were various. It depends on the
initial distribution as well as the regularization terms in the
objective function. For example, a regularization term can
make the distribution sparse and long-tailed from any initial
distributions (Lee et al., 2006). The regularization terms of
the objective functions, however, are still critical for both
learning efficiency (Lee et al., 2006) and task-solving strategies
(Sussillo et al., 2015). While data were not shown, models
with some initial distribution conditions could not achieve
the learning probably because the initial distribution of RNN
synaptic weight affects the network dynamics (Sompolinsky
et al., 1988). Although our results indicate robustness in
the shape of the synaptic change distributions to the initial
synaptic distributions (see Supplementary Figure 4), it would be
interesting to consider how robust the shape is to alterations in
the regularization terms.

Future Study Directions
We focused on a context-dependent integration task to
determine the necessary structures involved in the process of
achieving flexible cognition. Moreover, our findings can be
applied to different learning tasks (Supplementary Figure 3).
In this study, we limited our analysis to the synaptic weight
structures of RNNmodels. In a subsequent study, we plan to also
analyze the dynamics of unit activities during the performance
of a task and the underlying learning process. These analyses will
provide further insights into how networks encode and establish
task information. Furthermore, theoretical investigation will help
to elucidate the implications of our findings and establish better
RNNmodels. Recent innovations in RNN optimization methods
have enabled computational systems to perform cognitive tasks
designed for human and model animals, and have thus allowed
for comparisons of the processes occurring in biologic and
computational brains (Mante et al., 2013; Cadieu et al., 2014;
Yamins et al., 2014; Carnevale et al., 2015; Sussillo et al., 2015).
Merging knowledge in both biologic and computational fields
that study cognitive tasks will improve our understanding of
brain functioning.
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