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Abstract 
Detection of differential transcript usage (DTU) from RNA-seq data is 
an important bioinformatic analysis that complements differential 
gene expression analysis. Here we present a simple workflow using a 
set of existing R/Bioconductor packages for analysis of DTU. We show 
how these packages can be used downstream of RNA-seq 
quantification using the Salmon software package. The entire pipeline 
is fast, benefiting from inference steps by Salmon to quantify 
expression at the transcript level. The workflow includes live, runnable 
code chunks for analysis using DRIMSeq and DEXSeq, as well as for 
performing two-stage testing of DTU using the stageR package, a 
statistical framework to screen at the gene level and then confirm 
which transcripts within the significant genes show evidence of DTU. 
We evaluate these packages and other related packages on a 
simulated dataset with parameters estimated from real data.
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Introduction
RNA-seq experiments can be analyzed to detect differences across groups of samples in total gene expression – the 
total expression produced by all isoforms of a gene – and additionally differences in transcript isoform usage within 
a gene. If the amount of expression switches among two or more isoforms of a gene, the total gene expression may 
not change by a detectable amount, but the differential transcript usage (DTU) is nevertheless biologically relevant. 
DTU is common when comparing expression across cell types: recent analysis of the Genotype-Tissue Expres-
sion Project (GTEx)1 dataset demonstrated that half of all expressed genes contained tissue-specific isoforms2. 
DTU may produce functionally different gene products through alternative splicing and changes to the coding 
sequence of the transcript, and may also result in transcripts with different untranslated regions on the 5’ or 3’ end of  
the transcript, which can affect binding sites of RNA binding proteins. Reyes and Huber2 found that alternative 
usage of transcription start and termination sites was a more common event than alternative splicing when exam-
ining DTU events across tissues in GTEx. Specific patterns of DTU have been identified in a number of diseases, 
including cancer, retinal diseases, and neurological disorders, among others3. Large-scale analyses of cancer transcrip-
tomic data, comparing tumor to normal samples, have identified that protein domain losses are a common feature of  
DTU in cancer, including domains involved in protein-protein interactions4,5.

While many tutorials and workflows in the Bioconductor project address differential gene expression, there are 
fewer workflows for performing a differential transcript usage analysis, which provides critical and complementary 
information to a gene-level analysis. Some of the existing Bioconductor packages and functions that can be used for 
statistical analysis of DTU include DEXSeq (originally designed for differential exon usage)6, diffSpliceDGE 
from the edgeR package7,8, diffSplice from the limma package9,10, and DRIMSeq11. Other Bioconductor  
packages which are designed around a DTU analysis include stageR12, SGSeq13, and IsoformSwitchAnalyzeR14. 
stageR can be used for post-processing of transcript- and gene-level p-values from DTU detection methods, and will 
be discussed in this workflow. SGSeq can be used to visualize splice events, and leverages DEXSeq or limma for  
differential testing of splice variant usage. The Bioconductor package IsoformSwitchAnalyzeR is well docu-
mented and the vignette available from the IsoformSwitchAnalyzeR landing page can be seen as an alternative to 
this workflow. IsoformSwitchAnalyzeR is designed for the downstream analysis of functional consequences of 
identified isoform switches. It allows for import of data from various quantification methods, including Salmon, 
and allows for statistical inference using DRIMSeq. In addition, IsoformSwitchAnalyzeR includes functions for  
obtaining the nucleotide and amino acid sequence consequences of isoform switching, which is not covered in this  
workflow. Other packages related to splicing can be found at the BiocViews links for DifferentialSplicing and 
AlternativeSplicing. For more information about the Bioconductor project and its core infrastructure, please  
refer to the overview by Huber et al.15.

We note that there are numerous other methods for detecting differential transcript usage outside of the Biocon-
ductor project. The DRIMSeq publication is a good reference for these, having descriptions and comparisons with 
many current methods11. This workflow will build on the methods and vignettes from three Bioconductor packages: 
DRIMSeq, DEXSeq, and stageR. This Bioconductor workflow article does not contain any new statistical methods  
for detection of DTU or DGE, but instead leverages existing statistical methods and software packages.

Previously, some of the developers of the Bioconductor packages edgeR and DESeq2 have collaborated to develop 
the tximport package16 for summarizing the output of fast transcript-level quantifiers, such as Salmon17, Sailfish18, 
and kallisto19. The tximport package focuses on preparing estimated transcript-level counts, abundances and effec-
tive transcript lengths, for gene-level statistical analysis using edgeR7, DESeq220 or limma-voom10. tximport produces  
an offset matrix to accompany gene-level counts, that accounts for a number of RNA-seq biases as well as  
differences in transcript usage among transcripts of different length that would bias an estimator of gene fold 
change based on the gene-level counts21. tximport can alternatively produce a matrix of data that is roughly on 

            Amendments from Version 1

We have re-organized the article into distinct and more separated Workflow and Evaluation sections; corrected an earlier 
incorrect use of the function nbinomLRT(), which is now replaced with the correct DEXSeq function testForDEU(); added 
the RATs method to the DTU Evaluation; applied stageR to all DTU methods; added plots to categorize the simulated 
gene type source of false positives; added a new evaluation to discern performance differences between DRIMSeq 
and DEXSeq on a published simulation dataset; added a 2 vs 2 simulation for the DTU evaluation; and added more 
recommendations to the Discussion. We have added a number of figures to Supplementary File 1.

See referee reports
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the scale of counts, by scaling transcript-per-million (TPM) abundances to add up to the total number of mapped 
reads. This counts-from-abundance approach directly corrects for technical biases and differential transcript usage  
across samples, obviating the need for the accompanying offset matrix.

Complementary to an analysis of differential gene expression, one can use tximport to import transcript-level  
estimated counts, and then pass these counts to packages such as DRIMSeq or DEXSeq for statistical analy-
sis of differential transcript usage. Following a transcript-level analysis, one can aggregate evidence of differential  
transcript usage to the gene level. The stageR package in Bioconductor provides a statistical framework to 
screen at the gene level for differential transcript usage with gene-level adjusted p-values, followed by confir-
mation of which transcripts within the significant genes show differential usage with transcript-level adjusted  
p-values12. The method controls the overall false discovery rate (OFDR)22 for such a two-stage procedure, which 
will be discussed in more detail later in the workflow. We believe that stageR represents a principled approach to 
analyzing transcript usage changes, as the methods can be evaluated against a target error rate in a manner that 
mimics how the methods will be used in practice. That is, following rejection of the null hypothesis at the gene  
level, investigators would likely desire to know which transcripts within a gene participated in the differential usage.

Here we provide a basic workflow for detecting differential transcript usage using Bioconductor packages,  
following quantification of transcript abundance using the Salmon method (Figure 1). This workflow includes live,  
runnable code chunks for analysis using DRIMSeq and DEXSeq, as well as for performing stage-wise testing of  
differential transcript usage using the stageR package. For the workflow, we use data that is simulated, so that 
we can also evaluate the performance of methods for differential transcript usage, as well as differential gene 

Figure 1. Diagram of the methods presented in this workflow. The left side shows two paths for performing differential 
transcript usage (DTU) using Bioconductor packages and the right side shows two paths for performing differential 
gene expression (DGE). DTU and DGE are complementary analyses of changes in transcription across conditions. This 
workflow focuses mostly on DTU, as there are a number of other published Bioconductor workflows for DGE. In bold are 
the recommended choices for quantification and filtering Salmon transcript-level data as input to the statistical methods. 
The recommended filters implemented in DRIMSeq, and applied upstream of DRIMSeq and DEXSeq, are discussed in 
this workflow.
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and transcript expression. The simulation was constructed using distributional parameters estimated from the  
GEUVADIS project RNA-seq dataset23 quantified by the recount2 project24, including the expression levels of the 
transcripts, the amount of biological variability of gene expression levels across samples, and realistic coverage  
of reads along the transcripts.

Structure of this article
1.   �In the Methods, we describe the simulation dataset, the quantification data generated by Salmon and 

imported via tximport, and the two statistical models for DTU, DRIMSeq and DEXSeq, that are highlighted  
in this workflow.

2.   �We present an end-to-end Workflow for detection of DTU, starting from sequenced reads files (FASTQ) 
and ending with sets of genes and transcripts determined to exhibit evidence of DTU by the statistical 
methods, DRIMSeq and DEXSeq. We demonstrate how stageR can be used with the output of DRIMSeq 
or DEXSeq to control the OFDR across genes and transcripts. Finally, we present code for performing 
differential gene expression (DGE) analysis using DESeq2 and edgeR, and show how to create a scatter  
plot that compares DTU and DGE results across all genes.

3.   �We present an Evaluation of the methods presented in the workflow along with other popular methods for 
detection of DTU, DGE, and differential transcript expression (DTE) on the simulated data. While the 
evaluations rely on simulated data, and are therefore relevant only to the extent that the simulation model 
and parameters reflect characteristics of real data, we feel the evaluations are useful for a rough compari-
son of method performance, and for observing relative changes in performance for a given method as  
sample size increases.

4.   �We conclude with a Discussion of the methods used in the workflow, including benefits and limitations,  
and our set of recommendations from the evaluation of the simulated data.

Methods
Simulation
First we describe details of the simulated data, which will be used in the following workflow and in the evalua-
tion of methods. Understanding the details of the simulation will be useful for assessing the methods in the later 
sections. All of the code used to simulate RNA-seq experiments and write paired-end reads to FASTQ files can 
be found at an associated GitHub repository for the simulation code25, and the reads and quantification files can 
be downloaded from Zenodo26–29. Salmon17 was used to estimate transcript-level abundances for a single sample 
(ERR188297) of the GEUVADIS project23, and this was used as a baseline for transcript abundances in the simula-
tion. Transcripts that were associated with estimated counts less than 10 had abundance thresholded to 0, all other  
transcripts were considered “expressed” (n=46,933). alpine30 was used to estimate realistic fragment GC bias 
from 12 samples from the GEUVADIS project, all from the same sequencing center (the first 12 samples from  
CNAG-CRG in Supplementary Table 2 from Love et al.30). DESeq220 was used to estimate mean and dispersion 
parameters for a Negative Binomial distribution for gene-level counts for 458 non-duplicated GEUVADIS samples  
provided by the recount2 project24, accounting for variation associated with sequencing center and human popula-
tion. Note that, while gene-level dispersion estimates were used to generate underlying transcript-level counts, 
additional uncertainty on the transcript-level data is a natural consequence of the simulation, as the transcript-level  
counts must be estimated (the underlying transcript counts are not provided to the methods).

polyester31 was used to simulate paired-end RNA-seq reads for two groups of 12 samples each, with realistic frag-
ment GC bias, and with dispersion on transcript-level counts drawn from the joint distribution of mean and  
dispersion values estimated from the GEUVADIS samples. We will call this the "main simulation". To compare 
DRIMSeq and DEXSeq in further detail, we generated an additional simulation in which dispersion param-
eters were assigned to genes via matching on the gene-level count, and then all transcripts of a gene had counts 
generated using the same per-gene dispersion. We will call this the "fixed per-gene dispersion" simulation. 
The first sample for group 1 and the first sample for group 2 followed the realistic GC bias profile of the same  
GEUVADIS sample, and so on for all 12 samples. This pairing of the samples was used to generate balanced 
data, but not used in the statistical analysis. countsimQC32 was used to examine the properties of the simulation 
relative to the dataset used for parameter estimation (Supplementary Figure 1). The simulation contains  
24 samples, and the relevant parameters for countsimQC (per-gene mean and dispersion) were estimated over 458 
samples. The full countsimQC report can be accessed at the associated GitHub repository for simulation code25.

Differential expression across two groups was generated as follows: The 46,933 expressed transcripts as defined 
above belonged to 15,017 genes. 70% (n=10,514) of these genes with expressed transcripts were set as null 
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genes, where abundance was not changed across the two groups. For 10% (n=1,501) of genes, all isoforms were 
differentially expressed at a log fold change between 1 and 2.58 (fold change between 2 and 6). The set of tran-
scripts in these genes was classified as DGE (differential gene expression) by construction, and the expressed  
transcripts were also DTE (differential transcript expression), but they did not count as DTU (differential transcript 
usage), as the proportions within the gene remained constant. To simulate balanced differential expression, one 
of the two groups was randomly chosen to be the baseline, and the other group would have its counts multiplied 
by the fold change. For 10% (n=1,501) of genes, a single expressed isoform was differentially expressed at a  
log fold change between 1 and 2.58. This set of transcripts was DTE by construction. If the chosen transcript 
was the only expressed isoform of a gene, this counted also as DGE and not as DTU, but if there were other iso-
forms that were expressed, this counted for both DGE and DTU, as the proportion of expression among the  
isoforms was affected. For 10% (n=1,501) of genes, differential transcript usage was constructed by exchang-
ing the TPM abundance of two expressed isoforms, or, if only one isoform was expressed, exchanging the  
abundance of the expressed isoform with a non-expressed one. This counted for DTU and DTE, but not for  
DGE. An MA plot of the simulated transcript abundances for the two groups is shown in Figure 2.

Quantification and data import
As described in the Introduction, this workflow uses transcript-level quantification estimates produced by Salmon17 
and imported into R/Bioconductor with tximport16. Details about how to run Salmon, and which type of transcript-
level estimated counts should be imported, is covered in the Workflow, with the exact code used to run the DTU 
analysis. Salmon estimates the relative abundance of each annotated transcript for each sample in units of tran-
scripts-per-million (TPM); the estimated TPM values should be proportional to the abundance of the transcripts 
in the population of cells that were assayed. One critical point is that Salmon only considers the transcripts that 
are provided in the annotation; it is not able to detect expression of any novel transcripts. If many un-annotated 
transcripts are expressed in the particular set of samples, successful application of this workflow may require  
first building out a more representative set of annotated transcripts via transcriptome assembly or full transcript 
sequencing.

In addition to relative abundance, Salmon estimates the effective length of each transcript, which can take into 
account a number of sample-specific technical biases including fragment size distribution (default), fragment GC 
content, random hexamer priming bias, and positional bias along the transcript. If a transcript had certain properties, 
related to its length and its sequence content, that made it difficult to produce cDNA fragments and sequence 
reads from these fragments, then its effective length should be lower for that sample, than if these technical biases 

Figure 2. MA plot of simulated abundances. Each point depicts a transcript, with the average log2 abundance in 
transcripts-per-million (TPM) on the x-axis and the difference between the two groups on the y-axis. Of the 35,850 
transcripts which are expressed with TPM > 1 in at least one group, 77% (n=27,429) are null transcripts (grey), which fall 
by construction on the M=0 line, and 23% (n=8,421) are differentially expressed (green, orange, or purple). This filtering 
of 1 TPM is for visualization only and unrelated to the DRIMSeq filtering used in the workflow. As transcripts can belong 
to multiple categories of differential gene expression (DGE), differential transcript expression (DTE), and differential 
transcript usage (DTU), here the transcripts are colored by which genes they belong to (those selected to be DGE-, 
DTE-, or DTU-by-construction).
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were absent. The estimates of TPM and the effective lengths can be used to estimate the number of fragments  
that each transcript produced, which will be called estimated counts in this workflow.

Different types of estimated counts may be correlated with effective transcript length, and so we will discuss  
in the Workflow our recommended type to use for DTU and DGE analysis (also diagrammed in Figure 1).

DTU testing
We focus on two statistical models for DTU testing in this workflow, DRIMSeq11 and DEXSeq6. DEXSeq was 
published first, as a statistical model for detecting differences in exon usage across samples in different condi-
tions. Most of the DEXSeq functions and documentation refer specifically to exons or exonic parts within a gene, 
while the final results table refers more generally to these as features within a group. It is this more general usage  
that we will employ in this workflow, substituting estimated transcript counts in place of exonic part counts.

DEXSeq assumes a Negative Binomial (NB) distribution for the feature counts, and considers the counts 
for each feature (originally, the exonic parts) relative to counts for all other features of the group (the gene), 
using an interaction term in a generalized linear model (GLM). The GLM framework is an extension of the  
linear model (LM), but shares with LM the usage of a design matrix, typically represented by X, which is made up 
of columns of covariates that are multiplied by scalar coefficients, typically represented by β. The design matrix 
with its multiple coefficients is useful for extending statistical models beyond simple group comparisons, allowing  
for more complex situations, such as within-patient comparisons, batch correction, or testing of ratios.

DEXSeq models each feature independently in the GLM fitting stage, and so does not take into account any cor-
relation among the counts across features in a group (e.g. transcript counts within a gene), except insofar as such 
correlation is accounted for by columns in the design matrix. This last point is important, as correlation induced 
by DTU across condition groups, or even DTU that can be associated with cell-type heterogeneity, can be  
modeled in the DEXSeq framework by interaction terms with relevant covariates introduced into the design 
matrix. In the current workflow, we provide an example of capturing DTU across condition using DEXSeq,  
but future iterations of this workflow may also include controlling for additional covariates, such as estimated 
cell type proportions. DEXSeq was evaluated on transcript counts by Soneson et al.33 and then later by Nowicka 
and Robinson11, where it was shown in both cases that DEXSeq could be used to detect DTU in this configura-
tion, though isoform pre-filtering greatly improved its performance in reducing the observed false discovery rate  
(FDR) closer to its nominal level.

In contrast to the NB model, DRIMSeq assumes an Dirichlet Multinomial model (DM) for each gene, where the 
total count for the gene is considered fixed, and the quantity of interest is the proportion for the transcript within 
a gene for each sample. If the proportion for one transcript increases, it must result in a decrease for the propor-
tions of the other transcripts of the gene. Genes that are detected as having statistically significant DTU are 
those in which the proportion changes observed across condition were large, considering the variation in  
proportions seen within condition. The variation in proportions across biological replicates is modeled using 
a single precision parameter per gene, which will be discussed in the workflow below. DRIMSeq also uses 
a design matrix, and so can be used to analyze DTU for complex experimental designs, including within-patient  
comparisons, batch correction, or testing of ratios.

A critical difference between the two models is that DRIMSeq directly models the correlations among transcript 
counts within a gene via the DM distribution, and so can capture these correlations across exchangeable samples 
within a condition. DEXSeq with the NB distribution only can capture correlations among transcript counts within 
a gene when the DTU is across sample groups defined by covariates in the design matrix. On the other hand,  
DRIMSeq is limited in modeling a single precision parameter per gene. If there are two transcripts within a gene 
with very different biological variability – perhaps they have separate promoters under different regulatory  
control – then DEXSeq may do a better job modeling such heterogeneity in the biological variability of transcript  
expression, as it estimates a separate dispersion parameter for each transcript.

Operation
This workflow was designed to work with R 3.5, and the DRIMSeq, DEXSeq, stageR, and tximport packages from 
Bioconductor version 3.7. As the code for this article is linked to Bioconductor version 3.7 (released April 2018), 
please consult the live Bioconductor workflow as the correct code for running the packages may change over 
time. Bioconductor packages should always be installed following the official instructions. The workflow uses 
a subset of all genes to speed up the analysis, but the Bioconductor packages can easily be run for this dataset 
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on all human genes on a laptop in less than an hour. Compute time for the various packages is included in  
the respective evaluation sections.

Workflow
Salmon quantification
We used Salmon version 0.10.0 to quantify abundance and effective transcript lengths for all of the 24  
simulated samples. For this workflow, we will use the first six samples from each group. We quantified against the 
GENCODE human annotation version 28, which was the same reference used to generate the simulated reads. 
We used the transcript sequences FASTA file that contains “Nucleotide sequences of all transcripts on the refer-
ence chromosomes”. When downloading the FASTA file, it is useful to download the corresponding GTF file, as  
this will be used in later sections.

To build the Salmon index, we used the following command. Recent versions of Salmon will discard identical 
sequence duplicate transcripts, and keep a log of these within the index directory. The –gencode command trims  
the GENCODE FASTA headers to only include the transcript identifier.

salmon index --gencode -t gencode.v28.transcripts.fa \
      -i gencode.v28_salmon-0.10.0

To quantify each sample, we used the following command, which says to quantify with six threads using the  
GENCODE index, with inward and unstranded paired end reads, using fragment GC bias correction, writing out 
to the directory sample and using as input these two reads files. The library type is specified by -l IU (inward 
and unstranded) and the options are discussed in the Salmon documentation. Recent versions of Salmon can  
automatically detect the library type by setting -l A. Such a command can be automated in a bash loop using  
bash variables, or one can use more advanced workflow management systems such as Snakemake34 or Nextflow35.

salmon quant -p 6 -i gencode.v28_salmon-0.10.0 -l IU \
      --gcBias -o sample -1 sample_1.fa.gz -2 sample_2.fa.gz

Importing counts into R/Bioconductor
We can use tximport to import the estimated counts, abundances and effective transcript lengths into R. 
The tximport package offers three methods for producing count matrices from transcript-level quantifica-
tion files, as described in detail in Soneson et al.16, and already mentioned in the introduction. To recap these are:  
(1) original estimated counts with effective transcript length information used as a statistical offset, (2) generat-
ing “counts from abundance” by scaling TPM abundance estimates per sample such that they sum to the total 
number of mapped reads (scaledTPM), or generating “counts from abundance” by scaling TPM abundance  
estimates first by the average effective transcript length over samples, and then per sample such that they sum to the 
total number of mapped reads (lengthScaledTPM). We will use scaledTPM for DTU detection, with the statistical  
motivation described below, and the original estimated counts with length offset for DGE detection.

We recommend constructing a CSV file that keeps track of the sample identifiers and any relevant variables,  
e.g. condition, time point, batch, and so on. Here we have made a sample CSV file and provided it along with this 
workflow’s R package, rnaseqDTU. If a user is applying the code in this workflow with her own RNA-seq data, 
she does not need to load the rnaseqDTU package. If a user is running through the code in this workflow with the  
workflow simulated data, she does need to load the rnaseqDTU package.

In order to find this CSV file, we first need to know where on the machine this workflow package lives, so we 
can point to the extdata directory where the CSV file is located. These two lines of code load the workflow 
package and find this directory on the machine. Again, these two lines of code would therefore not be part of a  
typical analysis using one’s own RNA-seq data.

library(rnaseqDTU)
csv.dir <- system.file("extdata", package="rnaseqDTU")

The CSV file records which samples are condition 1 and which are condition 2. The columns of this CSV 
file can have any names, although sample_id will be used later by DRIMSeq, and so using this column name  
allows us to pass this data.frame directly to DRIMSeq at a later step.

samps <- read.csv(file.path(csv.dir, "samples.csv"))
head(samps)
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##   sample_id condition
## 1      s1_1         1
## 2      s2_1         1
## 3      s3_1         1
## 4      s4_1         1
## 5      s5_1         1
## 6      s6_1         1

samps$condition <- factor(samps$condition)
table(samps$condition)

##
## 1 2
## 6 6

files <- file.path("/path/to/dir", samps$sample_id, "quant.sf")
names(files) <- samps$sample_id
head(files)

##                         s1_1                         s2_1
## "/path/to/dir/s1_1/quant.sf" "/path/to/dir/s2_1/quant.sf"
##                         s3_1                         s4_1
## "/path/to/dir/s3_1/quant.sf" "/path/to/dir/s4_1/quant.sf"
##                         s5_1                         s6_1
## "/path/to/dir/s5_1/quant.sf" "/path/to/dir/s6_1/quant.sf"

We can then import transcript-level counts using tximport. For DTU analysis, we suggest generating counts from 
abundance, using the scaledTPM method described by Soneson et al.16. The countsFromAbundance 
option of tximport uses estimated abundances to generate roughly count-scaled data, such that each column will 
sum to the number of reads mapped for that library. By using scaledTPM counts, the estimated proportions fit  
by DRIMSeq, which are generated from counts, will be equivalent to proportions of the abundance of the isoforms.

If instead of scaledTPM, we used the original estimated transcript counts (countsFromAbundance="no"), 
or if we used lengthScaledTPM transcript counts, then a change in transcript usage among transcripts of  
different length could result in a changed total count for the gene, even if there is no change in total gene expres-
sion. For more detail and a diagram of this effect, we refer the reader to Figure 1 of Trapnell et al.21. Briefly, this 
is because the original transcript counts and lengthScaledTPM transcript counts scale with transcript length,  
while scaledTPM transcript counts do not. A change in the total count for the gene, not corrected by an offset, 
could then bias the calculation of proportions and therefore confound DTU analysis. For testing DTU using DRIM-
Seq and DEXSeq, it is convenient if the count-scale data do not scale with transcript length within a gene. This  
could be corrected by an offset, but this is not easily implemented in the current DTU analysis packages. For  
gene-level analysis (DGE), we can use gene-level original counts with an average transcript length offset, gene-
level scaledTPM counts, or gene-level lengthScaledTPM counts, as all of these three methods control for 
the length bias described by Trapnell et al.21 and Soneson et al.16. Our DTU and DGE countsFromAbundance  
recommendations are summarized in Figure 1.

A final note is that, the motivation for using scaledTPM counts hinges on the fact that estimated fragment 
counts scale with transcript length in fragmented RNA-seq data. If a different experiment is performed and 
a different quantification method used to produce counts per transcript which do not scale with transcript 
length, then the recommendation would be to use these counts per transcript directly. Examples of experiments 
producing counts per transcript that would potentially not scale with transcript length include counts of full-
transcript-length or nearly-full-transcript-length reads, or counts of 3’ tagged RNA-seq reads aggregated to  
transcript groups. In either case, the statistical methods for DTU could be provided directly with the transcript  
counts.

The following code chunk is what one would use in a typical analysis, but is not evaluated in this workflow 
because the quantification files are not provided in the rnaseqDTU package due to size restrictions. Instead we will 
load a pre-constructed matrix of counts below. In a typical workflow, the code below would be used to generate  
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the matrix of counts from the quantification files. All of the quantification files and simulated reads for this dataset have 
been made publicly available on Zenodo; see the Data availability section at the end of this workflow.

library(tximport)
txi <- tximport(files, type="salmon", txOut=TRUE,
                countsFromAbundance="scaledTPM")
cts <- txi$counts
cts <- cts[rowSums(cts) > 0,]

Transcript-to-gene mapping
Bioconductor offers numerous approaches for building a TxDb object, a transcript database that can be used 
to link transcripts to genes (among other uses). The following code chunks were used to generate a TxDb, 
and then use the select function with the TxDb to produce a corresponding data.frame called txdf which 
links transcript IDs to gene IDs. In this TxDb, the transcript IDs are called TXNAME and the gene IDs are called 
GENEID. The version 28 human GTF file was downloaded from the GENCODE website when download-
ing the transcripts FASTA file. Due to size restrictions, neither the gencode.v28.annotation.gtf.gz  
file nor the generated .sqlite file are included in the rnaseqDTU package.

library(GenomicFeatures)
gtf <- "gencode.v28.annotation.gtf.gz"
txdb.filename <- "gencode.v28.annotation.sqlite"
txdb <- makeTxDbFromGFF(gtf)
saveDb(txdb, txdb.filename)

Once the TxDb database has been generated and saved, it can be quickly reloaded:

txdb <- loadDb(txdb.filename)
txdf <- select(txdb, keys(txdb, "GENEID"), "TXNAME", "GENEID")
tab <- table(txdf$GENEID)
txdf$ntx <- tab[match(txdf$GENEID, names(tab))]

DRIMSeq
We load the cts object as created in the tximport code chunks. This contains count-scale data, gener-
ated from abundance using the scaledTPM method. The column sums are equal to the number of mapped 
paired-end reads per experiment. The experiments have between 31 and 38 million paired-end reads that were  
mapped to the transcriptome using Salmon.

data(salmon_cts)
cts[1:3,1:3]

##                         s1_1       s2_1       s3_1
## ENST00000488147.1 179.798908 184.437348 229.046306
## ENST00000469289.1   0.000000   0.000000   0.000000
## ENST00000466430.5   5.004159   3.627831   9.463167

range(colSums(cts)/1e6)

## [1] 31.37738 38.47173

We also have the txdf object giving the transcript-to-gene mappings (for construction, see previous section). 
This is contained in a file called simulate.rda that contains a number of R objects with information about the  
simulation, that we will use later to assess the methods’ performance.

data(simulate)
head(txdf)

##               GENEID            TXNAME ntx
## 1 ENSG00000000003.14 ENST00000612152.4   5
## 2 ENSG00000000003.14 ENST00000373020.8   5
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## 3 ENSG00000000003.14 ENST00000614008.4   5
## 4 ENSG00000000003.14 ENST00000496771.5   5
## 5 ENSG00000000003.14 ENST00000494424.1   5
## 6  ENSG00000000005.5 ENST00000373031.4   2

all(rownames(cts) %in% txdf$TXNAME)

## [1] TRUE

txdf <- txdf[match(rownames(cts),txdf$TXNAME),]
all(rownames(cts) == txdf$TXNAME)

## [1] TRUE

In order to run DRIMSeq, we build a data.frame with the gene ID, the feature (transcript) ID, and then columns  
for each of the samples:

counts <- data.frame(gene_id=txdf$GENEID,
                     feature_id=txdf$TXNAME,
                     cts)

We can now load the DRIMSeq package and create a dmDSdata object, with our counts and samps  
data.frames. Typing in the object name and pressing return will give information about the number of genes:

library(DRIMSeq)
d <- dmDSdata(counts=counts, samples=samps)
d

## An object of class dmDSdata
## with 16612 genes and 12 samples
## * data accessors: counts(), samples()

The dmDSdata object has a number of specific methods. Note that the rows of the object are gene-oriented, so  
pulling out the first row corresponds to all of the transcripts of the first gene:

methods(class=class(d))

## [1] [           coerce      counts      dmFilter      dmPrecision length
## [7] names       plotData    show
## see ’?methods’ for accessing help and source code

counts(d[1,])[,1:4]

##              gene_id        feature_id       s1_1       s2_1
## 1 ENSG00000000419.12 ENST00000371588.9 1394.71411 1210.12539
## 2 ENSG00000000419.12 ENST00000466152.5  135.15850   18.20031
## 3 ENSG00000000419.12 ENST00000371582.8  154.77943   35.39425
## 4 ENSG00000000419.12 ENST00000371584.8   42.85733   86.04958
## 5 ENSG00000000419.12 ENST00000413082.1    0.00000    0.00000

It will be useful to first filter the object, before running procedures to estimate model parameters. This greatly 
speeds up the fitting and removes transcripts that may be troublesome for parameter estimation, e.g. estimat-
ing the proportion of expression among the transcripts of a gene when the total count is very low. We first define 
n to be the total number of samples, and n.small to be the sample size of the smallest group. We use all three 
of the possible filters: for a transcript to be retained in the dataset, we require that (1) it has a count of at least 
10 in at least n.small samples, (2) it has a relative abundance proportion of at least 0.1 in at least n.small 
samples, and (3) the total count of the corresponding gene is at least 10 in all n samples. We used all three  
possible filters, whereas only the two count filters are used in the DRIMSeq vignette example code.
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It is important to consider what types of transcripts may be removed by the filters, and potentially adjust depend-
ing on the dataset. If n was large, it would make sense to allow perhaps a few samples to have very low counts, so 
lowering min_samps_gene_expr to some factor multiple (< 1) of n, and likewise for the first two filters for 
n.small. The second filter means that if a transcript does not make up more than 10% of the gene’s expression  
for at least n.small samples, it will be removed. If this proportion seems too high, for example, if very lowly 
expressed isoforms are of particular interest, then the filter can be omitted or the min_feature_prop lowered. 
For a concrete example, if a transcript goes from a proportion of 0% in the control group to a proportion of 9% in  
the treatment group, this would be removed by the above 10% filter. After filtering, this dataset has 7,764 genes.

n <- 12
n.small <- 6
d <- dmFilter(d,
              min_samps_feature_expr=n.small, min_feature_expr=10,
              min_samps_feature_prop=n.small, min_feature_prop=0.1,
              min_samps_gene_expr=n, min_gene_expr=10)
d

## An object of class dmDSdata
## with 7764 genes and 12 samples
## * data accessors: counts(), samples()

The dmDSdata object only contains genes that have more that one isoform, which makes sense as we are test-
ing for differential transcript usage. We can find out how many of the remaining genes have N isoforms by  
tabulating the number of times we see a gene ID, then tabulating the output again:

table(table(counts(d)$gene_id))

##
##    2    3    4    5    6    7
## 4062 2514  931  222   34    1

We create a design matrix, using a design formula and the sample information contained in the object, accessed 
via samples. Here we use a simple design with just two groups, but more complex designs are possible. For some  
discussion of complex designs, one can refer to the vignettes of the limma, edgeR, or DESeq2 packages.

design_full <- model.matrix(~condition, data=DRIMSeq::samples(d))
colnames(design_full)

## [1] "(Intercept)" "condition2"

Only for speeding up running the live code chunks in this workflow, we subset to the first 250 genes, representing  
about one thirtieth of the dataset. This step would not be run in a typical workflow.

d <- d[1:250,]
7764 / 250

## [1] 31.056

We then use the following three functions to estimate the model parameters and test for DTU. We first esti-
mate the precision, which is related to the dispersion in the Dirichlet Multinomial model via the formula below. 
Because precision is in the denominator of the right hand side of the equation, they are inversely related. Higher 
dispersion – counts more variable around their expected value – is associated with lower precision. For full 
details about the DRIMSeq model, one should read both the detailed software vignette and the publication11.  
After estimating the precision, we fit regression coefficients and perform null hypothesis testing on the coef-
ficient of interest. Because we have a simple two-group model, we test the coefficient associated with the  
difference between condition 2 and condition 1, called condition2. The following code takes about half a minute,  
and so a full analysis on this dataset takes about 15 minutes on a laptop.

                                                                        
1

dispersion =
1+ precision
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set.seed(1)
system.time({
  d <- dmPrecision(d, design=design_full)
  d <- dmFit(d, design=design_full)
  d <- dmTest(d, coef="condition2")
})

## ! Using a subset of 0.1 genes to estimate common precision !

## ! Using common_precision = 21.2862 as prec_init !

## ! Using 0 as a shrinkage factor !

##    user  system elapsed
##  34.213   0.450  35.846

To build a results table, we run the results function. We can generate a single p-value per gene, which tests 
whether there is any differential transcript usage within the gene, or a single p-value per transcript, which tests  
whether the proportions for this transcript changed within the gene:

res <- DRIMSeq::results(d)
head(res)

##              gene_id        lr df       pvalue   adj_pvalue
## 1 ENSG00000000457.13  1.493561  4 8.277814e-01 9.120246e-01
## 2 ENSG00000000460.16  1.068294  3 7.847330e-01 9.101892e-01
## 3 ENSG00000000938.12  4.366806  2 1.126575e-01 2.750169e-01
## 4 ENSG00000001084.11  1.630085  3 6.525877e-01 8.643316e-01
## 5 ENSG00000001167.14 28.402587  1 9.853354e-08 5.007113e-07
## 6 ENSG00000001461.16  9.815460  1 1.730510e-03 6.732766e-03

res.txp <- DRIMSeq::results(d, level="feature")
head(res.txp)

##              gene_id         feature_id         lr df    pvalue adj_pvalue
## 1 ENSG00000000457.13 ENST00000367771.10 0.16587607  1 0.6838032  0.9171007
## 2 ENSG00000000457.13  ENST00000367770.5 0.01666448  1 0.8972856  0.9788571
## 3 ENSG00000000457.13  ENST00000367772.8 1.02668495  1 0.3109386  0.6667146
## 4 ENSG00000000457.13  ENST00000423670.1 0.06046507  1 0.8057624  0.9323782
## 5 ENSG00000000457.13  ENST00000470238.1 0.28905766  1 0.5908250  0.8713427
## 6 ENSG00000000460.16  ENST00000496973.5 0.83415788  1 0.3610730  0.7232298

Because the pvalue column may contain NA values, we use the following function to turn these into 1’s. The 
NA values would otherwise cause problems for the stage-wise analysis. From investigating these NA p-value 
cases for DRIMSeq, they all occur when one condition group has all zero counts for a transcript, but suffi-
cient counts from the other condition group, and sufficient counts for the gene. DRIMSeq will not estimate a  
precision for such a gene. These all happen to be true positive genes for DTU in the simulation, where the isoform 
switch is total or nearly total. DEXSeq, shown in a later section, does not produce NA p-values for these genes. A 
potential fix would be to use a plug-in common or trended precision for such genes, but this is not implemented in  
the current version of DRIMSeq.

no.na <- function(x) ifelse(is.na(x), 1, x)
res$pvalue <- no.na(res$pvalue)
res.txp$pvalue <- no.na(res.txp$pvalue)

We can plot the estimated proportions for one of the significant genes, where we can see evidence of switching  
(Figure 3).
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idx <- which(res$adj_pvalue < 0.05)[1]
res[idx,]

##              gene_id       lr df       pvalue    adj_pvalue
## 5 ENSG00000001167.14 28.40259  1 9.853354e-08  5.007113e-07

plotProportions(d, res$gene_id[idx], "condition")

stageR following DRIMSeq
Because we have been working with only a subset of the data, we now load the results tables that would have  
been generated by running DRIMSeq functions on the entire dataset.

data(drim_tables)
nrow(res)

## [1] 7764

nrow(res.txp)

## [1] 20711

A typical analysis of differential transcript usage would involve asking first: “which genes contain any evidence 
of DTU?”, and secondly, “which transcripts in the genes that contain some evidence may be participating in the 
DTU?” Note that a gene may pass the first stage without exhibiting enough evidence to identify one or more 
transcripts that are participating in the DTU. The stageR package is designed to allow for such two-stage test-
ing procedures, where the first stage is called a screening stage and the second stage a confirmation stage12.  
The methods are general, and can also be applied to testing, for example, changes across a time series followed 
by investigation of individual time points, as shown in the stageR package vignette. We show below how stageR is  
used to detect DTU and how to interpret its output.

Figure 3. Estimated transcript proportions for one of the significant genes.
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We first construct a vector of p-values for the screening stage. Because of how the stageR package will com-
bine transcript and gene names, we need to strip the gene and transcript version numbers from their Ensembl IDs  
(this is done by keeping only the first 15 characters of the gene and transcript IDs).

pScreen <- res$pvalue
strp <- function(x) substr(x,1,15)
names(pScreen) <- strp(res$gene_id)

We construct a one column matrix of the confirmation p-values:

pConfirmation <- matrix(res.txp$pvalue, ncol=1)
rownames(pConfirmation) <- strp(res.txp$feature_id)

We arrange a two column data.frame with the transcript and gene identifiers.

tx2gene <- res.txp[,c("feature_id", "gene_id")]
for (i in 1:2) tx2gene[,i] <- strp(tx2gene[,i])

The following functions then perform the stageR analysis. We must specify an alpha, which will be the over-
all false discovery rate target for the analysis, defined below. Unlike typical adjusted p-values or q-values, we 
cannot choose an arbitrary threshold later: after specifying alpha=0.05, we need to use 5% as the target in 
downstream steps. There are also convenience functions getSignificantGenes and getSignificantTx, which are  
demonstrated in the stageR vignette.

library(stageR)
stageRObj <- stageRTx(pScreen=pScreen, pConfirmation=pConfirmation,
                      pScreenAdjusted=FALSE, tx2gene=tx2gene)
stageRObj <- stageWiseAdjustment(stageRObj, method="dtu", alpha=0.05) 
suppressWarnings({
  drim.padj <- getAdjustedPValues(stageRObj, order=FALSE,
                                  onlySignificantGenes=TRUE)
})
head(drim.padj)

##            geneID            txID         gene transcript
## 1 ENSG00000001167 ENST00000341376 1.446731e-05   0.000000
## 2 ENSG00000001167 ENST00000353205 1.446731e-05   0.000000
## 3 ENSG00000001461 ENST00000003912 8.263160e-03   0.000000
## 4 ENSG00000001461 ENST00000339255 8.263160e-03   0.000000
## 5 ENSG00000001631 ENST00000394507 1.287012e-04   0.060474
## 6 ENSG00000001631 ENST00000475770 1.287012e-04   1.000000

The final table with adjusted p-values summarizes the information from the two-stage analysis. Only genes that 
passed the filter are included in the table, so the table already represents screened genes. The transcripts with  
values in the column, transcript, less than 0.05 pass the confirmation stage on a target 5% overall false  
discovery rate, or OFDR. This means that, in expectation, no more than 5% of the genes that pass screening 
will either (1) not contain any DTU, so be falsely screened genes, or (2) contain a falsely confirmed transcript. 
A falsely confirmed transcript is a transcript with an adjusted p-value less than 0.05 which does not exhibit  
differential usage across conditions. The stageR procedure allows us to look at both the genes that passed the  
screening stage and the transcripts with adjusted p-values less than our target alpha, and understand what kind 
of overall error rate this procedure entails. This cannot be said for an arbitrary procedure of looking at standard  
gene adjusted p-values and transcript adjusted p-values, where the adjustment was performed independently.

Post-hoc filtering on the standard deviation in proportions
We found that DRIMSeq was sensitive to detect DTU, but could exceed its false discovery rate (FDR) bounds, 
particularly on the transcript-level tests, and that a post-hoc, non-specific filtering of the DRIMSeq transcript 
p-values and adjusted p-values improved the FDR and OFDR control. We considered the standard deviation 
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(SD) of the per-sample proportions as a filtering statistic. This statistic does not use the information about which  
samples belong to which condition group. We set the p-values and adjusted p-values for transcripts with small  
per-sample proportion SD to 1. We do not recompute adjusted p-values, although we will provide the filtered  
p-values to the stageR procedure.

We note that the p-values are no longer necessarily uniform after filtering out small effect size transcripts and 
genes, although we find that in this simulation at least, the filtering made the procedure more conservative: exclud-
ing transcripts with small SD of the per-sample proportions brought both the observed FDR and the observed  
OFDR closer to their nominal targets, as will be shown in the evaluations below.

res.txp.filt <- DRIMSeq::results(d, level="feature")
smallProportionSD <- function(d, filter=0.1) {
  cts <- as.matrix(subset(counts(d), select=-c(gene_id, feature_id)))
  gene.cts <- rowsum(cts, counts(d)$gene_id)
  total.cts <- gene.cts[match(counts(d)$gene_id, rownames(gene.cts)),]
  props <- cts/total.cts
  propSD <- sqrt(rowVars(props))
  propSD < filter
}
filt <- smallProportionSD(d)
res.txp.filt$pvalue[filt] <- 1
res.txp.filt$adj_pvalue[filt] <- 1

The above post-hoc filter is not part of the DRIMSeq modeling steps, and to avoid interfering with the mod-
eling, we run it after DRIMSeq. The other three filters used before have been tested by the DRIMSeq package 
authors, and are therefore a recommended part of an analysis before the modeling begins. We do not apply this 
post-hoc filter to DEXSeq in this workflow, as DEXSeq seemed to be closer to controlling its FDR and OFDR in  
the evaluations, after using the DRIMSeq filters recommended in this workflow.

DEXSeq
The DEXSeq package was originally designed for detecting differential exon usage6, but can also be adapted to 
run on estimated transcript counts, in order to detect DTU. Using DEXSeq on transcript counts was evaluated by 
Soneson et al.33, showing the benefits in FDR control from filtering lowly expressed transcripts for a transcript-level 
analysis. We benchmarked DEXSeq here, beginning with the DRIMSeq filtered object, as these filters are intuitive,  
they greatly speed up the analysis, and such filtering was shown to be beneficial in FDR control.

The two factors of (1) working on isoform counts rather than individual exons and (2) using the DRIMSeq filtering 
procedure dramatically increase the speed of DEXSeq, compared to running an exon-level analysis. Another advan-
tage is that we benefit from the sophisticated bias models of Salmon, which account for drops in coverage on  
alternative exons that can otherwise throw off estimates of transcript abundance30. A disadvantage over the exon-
level analysis is that we must know in advance all of the possible isoforms that can be generated from a gene  
locus, all of which are assumed to be contained in the annotation files (FASTA and GTF).

We first load the DEXSeq package and then build a DEXSeqDataSet from the data contained in the dmDStest 
object (the class of the DRIMSeq object changes as the results are added). The design formula of the DEXSeq-
DataSet here uses the language “exon” but this should be read as “transcript” for our analysis. DEXSeq will test 
after accounting for total gene expression for this sample and for the proportion of this transcript relative to the  
others – whether there is a condition-specific difference in the transcript proportion relative to the others.

library(DEXSeq)
sample.data <- DRIMSeq::samples(d)
count.data <- round(as.matrix(counts(d)[,-c(1:2)]))
dxd <- DEXSeqDataSet(countData=count.data,
                     sampleData=sample.data,
                     design=~sample + exon + condition:exon,
                     featureID=counts(d)$feature_id,
                     groupID=counts(d)$gene_id)
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The following functions run the DEXSeq analysis. While we are only working on a subset of the data, the full  
analysis for this dataset took less than 3 minutes on a laptop.

system.time({
  dxd <- estimateSizeFactors(dxd)
  dxd <- estimateDispersions(dxd, quiet=TRUE)
  dxd <- nbinomLRT(dxd, reduced=~sample + exon)
})

##    user system elapsed
##   7.451  0.032   7.488

We then extract the results table, not filtering on mean counts (as we have already conducted filtering via DRIMSeq 
functions). We compute a per-gene adjusted p-value, using the perGeneQValue function, which aggregates 
evidence from multiple tests within a gene to a single p-value for the gene and then corrects for multiple 
testing across genes6. Other methods for aggregative evidence from the multiple tests within genes have been  
discussed in a recent publication and may be substituted at this step36. Finally, we build a simple results table with the  
per-gene adjusted p-values.

dxr <- DEXSeqResults(dxd, independentFiltering=FALSE)
qval <- perGeneQValue(dxr)
dxr.g <- data.frame(gene=names(qval),qval)

For size consideration of the workflow R package, we reduce also the transcript-level results table to a simple  
data.frame:

columns <- c("featureID","groupID","pvalue")
dxr <- as.data.frame(dxr[,columns])
head(dxr)

##                                                featureID            groupID
## ENSG00000000457.13:ENST00000367771.10 ENST00000367771.10 ENSG00000000457.13
## ENSG00000000457.13:ENST00000367770.5   ENST00000367770.5 ENSG00000000457.13
## ENSG00000000457.13:ENST00000367772.8   ENST00000367772.8 ENSG00000000457.13
## ENSG00000000457.13:ENST00000423670.1   ENST00000423670.1 ENSG00000000457.13
## ENSG00000000457.13:ENST00000470238.1   ENST00000470238.1 ENSG00000000457.13
## ENSG00000000460.16:ENST00000496973.5   ENST00000496973.5 ENSG00000000460.16
##	                                     pvalue
## ENSG00000000457.13:ENST00000367771.10 0.5620081
## ENSG00000000457.13:ENST00000367770.5  0.8399434
## ENSG00000000457.13:ENST00000367772.8  0.5675043
## ENSG00000000457.13:ENST00000423670.1  0.7032904
## ENSG00000000457.13:ENST00000470238.1  0.8476920
## ENSG00000000460.16:ENST00000496973.5  0.2108527

stageR following DEXSeq
Again, as we have been working with only a subset of the data, we now load the results tables that would have  
been generated by running DEXSeq functions on the entire dataset.

data(dex_tables)

If the stageR package has not already been loaded, we make sure to load it, and run code very similar to that used  
above for DRIMSeq two-stage testing, with a target alpha=0.05.

library(stageR)
strp <- function(x) substr(x,1,15)
pConfirmation <- matrix(dxr$pvalue,ncol=1)
dimnames(pConfirmation) <- list(strp(dxr$featureID),"transcript")
pScreen <- qval
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names(pScreen) <- strp(names(pScreen))
tx2gene <- as.data.frame(dxr[,c("featureID", "groupID")])
for (i in 1:2) tx2gene[,i] <- strp(tx2gene[,i])

The following three functions provide a table with the OFDR control described above. To repeat, the set of genes 
passing screening should not have more than 5% of either genes which have in fact no DTU or genes which  
contain a transcript with an adjusted p-value less than 5% which do not participate in DTU.

stageRObj <- stageRTx(pScreen=pScreen, pConfirmation=pConfirmation,
                      pScreenAdjusted=TRUE, tx2gene=tx2gene)
stageRObj <- stageWiseAdjustment(stageRObj, method="dtu", alpha=0.05)
suppressWarnings({
  dex.padj <- getAdjustedPValues(stageRObj, order=FALSE,
                                 onlySignificantGenes=TRUE)
})
head(dex.padj)

##            geneID            txID         gene transcript
## 1 ENSG00000001167 ENST00000341376 0.0000877079          0
## 2 ENSG00000001167 ENST00000353205 0.0000877079          0
## 3 ENSG00000001461 ENST00000003912 0.0051524663          0
## 4 ENSG00000001461 ENST00000339255 0.0051524663          0
## 5 ENSG00000001630 ENST00000003100 0.0234729668          0
## 6 ENSG00000001630 ENST00000450723 0.0234729668          0

Citing methods in published research
This concludes the DTU section of the workflow. If you use DRIMSeq11, DEXSeq6, stageR12, tximport16, or 
Salmon17 in published research, please cite the relevant methods publications, which can be found in the References  
section of this workflow.

DGE analysis with DESeq2
In the final section of the workflow containing live code examples, we demonstrate how differential transcript 
usage, summarized to the gene level, can be visualized with respect to differential gene expression analysis 
results. We use tximport and summarize counts to the gene level and compute an average transcript length offset 
for count-based methods16. We will then show code for using DESeq2 and edgeR to assess differential gene expres-
sion. Because we have simulated the genes according to three different categories, we can color the final plot by 
the true simulated state of the genes. We note that we will pair DEXSeq with DESeq2 results in the following plot,  
and DRIMSeq with edgeR results. However, this pairing is arbitrary, and any DTU method can reasonably be  
paired with any DGE method.

The following line of code is unevaluated, but was used to generate an object txi.g which contains the  
gene-level counts, abundances and average transcript lengths.

txi.g <- tximport(files, type="salmon", tx2gene=txdf[,2:1])

For the workflow, we load the txi.g object which is saved in a file salmon_gene_txi.rda. We then load 
the DESeq2 package and build a DESeqDataSet from txi.g, providing also the sample information and a  
design formula.

data(salmon_gene_txi)
library(DESeq2)
dds <- DESeqDataSetFromTximport(txi.g, samps, ~condition)

## using counts and average transcript lengths from tximport

The following two lines of code run the DESeq2 analysis20.

dds <- DESeq(dds)
dres <- DESeq2::results(dds)
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Because we happen to know the true status of each of the genes, we can make a scatterplot of the results, coloring  
the genes by their status (whether DGE, DTE, or DTU by construction).

all(dxr.g$gene %in% rownames(dres))

## [1] TRUE

dres <- dres[dxr.g$gene,]
# we can only color because we simulated...
col <- rep(8, nrow(dres))
col[rownames(dres) %in% dge.genes] <- 1
col[rownames(dres) %in% dte.genes] <- 2
col[rownames(dres) %in% dtu.genes] <- 3

Figure 4 displays the evidence for differential transcript usage over that for differential gene expression. We 
can see that the DTU genes cluster on the y-axis (mostly not captured in the DGE analysis), and the DGE genes 
cluster on the x-axis (mostly not captured in the DTU analysis). The DTE genes fall in the middle, as all of them  
represent DGE, and some of them additionally represent DTU (if the gene had other expressed transcripts). Because 
DEXSeq outputs an adjusted p-value of 0 for some of the genes, we set these instead to a jittered value around  
10−20, so that their number and location on the x-axis could be visualized. These jittered values should only be  
used for visualization.

bigpar()
# here cap the smallest DESeq2 adj p-value
cap.padj <- pmin(-log10(dres$padj), 100)
# this vector only used for plotting
jitter.padj <- -log10(dxr.g$qval + 1e-20)
jp.idx <- jitter.padj == 20
jitter.padj[jp.idx] <- rnorm(sum(jp.idx),20,.25)
plot(cap.padj, jitter.padj, col=col,
     xlab="Gene expression",
     ylab="Transcript usage")
legend("topright",
       c("DGE","DTE","DTU","null"),
       col=c(1:3,8), pch=20, bty="n")        

Figure 4. Transcript usage over gene expression plot. Each point represents a gene, and plotted are -log10 adjusted 
p-values for DEXSeq’s test of differential transcript usage (y-axis) and DESeq2’s test of differential gene expression  
(x-axis). Because we simulated the data we can color the genes according to their true category.
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DGE analysis with edgeR
We can also perform differential gene expression analysis using edgeR as the inference engine7. The following  
code incorporates the average transcript length matrix as an offset for an edgeR analysis.

library(edgeR)
cts.g <- txi.g$counts
normMat <- txi.g$length
normMat <- normMat / exp(rowMeans(log(normMat)))
o <- log(calcNormFactors(cts.g/normMat)) + log(colSums(cts.g/normMat))
y <- DGEList(cts.g)
y <- scaleOffset(y, t(t(log(normMat)) + o))
keep <- filterByExpr(y)
y <- y[keep,]

The basic edgeR model fitting and results extraction can be accomplished with the following lines:

y <- estimateDisp(y, design_full)
fit <- glmFit(y, design_full)
lrt <- glmLRT(fit)
tt <- topTags(lrt, n=nrow(y), sort="none")[[1]]

Again, we can color the genes by their true status in the simulation:

common <- intersect(res$gene_id, rownames(tt))
tt <- tt[common,]
res.sub <- res[match(common, res$gene_id),]
# we can only color because we simulated...
col <- rep(8, nrow(tt))
col[rownames(tt) %in% dge.genes] <- 1
col[rownames(tt) %in% dte.genes] <- 2
col[rownames(tt) %in% dtu.genes] <- 3

Figure 5 displays the evidence for differential transcript usage over that for differential gene expression, now using 
DRIMSeq and edgeR. One obvious contrast with Figure 4 is that DRIMSeq outputs lower non-zero adjusted p-values 
than DEXSeq does, where DEXSeq instead outputs 0 for many genes. The plots look more similar when zooming in on 
the DRIMSeq y-axis, as can be seen in the right panel of Figure 5.

bigpar()
plot(-log10(tt$FDR), -log10(res.sub$adj_pvalue), col=col,
     xlab="Gene expression",
     ylab="Transcript usage")
legend("topright",
       c("DGE","DTE","DTU","null"),
       col=c(1:3,8), pch=20, bty="n")

bigpar()
plot(-log10(tt$FDR), -log10(res.sub$adj_pvalue), col=col,
     xlab="Gene expression",
     ylab="Transcript usage", ylim=c(0,20))
legend("topright",
       c("DGE","DTE","DTU","null"),
       col=c(1:3,8), pch=20, bty="n")

End of workflow section
This marks the end of the workflow section of the article. The following sections provide an evaluation of the 
methods presented in this workflow for DTU and DGE, alongside evaluation of other popular methods for DTU 
and for DGE. We additionally provide an evaluation of popular methods for DTE. While the workflow does not 
contain any code for performing DTE, we felt it was valuable to include an evaluation at this level of analysis 
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as well. In practice, for count-based methods such as DESeq2 and edgeR, performing DTE uses the same 
code as for DGE, but the counts are provided at the transcript level rather than summarized to the gene level.  
All of the analysis code used in the evaluations is provided in the associated GitHub repository25.

Evaluation
We investigated the performance of the Bioconductor packages used in the workflow above, DRIMSeq and 
DEXSeq for DTU, DESeq2 and edgeR for DGE, relative to other popular methods for DTU and DGE. It is  
useful to assess the performance of methods for DGE in a simulation which also includes DTU – to see whether 
there is potentially an enrichment of false positives for certain types of genes according to the simulation. We 
also considered the question of DTE, and evaluated a number of methods designed for DGE – as well as meth-
ods designed for either DGE or DTE – by testing at the transcript level. DTE is not one of the analyses included  
in the workflow, but it is straightforward to perform with many of the DGE methods as well as with the methods  
explicitly designed to perform DGE or DTE.

As in the last plots presented in the workflow, in the evaluation we categorized genes by their simulation type, using 
the terms "DGE", "DTE", and "DTU". When referring to the gene types in the simulation: these refer to the 10% 
of genes wherein all expressed transcripts had a constant fold change across condition (DGE), the 10% of genes 
where a single expressed transcript had a fold change across condition (DTE), and the 10% of genes where two 
transcripts had their expression switched across condition (DTU). Thus, the DTU genes counted as false posi-
tives for the DGE analysis, and vice versa. The DTE genes counted as true positives for the DGE analysis  
(because the total expression changed), and counted as true positives for DTU analysis if there were other expressed 
transcripts in the gene, or a false positive for DTU analysis if there were no other expressed transcripts (and so  
the proportions did not change).

We used three types of plots to explore the results. For assessing overall method performance for DTU, DGE, 
and DTE analysis, the iCOBRA package37 was used to construct plots to assess the true positive rate (TPR) over 
the false discovery rate (FDR) at three nominal FDR thresholds: 1%, 5%, and 10%. We additionally used 
bar plots to show the number of false positives for each method across simulated gene-type categories (these 
plots referred to here as breakdown plots). We can do this at both the gene and transcript level: a false posi-
tive transcript can be categorized according to the type of gene to which it belongs. Finally, we created an OFDR 
plot for assessing the use of stageR for constructing gene-transcript OFDR sets, after applying stageR to the  
output of the DTU detection methods. The OFDR plot displays the observed OFDR on the x-axis and the  
sensitivity in recovering DTU transcripts on the y-axis. We used a fixed target OFDR for these plots of 5%. The  
code for evaluating all methods and constructing the iCOBRA plots is included in the simulation repository25.

Other popular methods for DTU
We assessed two other methods for DTU, SUPPA238 and RATs39, both of which can take Salmon quantifications 
as input. For statistical testing of DTU, SUPPA2 computes, for a given transcript, the difference in proportion 

Figure 5. Transcript usage over gene expression plot, as previously, but for DRIMSeq and edgeR. The right panel 
shows the same data as the left panel but zooming in on the y-axis.
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across condition and the differences in proportion seen between biological replicates. SUPPA2 then compares 
the difference in proportion across condition to the distribution of between-replicate differences for transcripts 
with similar average abundance by TPM. The transcript p-value is the tail probability from this empirical distri-
bution, divided by two. SUPPA2 is implemented as a command-line software package written in python, with 
a number of distinct features, including the ability to translate from Salmon transcript-level quantifications 
to individual splicing events, which are cataloged using a specific vocabulary described in the SUPPA2 software  
usage guide. SUPPA2 additionally offers differential analysis on the splicing events, which may be more  
valuable to investigators than per-transcript results, depending on the research goals (similar to the exon-level  
primary use case of DEXSeq).

RATs uses a G-test of independence40 at both the gene level and transcript level: at the gene level it compares 
the sets of abundances for each transcript across condition, and at the transcript level it compares the abundance 
of each transcript against the pooled abundance of the other transcripts in the gene, similar to the approach of  
DEXSeq in detecting differential exon usage, although with a different statistical test. RATs uses gene- and tran-
script-level expression filters before statistical testing. Unlike the other DTU methods discussed, RATs uses the  
inferential replicates (bootstrap or Gibbs samples) to repeat the testing multiple times, and then calculates the  
fraction of inferential replicates which achieve statistical significance. RATs also repeats the statistical test-
ing multiple times using subsets of samples as a secondary assessment of reproducibility. The RATs software 
version we used additionally performs a filter on effect size, such that only genes or transcripts which were both 
reproducible according to inferential replicates and sub-sampling, and having a sufficiently large effect size are 
reported as DTU. RATs is implemented as an R package designed to detect DTU from transcript quantifica-
tion as produced by Salmon or kallisto19. As mentioned above, it can operate either on estimated counts alone, or 
on inferential replicates of the counts (bootstrap or Gibbs samples) as generated by either of these quantification  
tools. It is recommended in the RATs software guide to use a counts-from-abundance approach to generate the  
transcript counts.

We ran SUPPA2 in its differential transcript usage mode. We enabled a filter to remove transcripts with less 
than 1 TPM. TPM filtering is a command-line option available during the diffSplice step of SUPPA2 and 
this greatly improved the running time without loss of sensitivity (an additional filter to enable direct com-
parison with other methods is discussed below). We did not use the SUPPA2 optional gene-correction, which 
does not correct for false discovery rate across genes, as we wanted to apply the aggregation and correc-
tion method perGeneQValue from DEXSeq to obtain an FDR-bounded set of genes and transcripts as output. 
We ran RATs with 30 bootstrap replicates from Salmon, generating counts from abundance by scaling up TPMs.  
The bootstrap replicates approach performed similarly to the approach without bootstrap replicates, with a 
minor improvement in the FDR and OFDR with including the bootstrap replicates. For easier visualization and  
to avoid overlapping data points, we only include the RATs bootstrap results in the evaluation plots.

To facilitate comparisons across methods, we only considered the genes and transcripts passing the DRIMSeq  
filters for minimum gene and transcript counts and minimum proportion. This eliminated genes which had expres-
sion too low to have very much statistical power for detecting DTU, and transcripts which were very lowly 
expressed in both conditions, and so not contributing useful information for DTU. We assessed that excluding these 
lowly expressed genes and transcripts did not change the relative differences in sensitivity of the methods, as they 
were not detectable by any of the methods with regards to DTU. For SUPPA2, we performed perGeneQValue 
only on those genes and transcripts passing the DRIMSeq filters. For RATs, we provided the bootstrap replicate  
counts-from-abundance for the genes and transcripts that passed the DRIMSeq filters. We performed identical stage-
wise analysis with stageR on SUPPA2 and RATs output, to allow direct comparison with DRIMSeq and DEXSeq  
stage-wise results and observed OFDR. Exact code for running SUPPA2 and RATs is provided in the respective  
directories in the associated GitHub repository25.

DTU evaluation
In the workflow, we showed a typical analysis for a comparison of 6 vs 6 samples. As we were interested in the 
performance at various sample sizes, we performed the entire analysis for DRIMSeq, DEXSeq, RATs, and 
SUPPA2 at per-group sample sizes of 3, 6, 9, and 12. The following evaluation corresponds to the “main”  
simulation as described in the Methods.

At the gene level, in terms of controlling the nominal FDR, SUPPA2 always controlled its FDR, RATs controlled 
its FDR except for the 1% threshold for sample size 3, DEXSeq controlled its FDR except for the 1% threshold 
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at all sample sizes and 5% threshold for sample size 3, and DRIMSeq exceeded its FDR but approached the tar-
get for larger sample sizes (Figure 6). RATs gave nearly the same set of genes whether thresholding at 1%, 5%, 
or 10% nominal FDR, which we found was related to its default filtering procedures. Exceeding the nominal 
FDR level by a small amount should be considered with a method’s relative sensitivity in mind as well, compared 
to other methods. For example, for the 6 vs 6 comparison, DRIMSeq had an observed FDR of 12% at nominal 
10%, meaning that for every 100 genes reported as containing DTU, the method reported 2 more false  
positive genes than its FDR target would allow. In general, SUPPA2 and RATs were able to strictly control the  
FDR, while DRIMSeq and DEXSeq sometimes exceeded their FDR but with a large gain in sensitivity, particularly for 
per-group sample sizes of 6 or larger.

We further broke down the true positives and false positives at the gene level, for a target 5% FDR, according to 
the simulated gene type (“DGE”, “DTE”, “DTU”, or “null”). The true positives for most methods matched the 
gene-type proportion of true genes with transcript usage changes (Supplementary Figure 2). About two-thirds were 

Figure 6. Gene-level screening for differential transcript usage (DTU). True positive rate (y-axis) over false discovery 
rate (FDR) (x-axis) for DEXSeq, DRIMSeq, RATs, and SUPPA2. The four panels are for per-group sample sizes: 3, 6, 
9, and 12, as indicated in the title. Circles indicate thresholds of 1%, 5%, and 10% nominal FDR, which are filled if the 
observed value is less than the target (dashed vertical lines).
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from the simulated DTU genes (two transcripts with swapped expression), and one-third were from simulated 
DTE genes with one transcript differentially expressed but where the proportions did change because at least one 
other transcript was expressed. SUPPA2 and RATs had a slight decrease in relative sensitivity for the simulated 
DTE genes. The false positives for methods mostly tracked with the proportion of genes without transcript usage 
changes (Supplementary Figure 3). The methods that tended to exceeded the target FDR, DRIMSeq and DEXSeq,  
did not have any particular category of simulated gene type that was over-represented in the false positives.

We assessed the overall false discovery rate (OFDR) procedure implemented with stageR using gene- and  
transcript-level p-values from DRIMSeq, DEXSeq, RATs, and SUPPA2, for a 5% target OFDR. SUPPA2 and 
RATs controlled the target OFDR at all sample sizes, with RATs having nearly exactly 5% OFDR at the smallest  
sample size. DEXSeq input to stageR was close to the 5% OFDR target except for a sample size of 3, which had an 
OFDR around 10%. For DRIMSeq, we assessed whether raising the p-values to 1 for transcripts with small propor-
tion SD helped to recover OFDR control. The observed OFDR for DRIMSeq with proportion SD filtering was at 
lowest around 12% at per-group sample size of 6 and higher (Figure 7). Without the filtering, the observed OFDR  
for DRIMSeq was otherwise around 25%. While SUPPA2 and RATs always controlled the OFDR, we noted that 
the sensitivity in terms of transcripts detected via the stageR two-stage procedure did not increase with sample  
size, unlike DRIMSeq and DEXSeq which approached 75% sensitivity at the largest sample size.

Finally, although the workflow showed how to integrate the transcript- and gene-level tests using the stageR pro-
cedure, we also evaluated the transcript-level adjusted p-values alone for DRIMSeq, DEXSeq, RATS, and SUPPA2. 
This evaluation corresponds to an analysis which does not use any gene-level aggregation, and does not use stageR, 
but considers only the adjusted p-values per transcript from each method. Here we computed the standard FDR, 
where the unit of false discovery is the transcript, in contrast to the OFDR where the unit of false discovery is 
the gene. SUPPA2 and RATs tended to control their FDR as in the gene-level analysis (Figure 8). DEXSeq only 
slightly exceeded its FDR for sample sizes 6 or larger, eventually controlling the 10% target FDR. DRIMSeq with 
proportion SD filtering approached the target FDR as sample size increased for the 5% and 10% targets, while  
without filtering, the observed FDR was much higher than the target.

The breakdown of false positives by gene type, for a target 5% FDR, was revealing for the transcript-level anal-
ysis, as we noticed that for this simulation DRIMSeq tended to have an excess of false positive transcripts that 
belonged to true DTU genes (Supplementary Figure 4), relative to what would be expected by random sampling 

Figure 7. Number of true positives and observed overall false discovery rate (OFDR) using stageR for a 5% target. 
Each method is drawn as a line, and the numbers to the right of the points indicate the per-group sample size. Adjusted 
p-values for a nominal 5% OFDR (dashed vertical line) were generated for DEXSeq, DRIMSeq (with and without post-
hoc filtering), RATs, and SUPPA2 from gene- and transcript-level p-values using the stageR framework for stage-wise 
testing.
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of the transcripts not participating in differential transcript usage. From looking at individual examples, we noticed 
that DRIMSeq would sometimes correctly identify the gene as DTU, but have a low p-value for one or more addi-
tional transcripts beyond the two transcripts whose expression was actually swapped. This excess of false positive  
transcripts from true DTU genes was also observed for DEXSeq as sample size increased.

We also assessed all of the above metrics for a sample size of 2 vs 2, including gene-level DTU detection, OFDR, 
and transcript-level DTU detection (Supplementary Figure 5). This additional analysis at a very low per-group 
sample size revealed that most of the methods could not control the gene-level FDR, only RATs was able to con-
trol a target 10% FDR. SUPPA2 and RATs were the closest at controlling the target 5% OFDR, with observed 
OFDR around 10%. At the transcript-level, only RATs could control the 10% FDR, and with less than 50%  
sensitivity. This analysis revealed that a per-group sample size of 2 is probably not sufficient to to detect most DTU 
genes and transcripts.

Figure 8. Transcript-level differential transcript usage (DTU) analysis without stage-wise testing. True positive rate 
(y-axis) over false discovery rate (x-axis) for DEXSeq, DRIMSeq (with and without post-hoc filtering), RATs, and SUPPA2. 
The four panels are for per-group sample sizes: 3, 6, 9, and 12, as indicated in the title. Circles indicate thresholds of 
1%, 5%, and 10% nominal FDR.
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In Table 1 we include the compute time for each method at various sample sizes. Compute time includes 
only the call_DTU step of RATs, and only the diffSplice step of SUPPA2 (the other SUPPA2 steps 
take less than a minute). For DRIMSeq and DEXSeq, we include the compute time of the estimation steps  
(importing counts with tximport and filtering takes only a few seconds).

Fixed per-gene dispersion
In order to further investigate performance differences between the two methods highlighted in the workflow  
section, DRIMSeq and DEXSeq, we generated an additional simulation we called “fixed per-gene dispersion” in 
which genes were assigned Negative Binomial dispersion parameters by matching the gene-level count to the 
joint distribution of mean and dispersions on the GEUVADIS dataset. Then transcript-level counts were gener-
ated with all transcripts of a gene being assigned the same Negative Binomial dispersion parameter. This contrasts  
with the “main” simulation, in which each transcript was assigned its own dispersion parameter, resulting in het-
erogeneity of dispersion within a gene. As we do not know the degree to which transcripts of a gene would have 
correlated biological variability in an experimental dataset, we also include the results for the count-based methods  
that estimate precision/dispersion, DRIMSeq and DEXSeq, for this additional simulation.

DRIMSeq, which estimates a single precision parameter per gene, performed better in terms of FDR control on this 
simulation at the gene level (Figure 9), although we note that DRIMSeq nearly controlled FDR at the gene level 
already in the first simulation for samples sizes 6 and larger. DEXSeq models different dispersion parameters for 
every transcript, and its performance changes less across the two simulations, although it had better OFDR 
and FDR control for the smallest sample size. DRIMSeq with proportion SD filtering had much better control of 
OFDR (Figure 10) and of FDR in the transcript-level analysis (Figure 11) in the “fixed per-gene dispersion” sim-
ulation compared to the “main” simulation. We also assessed the true positive and false positive proportions for 
the gene level and transcript level for the “fixed per-gene dispersion” simulation, and these were very similar to  
the true positive and false positive breakdown plots generated for the “main” simulation (data not shown).

Negative binomial gene-level counts
We additionally compared DRIMSeq and DEXSeq on an existing human transcriptome simulation dataset gener-
ated by Soneson et al.33 and analyzed in the DRIMSeq publication11. This simulation has similarities to the “fixed 
per-gene dispersion” simulation in that gene-level estimated mean and dispersion parameters from real data-
sets were used. However, instead of generating transcript-level counts from a Negative Binomial distribution, the 
Soneson et al.33 simulation generated gene-level counts, converted these to an abundance measure, and then used 
a Dirichlet distribution to generate random proportion vectors per sample to distribute the abundances to transcript 
isoforms. To simulate DTU, 1,000 genes were selected and the abundance of the two most abundant tran-
scripts was swapped. Finally RSEM-sim was used to generate reads41. We used the identical kallisto19 estimated  
transcript counts generated by Soneson et al.33 and assessed performance via the true DTU status per gene published 
as supporting data.

As reported in previous publications, we found that both DRIMSeq and DEXSeq had better control of FDR with 
increased filtering (Figure 12). The best performance of both methods was observed with the gene-level and tran-
script-level count filters, and a sample-sized-based proportion filter of 0.1, as recommended in this workflow. 

Table 1. Compute time of methods for 
differential transcript usage (DTU) in 
hours:minutes by pergroup sample 
size, using one core. The fourth row, 
RATs (count), gives the compute time 
using the scaledTPM counts, and not 
the bootstrap replicates.

Method n=3 n=6 n=9 n=12

DRIMSeq 0:15 0:15 0:18 0:18

DEXSeq 0:01 0:02 0:05 0:10

RATs 1:41 2:34 4:44 6:08

RATs (count) 0:10 0:38 1:22 2:32

SUPPA2 0:16 1:18 3:48 5:33
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Figure 9. Gene-level screening for differential transcript usage (DTU), on the “fixed per-gene dispersions” 
simulation. The four panels are for per-group sample sizes: 3, 6, 9, and 12, as indicated in the title. Circles indicate 
thresholds of 1%, 5%, and 10% nominal FDR.

The sensitivity (TPR) around 70% is similar to that reported by Nowicka and Robinson11, and similar to what 
we observed in our “main” and “fixed per-gene dispersion” simulations. We recreated the “5%-any” filtering 
rule from Nowicka and Robinson11, which kept a transcript if it was observed with a proportion higher than 5% 
in any of the samples. This is in contrast with the recommendation from this workflow and the current DRIMSeq 
vignette which makes use of the number of replicates per condition for the transcript-level filters, i.e. requiring 3 
out of 6 samples to have proportions higher than a certain threshold for a 3 vs 3 experiment. For the “5%-any” fil-
tering, for target 10% FDR, we observed FDR for DRIMSeq and DEXSeq at around 25% and 20%, respectively.  
This is not identical, but comparable to the ∼ 28% FDR for both methods reported by Nowicka and Robinson11.

Again, a caveat of all of our comparative evaluations of DRIMSeq and DEXSeq is that we do not know whether 
various real RNA-seq experiments will more closely reflect heterogeneous dispersion or fixed dispersion 
within genes, or if the counts within a gene are better modeled by distributing gene-level abundance to tran-
scripts via a Dirichlet distribution as in Soneson et al.33. However, we have examined simulations reflecting each 
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Figure 10. Number of true positives and observed overall false discovery rate (OFDR) using stageR for 5% target, 
on the “fixed per-gene dispersions” simulation.

of these cases, and confirmed that minimum count and minimum proportion filtering benefit both DRIMSeq  
and DEXSeq in terms of their FDR and OFDR control.

Methods for DGE and DTE
In the workflow, we showed how DESeq2 and edgeR can be used to detect differential gene expression with Salmon 
quantifications imported and summarized to the gene level via tximport. There are many other methods for test-
ing for DGE. Here we will briefly review some of the methods with well-documented R packages hosted on Bio-
conductor, CRAN, or GitHub and then compare their performance in detecting DGE and DTE on the “main” 
simulation. The primary reasons for including this DGE and DTE assessment is that we are interested in how 
the tools designed for DGE perform when DTU is present, and we are also interested in assessing how the DGE  
methods, some of which were not designed for DTE, perform when provided with estimated transcript counts.

A number of the methods, edgeR7, edgeR-QL (using the quasi-likelihood functions)42, EBSeq43, and DESeq220, 
use a Negative Binomial distribution to model the counts, and empirical Bayes techniques to estimate per-gene 
parameters despite limited sample size. The Negative Binomial is a useful distribution for counts, in that it has a  
parameter for the location of the mean count, as well as a dispersion parameter for the expected spread of counts. 
For high counts, the dispersion parameter is approximately equal to the square of the coefficient of variation (the 
standard deviation over the mean), and so can be interpreted for high counts as how much the data can be expected  
to vary around the mean count, relative to the size of the mean.

EBSeq, uniquely among these Negative-Binomial-based models, was also specifically designed to accommodate 
extra uncertainty in transcript counts when assessing DTE. EBSeq has a DTE mode in which the number of tran-
script isoforms per gene is supplied as a piece of information before running the main analysis function. edgeR-QL  
differs from edgeR and DESeq2 in that it accounts for uncertainty in the dispersion estimate via a quasi-likelihood 
framework. limma with voom transformation10 and sleuth44 model the log of scaled counts, with sleuth addition-
ally taking into account inferential variance on the transcript- and gene- level counts, unlike any of the other DGE 
or DTE methods we assessed. Finally, SAMseq45 scales counts via a resampling approach and applies rank-based 
statistical tests to detect differences in samples across condition; by operating on ranks, it is much less sensitive  
to count outliers or in general to mis-specified parametric modeling.

For DGE and DTE, the following filtering functions or rules for each package were used: filterByExpr 
for edgeR, edgeR-QL, and limma with voom, sleuth_prep for sleuth, and a custom filter requiring a count 
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of 10 or more for half the samples for DESeq2, EBSeq, and SAMSeq, which do not come with their own filtering 
functions. For evaluation, all genes (or transcripts in DTE analysis) were included, except those for which no  
software provided an adjusted p-value.

DGE evaluation
We assessed the aforementioned R packages for differential gene expression, to determine true positive rate 
and control of false discovery rate on the “main” simulated dataset. In this analysis, the simulated “DGE” genes 
(where all transcripts are differentially expressed at the same fold change), and the “DTE” genes (where a  
single transcript was chosen to be differentially expressed) should count as true positives for differential gene 
expression, while the simulated “DTU” genes should count as false positives for differential gene expression, as  
the total expression of the gene remains constant.

Figure 11. Transcript-level differential transcript usage (DTU) analysis without stage-wise testing, on the “fixed 
per-gene dispersions” simulation. The four panels are for per-group sample sizes: 3, 6, 9, and 12, as indicated in the 
title. Circles indicate thresholds of 1%, 5%, and 10% nominal FDR.
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We compared DESeq2, EBSeq, edgeR, limma with voom transformation, SAMseq, and sleuth. We used tximport 
to summarize Salmon abundances to the gene level, and provided all methods other than DESeq2 and sleuth with 
the lengthScaledTPM count matrix. sleuth takes as input the quantification from kallisto19, which was run 
with 30 bootstrap samples and bias correction. For gene-level analysis in sleuth, the argument aggregation_
column="gene_id" was used. As DESeq2 has specially designed import functions for taking in estimated gene 
counts and an offset from tximport, we used this approach to provide Salmon summarized gene-level counts and 
an offset. edgeR and edgeR-QL had the same performance using the counts and offset approach or the length-
ScaledTPM approach, so we used the latter for code simplicity. The exact code used to run the different methods  
can be found at the simulation code repository25. Compute time for the different gene-level methods are presented  
in Table 2.

iCOBRA plots with true positive rate over false discovery rate for gene-level analysis across four different per-
group sample sizes are presented in Figure 13. For the smallest per-group sample size of 3, all methods except 
DESeq2 and EBSeq tended to control the FDR, while those two methods had, for example, 15% and 18% FDR 
respectively at the nominal 10% rate. SAMseq, with so few samples, did not have adequate sensitivity to detect 
DGE. At the per-group sample size of 6, all methods except DESeq2 and SAMseq tended to control the FDR. At 
this sample size, EBSeq controlled its FDR. For the largest per-group sample sizes, 9 and 12, the performance of 
many methods remained similar as previously, except sleuth did not control its nominal FDR. For ease of com-
parison, we also provide Supplementary Figure 6 where the x-axis remains fixed through the sample sizes.  
We performed an additional simulation, called “uniform coverage”, to see if the performance of sleuth at higher  

Figure 12. Gene-level screening for differential transcript usage (DTU) analysis on the 3 vs 3 human transcriptome 
simulated data from Soneson et al.33. In the method names, “Prop05.any” refers to proportion filtering such that a 
single sample must have a proportion higher than 5% for a transcript to be kept. “Prop05.half” refers to proportion 
filtering such that 3 out of 6 samples must have a proportion higher than 5%. “Prop10.half.cts” refers to the same filters 
recommended in this workflow: 3 of out 6 samples with proportions higher than 10% to keep a transcript, 3 out of 6 
samples with transcript counts greater than 10 to keep a transcript, and all samples with gene counts greater than 10 to 
keep a gene. Circles indicate thresholds of 1%, 5%, and 10% nominal FDR. Current release versions of methods were 
used, though results were very similar for “Prop05.any” for DEXSeq version 1.10.1 used in Nowicka and Robinson11.
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Table 2. Compute time of methods 
for differential gene expression 
(DGE) rounded to the minute by 
per-group sample size. Compute 
time includes data import and 
summarization to gene-level 
quantities using one core.

Method n=3 n=6 n=9 n=12

DESeq2 <1 <1 <1 <1

EBSeq 1 2 2 3

edgeR <1 <1 <1 <1

edgeR-QL <1 <1 <1 <1

limma <1 <1 <1 <1

SAMseq <1 <1 <1 <1

sleuth 2 4 5 7

Figure 13. True positive rate over false discovery rate for differential gene expression of the simulated dataset. 
The four panels are for per-group sample sizes: 3, 6, 9, and 12, as indicated in the title. The y-axis remains fixed but the 
x-axis changes scale in the bottom panels.
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sample sizes was related to the realistic GC bias parameters used in the simulation, but simulating fragments  
uniformly from the transcripts revealed the same performance at per-group sample sizes 9 and 12 (Supplementary  
Figure 7). We then performed another simulation, called “low DE”, wherein we reduced the number of DGE, 
DTE and DTU genes from 10% to 5% each. In the “low DE” simulation, sleuth did recover control of the FDR at  
the nominal 5% and 10% FDR (Supplementary Figure 8).

As in the DTU evaluation, for the DGE evaluation we broke down the number of false positives by simu-
lated gene type, for a target 5% FDR (Supplementary Figure 9). Here there was a slight increase of “DTU” gene 
types in the gene-level false positives for all methods, relative to what would be expected by random sampling of  
the genes without differential gene expression.

DTE evaluation
Finally, we assessed the Bioconductor and R packages used in the DGE evaluation for differential transcript 
expression analysis. While we believe the separation of differential transcript usage and differential gene expres-
sion described in the workflow represents an easily interpretable approach, some investigators may prefer to assess  
differential expression on a per-transcript basis. For this assessment, all of the simulated non-null transcripts 
count as true positives of differential transcript expression, whether they originate from the simulated “DGE”, 
“DTE”, or “DTU” genes. For most of the methods, we simply provided the transcript-level data to the same 
functions as for the DGE analysis. EBSeq was provided with the number of isoforms per gene. The compute  
time of the methods is presented in Table 3.

iCOBRA plots with the true positive rate over false discovery rate for the transcript-level analysis are shown in 
Figure 14. The performance at per-group sample size of 3 was similar to the gene-level analysis, except DESeq2 
came closer to controlling the FDR and EBSeq performed slightly worse than before, while the rest of the meth-
ods tended to control their FDR. At per-group sample size of 6, all of the evaluated methods tended to control 
the FDR, though DESeq2, EBSeq, SAMseq, and sleuth tended to have higher sensitivity than edgeR, edgeR-QL 
and limma. The same issue of FDR control for sleuth was seen in the transcript-level analysis as in the gene-level 
analysis, for per-group sample size 9 and 12. For ease of comparison, we also provide Supplementary Figure 10  
where the x-axis remains fixed through the sample sizes. We broke down the number of false positives at the 
transcript level by gene type, for a target 5% FDR (Supplementary Figure 11). All methods had proportion of  
false positives similar to what would be expected by random sampling of the non-differentially expressed transcripts.

Discussion
Here we presented a workflow for analyzing RNA-seq experiments for differential transcript usage across 
groups of samples. The Bioconductor packages used, DRIMSeq, DEXSeq, and stageR, are simple to use and fast 
when run on transcript-level data. We show how these can be used downstream of transcript abundance quantifi-
cation with Salmon. We evaluated these methods on a simulated dataset and showed how the transcript usage 
results complement a gene-level analysis, which can also be run on output from Salmon, using the tximport pack-
age to aggregate quantifications to the gene level. We used the simulated dataset to evaluate Bioconductor and  
other R packages for differential gene expression, and differential transcript expression.

Table 3. Compute time of 
methods for differential transcript 
expression (DTE) rounded to 
the nearest minute by per-group 
sample size. Compute time includes 
data import.

Method n=3 n=6 n=9 n=12

DESeq2 <1 <1 <1 1

EBSeq 5 11 18 22

edgeR <1 <1 <1 <1

edgeR-QL <1 <1 <1 <1

limma <1 <1 <1 <1

SAMseq <1 <1 <1 1

sleuth 2 2 2 2
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From the DTU evaluations, we found that SUPPA2 and RATs tended to always control the FDR, at the cost of 
reduced sensitivity relative to DRIMSeq and DEXSeq especially as the per-group sample size increased to 6 and 
higher. DEXSeq with minimum transcript- and gene-level count filters, and 10% minimum proportion filter tended 
to have good control of a target 10% FDR for sample sizes of 6 and higher. DRIMSeq with those three filters and 
post-hoc proportion SD filtering approached control of a target 10% FDR. Both of these methods had increased 
sensitivity as the sample size increased. Both of these methods make use of linear models and R’s built-in design 
formula, and so can be extended to complex designs, including within-individual comparisons, blocking for batch  
effects, or additional interaction terms.

Although statistical power depends obviously on biological variability and on the effect size (amount of change 
in proportion across conditions), from this simulation study we would recommend per-group sample sizes 
larger than 3 to achieve greater than 50% sensitivity for detecting DTU. The maximal gene-level DTU sensi-
tivity achieved in the “main” simulation was around 80% at a per-group sample size of 12. This reflects the fact 
that for some of the DTU genes, the change in proportions across conditions was small, and was not detectable 
relative to the within-condition biological variability. As the “main” simulation used gene-level mean and  

Figure 14. True positive rate over false discovery rate for differential transcript expression of the simulated 
dataset. The four panels are for per-group sample sizes: 3, 6, 9, and 12, as indicated in the title. The y-axis remains 
fixed but the x-axis changes scale in the bottom panels.
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dispersion estimates from real data to generate transcript-level counts, it is possible that RNA-seq datasets may 
exhibit even more biological variability on the transcript counts than seen here, thus underscoring the need for  
sufficient sample size to achieve a reasonably high sensitivity for detecting DTU.

We recommend the use of stageR in DTU analysis for its use of a formal statistical procedure involving a screen-
ing and confirmation stage, as this fits closely to what we expect a typical analysis to entail. It is likely that an 
investigator would want both a list of statistically significant genes and transcripts participating in DTU, and  
stageR provides error control on this pair of lists, assuming that the underlying tests are well calibrated.

From the DGE and DTE analyses of this particular simulation data, we found that edgeR had better control of 
FDR than DESeq2. DESeq2 approached its target FDR as sample size grew. Popular methods that had relatively 
high sensitivity and control of FDR across all sample sizes include limma with voom transformation and edgeR-QL,  
both of which had better control than edgeR at per-group sample size of 3.

One potential limitation of this workflow is that, in contrast to other methods such as the standard DEXSeq  
analysis, SUPPA2, or LeafCutter46, here we considered and detected expression switching between annotated 
transcripts. Other methods such as DEXSeq (exon-based), SUPPA2, or LeafCutter may benefit in terms of 
power and interpretability from performing statistical analysis directly on exon usage or splice events. Methods 
such as DEXSeq (exon-based) and LeafCutter benefit in the ability to detect un-annotated events. The work-
flow presented here would require further processing to attribute transcript usage changes to specific splice events,  
and is limited to considering the estimated abundance of annotated transcripts.

Session information
The following provides the session information used when compiling this document.

devtools::session_info()

## Session info -------------------------------------------------------------

##  setting  value
##  version  R version 3.5.0 (2018-04-23)
##  system   x86_64, darwin15.6.0
##  ui       X11
##  language (EN)
##  collate  en_US.UTF-8
##  tz       America/New_York
##  date     2018-06-17

## Packages -----------------------------------------------------------------

##  package              * version   date       source
##  acepack                1.4.1     2016-10-29 CRAN (R 3.5.0)
##  annotate               1.58.0    2018-05-01 Bioconductor
##  AnnotationDbi        * 1.42.1    2018-05-08 Bioconductor
##  assertthat             0.2.0     2017-04-11 CRAN (R 3.5.0)
##  backports              1.1.2     2017-12-13 cran (@1.1.2)
##  base                 * 3.5.0     2018-04-24 local
##  base64enc              0.1-3     2015-07-28 CRAN (R 3.5.0)
##  Biobase              * 2.40.0    2018-05-01 Bioconductor
##  BiocGenerics         * 0.26.0    2018-05-01 Bioconductor
##  BiocInstaller        * 1.30.0    2018-05-04 Bioconductor
##  BiocParallel         * 1.14.1    2018-05-06 Bioconductor
##  BiocStyle              2.8.0     2018-05-01 Bioconductor
##  BiocWorkflowTools      1.6.1     2018-05-24 Bioconductor
##  biomaRt                2.36.0    2018-05-01 Bioconductor
##  Biostrings             2.48.0    2018-05-01 Bioconductor
##  bit                    1.1-12    2014-04-09 CRAN (R 3.5.0)
##  bit64                  0.9-7     2017-05-08 CRAN (R 3.5.0)
##  bitops                 1.0-6     2013-08-17 CRAN (R 3.5.0)
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##  blob                   1.1.1     2018-03-25 CRAN (R 3.5.0)
##  bookdown               0.7       2018-02-18 CRAN (R 3.5.0)
##  checkmate              1.8.5     2017-10-24 CRAN (R 3.5.0)
##  cluster                2.0.7-1   2018-04-13 CRAN (R 3.5.0)
##  codetools              0.2-15    2016-10-05 CRAN (R 3.5.0)
##  colorspace             1.3-2     2016-12-14 CRAN (R 3.5.0)
##  compiler               3.5.0     2018-04-24 local
##  data.table             1.11.2    2018-05-08 CRAN (R 3.5.0)
##  datasets             * 3.5.0     2018-04-24 local
##  DBI                    1.0.0     2018-05-02 CRAN (R 3.5.0)
##  DelayedArray         * 0.6.0     2018-05-01 Bioconductor
##  DESeq2               * 1.20.0    2018-05-01 Bioconductor
##  devtools             * 1.13.5    2018-02-18 CRAN (R 3.5.0)
##  DEXSeq               * 1.26.0    2018-05-01 Bioconductor
##  digest                 0.6.15    2018-01-28 cran (@0.6.15)
##  DRIMSeq              * 1.8.0     2018-05-01 Bioconductor
##  edgeR                * 3.22.2    2018-05-24 cran (@3.22.2)
##  evaluate               0.10.1    2017-06-24 CRAN (R 3.5.0)
##  foreign                0.8-70    2017-11-28 CRAN (R 3.5.0)
##  Formula                1.2-3     2018-05-03 CRAN (R 3.5.0)
##  genefilter             1.62.0    2018-05-01 Bioconductor
##  geneplotter            1.58.0    2018-05-01 Bioconductor
##  GenomeInfoDb         * 1.16.0    2018-05-01 Bioconductor
##  GenomeInfoDbData       1.1.0     2018-01-10 Bioconductor
##  GenomicRanges        * 1.32.2    2018-05-06 Bioconductor
##  ggplot2                2.2.1     2016-12-30 CRAN (R 3.5.0)
##  git2r                  0.21.0    2018-01-04 CRAN (R 3.5.0)
##  graphics             * 3.5.0     2018-04-24 local
##  grDevices            * 3.5.0     2018-04-24 local
##  grid                   3.5.0     2018-04-24 local
##  gridExtra              2.3       2017-09-09 CRAN (R 3.5.0)
##  gtable                 0.2.0     2016-02-26 CRAN (R 3.5.0)
##  Hmisc                  4.1-1     2018-01-03 CRAN (R 3.5.0)
##  htmlTable              1.11.2    2018-01-20 CRAN (R 3.5.0)
##  htmltools              0.3.6     2017-04-28 CRAN (R 3.5.0)
##  htmlwidgets            1.2       2018-04-19 CRAN (R 3.5.0)
##  httr                   1.3.1     2017-08-20 CRAN (R 3.5.0)
##  hwriter                1.3.2     2014-09-10 CRAN (R 3.5.0)
##  IRanges              * 2.14.9    2018-05-15 Bioconductor
##  knitr                * 1.20      2018-02-20 CRAN (R 3.5.0)
##  labeling               0.3       2014-08-23 CRAN (R 3.5.0)
##  lattice                0.20-35   2017-03-25 CRAN (R 3.5.0)
##  latticeExtra           0.6-28    2016-02-09 CRAN (R 3.5.0)
##  lazyeval               0.2.1     2017-10-29 CRAN (R 3.5.0)
##  limma                * 3.36.1    2018-05-05 Bioconductor
##  locfit                 1.5-9.1   2013-04-20 CRAN (R 3.5.0)
##  magrittr               1.5       2014-11-22 CRAN (R 3.5.0)
##  Matrix                 1.2-14    2018-04-13 CRAN (R 3.5.0)
##  matrixStats          * 0.53.1    2018-02-11 CRAN (R 3.5.0)
##  memoise                1.1.0     2017-04-21 CRAN (R 3.5.0)
##  methods              * 3.5.0     2018-04-24 local
##  munsell                0.4.3     2016-02-13 CRAN (R 3.5.0)
##  nnet                   7.3-12    2016-02-02 CRAN (R 3.5.0)
##  parallel             * 3.5.0     2018-04-24 local
##  pillar                 1.2.2     2018-04-26 CRAN (R 3.5.0)
##  plyr                   1.8.4     2016-06-08 CRAN (R 3.5.0)
##  prettyunits            1.0.2     2015-07-13 CRAN (R 3.5.0)
##  progress               1.1.2     2016-12-14 CRAN (R 3.5.0)
##  R6                     2.2.2     2017-06-17 CRAN (R 3.5.0)
##  rafalib              * 1.0.0     2015-08-09 CRAN (R 3.5.0)
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##  RColorBrewer         * 1.1-2     2014-12-07 CRAN (R 3.5.0)
##  Rcpp                   0.12.17   2018-05-18 cran (@0.12.17)
##  RCurl                  1.95-4.10 2018-01-04 CRAN (R 3.5.0)
##  reshape2               1.4.3     2017-12-11 CRAN (R 3.5.0)
##  rlang                  0.2.1     2018-05-30 cran (@0.2.1)
##  rmarkdown            * 1.9       2018-03-01 CRAN (R 3.5.0)
##  rnaseqDTU            * 0.1.0     2018-06-18 local (mikelove/rnaseqDTU@NA)
##  rpart                  4.1-13    2018-02-23 CRAN (R 3.5.0)
##  rprojroot              1.3-2     2018-01-03 cran (@1.3-2)
##  Rsamtools              1.32.0    2018-05-01 Bioconductor
##  RSQLite                2.1.1     2018-05-06 CRAN (R 3.5.0)
##  rstudioapi             0.7       2017-09-07 CRAN (R 3.5.0)
##  S4Vectors            * 0.18.1    2018-05-02 Bioconductor
##  scales                 0.5.0     2017-08-24 CRAN (R 3.5.0)
##  splines                3.5.0     2018-04-24 local
##  stageR               * 1.2.22    2018-06-14 cran (@1.2.22)
##  statmod                1.4.30    2017-06-18 CRAN (R 3.5.0)
##  stats                * 3.5.0     2018-04-24 local
##  stats4               * 3.5.0     2018-04-24 local
##  stringi                1.2.2     2018-05-02 CRAN (R 3.5.0)
##  stringr                1.3.1     2018-05-10 CRAN (R 3.5.0)
##  SummarizedExperiment * 1.10.1    2018-05-11 Bioconductor
##  survival               2.42-3    2018-04-16 CRAN (R 3.5.0)
##  tibble                 1.4.2     2018-01-22 CRAN (R 3.5.0)
##  tinytex                0.5       2018-04-16 CRAN (R 3.5.0)
##  tools                  3.5.0     2018-04-24 local
##  utils                * 3.5.0     2018-04-24 local
##  withr                  2.1.2     2018-03-15 CRAN (R 3.5.0)
##  xfun                   0.1       2018-01-22 CRAN (R 3.5.0)
##  XML                    3.98-1.11 2018-04-16 CRAN (R 3.5.0)
##  xtable                 1.8-2     2016-02-05 CRAN (R 3.5.0)
##  XVector                0.20.0    2018-05-01 Bioconductor
##  yaml                   2.1.19    2018-05-01 CRAN (R 3.5.0)
##  zlibbioc               1.26.0    2018-05-01 Bioconductor

Software versions
The statistical methods were evaluated using the following software versions: DRIMSeq - 1.8.0, DEXSeq - 
1.26.0, stageR - 1.2.21, tximport - 1.8.0, DESeq2 - 1.20.0, EBSeq - 1.20.0, edgeR - 3.22.2, limma - 3.36.1, RATs 
- 0.6.4, samr - 2.0, sleuth - 0.29.0, SUPPA2 - 2.3. The samples were quantified with Salmon version 0.10.0 and  
kallisto version 0.44.0. polyester version 1.16.0 and alpine version 1.6.0 were used in generating the simulated  
dataset.

Data availability
The simulated paired-end read FASTQ files have been uploaded in three batches of eight samples each to Zenodo-

https://doi.org/10.5281/zenodo.129137526

https://doi.org/10.5281/zenodo.129140427

https://doi.org/10.5281/zenodo.129144328

The quantification files are also available as a separate Zenodo dataset- https://doi.org/10.5281/zenodo.129152229.

The scripts used to generate the simulated dataset are available at the simulation GitHub repository (https:// 
github.com/mikelove/swimdown and archived here- https://doi.org/10.5281/zenodo.141044325).

The counts associated with Soneson et al.33 have been deposited to Zenodo (https://doi.org/10.5281/ 
zenodo.140920147).

All data is available under a CC BY 4.0 license.
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https://doi.org/10.5281/zenodo.1291522
https://github.com/mikelove/swimdown
https://github.com/mikelove/swimdown
https://doi.org/10.5281/zenodo.1410443
https://doi.org/10.5281/zenodo.1409201
https://doi.org/10.5281/zenodo.1409201


Software availability
1.   �All software used in this workflow is available as part of Bioconductor version 3.7.

2.   �Source code for the workflow: https://github.com/mikelove/rnaseqDTU

3.   �Link to archived source code as at time of publication: https://doi.org/10.5281/zenodo.141044248

4.   �License: Artistic-2.0
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We feel the authors have done an excellent job in improving the structure and clarity of the paper. 
We believe the improved introduction and workflow diagram will be particularly helpful to readers 
and we accept the paper for indexing. 
  
A few very minor points remain: 
 

p18, could the authors please rewrite this sentence for clarity: "To repeat, the set of genes 
passing screening should not have more than 5% of either genes which have in fact no DTU 
or genes which contain a transcript with an adjusted p-value less than 5% which do not 
participate in DTU."

○

p32, second paragraph: could the authors hypothesise why there was a slight increase of 
false positives for DTU genes in the DGE analysis?

○

p34, fourth paragraph: mentions of SUPPA2, DEXseq and leafcutter are repeated across two 
sentences in the same context.
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Kristoffer Vitting-Seerup   
Department of Biology, Biotech Research and Innovation Centre, University of Copenhagen, 
Copenhagen, Denmark 
Malte Thodberg  
Department of Biology, Biotech Research and Innovation Centre, University of Copenhagen, 
Copenhagen, Denmark 

Summary 
In “Swimming downstream: statistical analysis of differential transcript usage following Salmon 
quantification” Love et al presents a combined workflow and benchmark for differential transcript 
usage. This is a vital paper as there is no consensus on which differential transcript usage tools 
works better (here addressed by the benchmark part) and very few people are aware of the 
feasibility of analysis of differential transcript usage – something the workflow can hopefully help 
with. Of special note is the extent to which open source have been embraced by Love et al – an 
approach that is commendable (and worthy repeating). 
  
In the revised version (version 2) the workflow and benchmark have been separated and the 
workflow has been simplified which, together with the overview figure and the general 
improvements makes the article much more readable. With regards to analysis especially the 
benchmark session have been extended. In summary, the revised manuscript version address the 
majority of our concerns but we still believe the introduction and benchmark could be improved, 
as detailed below. 
  
Comments

The authors have updated the benchmark to use testForDEU instead of nbinomLRT for the 
DEXSeq analysis (verified at https://github.com/mikelove/rnaseqDTU) but seem to 
accidentally have forgotten to correct this in the workflow part of the article (page 17)

○

The introduction lacks:
A section describing why differential transcript usage are of interest in the first place.○

A layman introduction to the terms DTU, DTE and DGE. Here it should also be 
highlighted that DTU can be analyzed both at transcript and gene level (since it is 
confusing for people not in the field). A more detailed introduction here would also 
make the concepts behind StageR clearer to readers not familiar with the subject.

○

○

The workflow/benchmark still contains large chunks of text that belongs in the 
introduction/methods. Specifically we are thinking of:

The scaling section (page 9)
It could be even further highlighted that the difference between “scaledTPM” 
and the other scaling methods is whether the issue with transcript lengths are 
normalized away. This could also be highlighted by making a figure like Fig1 in 
Trapnell et al which instead illustrates the DTU problem.

○

We further recommend that the documentation for tximport with regards to 
scaling is updated with the descriptions made here.

○

○

○
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The section regarding the theory behind DRIMSeq (bottom of page 12) (could be with 
the rest of the theory regarding DRIMSeq (page 7)

○

The section regarding StageR (page 14)○

The article would benefit from a one or two sentence layman introduction to all the 
tools (for people not in the field).

○

The DTU benchmark should also include an analysis on unmodified simulated data to test 
how many false positives are found if there truly are no DTU (which might be the case for 
some datasets). We suggest comparing samples internally in either set 1 or set 2.

○

To reflect a very common use case scenario the DGE / DTE benchmark should also be 
performed with 2 replicates.

○

All iCOBRA plots would benefit from zooming in on the y-axis to the min and max of any tool 
across all samples (currently much of the y-axis range is never used – which just squish all 
samples together). This is especially problematic for the DGE/DTE benchmark.

○

The section on page 30 describing the results in figure 13 is very hard to understand.○

Given the success of repurposing DEXSeq to DTU, the good performance of limma/edgeR 
for DTE/DGE and the recent incorporation of RATS, the current benchmark could also test a 
repurposing of limma’s (and edgeR’s) differential exon usage test (diffsplice/diffSpliceDGE). 
This is optional – but it would be a huge step forward for testing differential isoform usage 
as it would bring a lot of clarity to the field.

○
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We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 28 Sep 2018
Michael Love, University of North Carolina at Chapel Hill, Chapel Hill, USA 

Thank you for reviewing our revised version. 
 
Yes, unfortunately, while we updated the results in version 2 to use testForDEU and the 
code in the Bioconductor git repository, we neglected to update the displayed code chunk 
with nbinomLRT to testForDEU(). A version 3 is already in production which will show the 
correct code. 
 
Regarding the placement of the text in various sections, an F1000Research workflow article 
does not have exactly the same structure as a typical research article, and we feel our 
current structure is appropriate and fits with the pattern of other Bioconductor workflow 
article published in F1000Research. In particular, we feel it is appropriate to introduce 
concepts as they arise in the natural flow of the workflow, rather than all in the Introduction 
or in the terse Methods section. 
 
In version 2, we feel we have included sufficient background and citations to research and 
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review articles about the importance of detecting DTU in the Introduction (see the first 
paragraph of the Introduction). 
 
For full details on the theory of DRIMSeq, we have instead recommended that readers go to 
the primary source. 
 
We will not be adding additional simulations or evaluations to the workflow in the near 
future, as it already contains much more evaluations and simulation than the comparable 
workflows published in the Bioconductor channel of F1000Research.  
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Nick Schurch   
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In 'Swimming downstream: statistical analysis of differential transcript usage following Salmon 
quantification' Love, Sonesson & Patro present both 1) a workflow for identifying the signatures of 
differential transcript usage between RNA-seq samples in two conditions, based on a suite of 
tools, and 2) a benchmarking analysis of the performance of these tools based on simulated data. 
The aims of this work are laudable and I have no doubt it will be a valuable addition to the 
literature, the resulting paper suffers from several flaws and needs considerable additional work, 
in my opinion. 
 
Major comments: 
 
1) The intermingling of the benchmarking and workflow sections of this manuscript make the text 
confused and difficult to read. I'd suggest that the authors either restructure the manuscript 
beginning with the workflow section and then following with the benchmarking section, or split 
the work in to two and concentrate separately on the two areas. 
 
2) This work is listed as a Method article. I am not convinced that an example of stringing existing 
tools together fits the description required for this section (that is: "Method Articles describe a 
new experimental, observational, or computational method, test or procedure (basic or clinical 
research)."). The benchmarking part of the work is better suited to a Research Article, whilst the 
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workflow part is more like a computational protocol and might be better suited for publication as 
a Study Protocol. 
 
3) Quantifying transcript expression from RNA-seq data is challenging but has become common-
place and relatively straight-forward thanks to the development of high-performance tools such 
Salmon and Kallisto. These tools typically provide a transcripts-per-million estimation of a 
transcripts expression. With these quantifications in place the inevitable, and even more 
challenging, next step is to identify those transcripts where their expression is changing between 
samples. To date there has not been a clear data-driven exploration of the underlying statistical 
properties of TPM quantifications (or estimated transcript counts from TPMs) as a function of 
biological and technical replication - instead, much as was the case for differential gene 
expression from RNA-seq data until relatively recently - the tools for identifying DTE are built on 
the strong assumption of a distribution for the quantifications and, typically, assume a negative 
binomial distribution. Although this looks to be a good assumption in the case of gene expression, 
it is far from clear to me that the assumption of a negative binomial distribution for the 
distribution of a transcripts TPM or estimated counts across biological replicates is a good 
assumption for TPMs or estimated counts from TPMs, particularly given that - in the context of 
biological DTU - the expression of a transcript can be strongly correlated with the other child 
transcripts of the gene. The fixed per-gene dispersion section seems like the beginnings of an 
exploration in this area but this assumption too is without any justification. Perhaps the authors 
could use some highly replicated data from a complex eukaryote to actually measure these 
distributions and give clarity on whether these assumptions are valid? Or, failing that, explore the 
impact of different potential distributions of the tool performance? 
 
4) The entire discussion section of the benchmarking results is essentially missing and the current 
discussion section of more like a brief conclusion. Points that I would like to see the authors 
discuss in detail include:

The low overall TPRs exhibited by all the tools; 25-80% for DTU, 50-80% for DGE & only 20-
50% for DTE. What this means for these field and how might these be improved?

○

The TPR/FPR performance of the tools not only as function of the sample size, but also as a 
function of the annotation used in the original transcript quantitations, as a function of the 
effect-size threshold used and as a function of the low-count-rate filtering used for each 
tool. These are all critical parameters in the tools performance.

○

An expanded discussion of the extremely poor FPR performance of DRIMseq, that is largely 
glossed-over in the current text. Why is DRIM-seq performing so poorly? It is more or less 
dependant on the specific parameters used, or the details of the simulated data, than the 
other tools - or is it just generically over-sensitive across all the parameter space.

○

The overlap between the sets of DTU, DGE & DTE identified by each tool, instead the authors 
just give us some numbers and the TPR/FPR performance metrics. Are these tools reliably 
identifying the same thing or are they finding wildly different sets of results? (but please, no 
Venn diagrams! I can respectfully recommend upsetR for this kind of plot).

○

The use of p-values, adjusted or not, as a threshold for subsetting these results for scientific 
relevance - particularly given Blume et. al 20181.

○

Some discussion of why the authors limit themselves to discussing DRIMseq, DEXSeq and 
SUPPA2 despite listing five additional alternative methods in the introduction. Alternatively, 
the authors could include these tools in their benchmarking, particularly if they decided to 
split the work into two papers with one of these focussing on the benchmarking.

○

Some discussion of the impact that the development of long-read sequencing of native ○
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RNAs will have on this field, these tools, and their results in the next few years - perhaps the 
authors could even use some of the publically available data from the Oxford Nanopore 
RNA consortium (https://github.com/nanopore-wgs-
consortium/NA12878/blob/master/RNA.md) to contrast the performance of this new 
technology with the tools they examine here for detecting DTE and DTU.
How do these tools cope with RNA-seq experiments with more complex designs? For 
example, what about if there are 7 conditions, or a time-series (see for example Calixto et. 
al., 20182? What approaches would the authors then recommend?

○

 
5) No effort has been made to test these workflows with real data with validated instances of DTU. 
These exist in the published literature. For a workflow description this is fine, but for the 
benchmarking aspect of the work I would like to see the authors use this pipeline in anger, with 
real data, and see what the results are and how they match up with the validated results. 
 
6) The introduction does not motivate the importance of identifying DTU in biology. I'd like to see 
the introduction present the biological relevance of DTU, the relative sparsity of existing validated 
DTU instances, and the scope DTU has for being an explored layer of regulation for basic 
biological processes. 
 
7) The only conclusion from the paper seems to be that the authors recommend the use of stageR 
- based largely on the fact that its two-stage model matches what the authors think a typical 
analysis workflow is. This conclusion may be sound advice but a) this paper does not present any 
compelling *evidence* that this is a typical workflow, and b) stageR is not really what this paper is 
about" Indeed, here stageR is used as a framework to assist with assessing the performance of 
the other tools. I'd like to see the authors instead draw some clear conclusions about which tools 
are the best to use for identifying DTU. 
 
Minor Comments: 
 
1) The workflow section really needs some workflow diagrams to highlight the chain for each tool 
and where they are similar and different. 
 
2) The plots in the paper are not as high quality as I'd expect: 
 - Figures need to be higher resolution (this may be the journals fault, not the authors) 
 - Figures 3,5,6,8,12 & 13 are multi-panel figures with the same axes on each figure. They would 
benefit from being plotted with shared axes allowing the performance between different samples 
sizes to be more clearly visible to the reader. 
 - Figures 9-11: perhaps consider using a multi-panel 2d histogram to show the density profiles for 
each group, or at least using a better point symbol. 
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Is the rationale for developing the new method (or application) clearly explained?
No

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: I am first author of a paper for a DTU tool (RATs 
https://www.biorxiv.org/content/early/2017/05/02/132761) that is currently going through the 
publication process. In it we clearly highlight that existing DTU tools including those used here do 
not perform well.

Reviewer Expertise: Bioinformatics, RNA-seq, transcriptomics tools, benchmarking

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 11 Sep 2018
Michael Love, University of North Carolina at Chapel Hill, Chapel Hill, USA 

We thank all reviewers for their insightful comments and suggestions that we feel have 
greatly improved the readability and usefulness of the workflow. We summarize the main 
changes and then address reviewer-specific comments point-by-point:

We have addressed all minor text or grammatical suggestions by the reviewers.○

We have re-organized the article into distinct and more separated Workflow and 
Evaluation sections, which was suggested by all reviewers. We begin the article with a 
clear outline, titled: "Structure of this article", which outlines the Workflow part and 
the Evaluation part. This outline has direct links to relevant sections and subsections 
which follow. We have also included an overview diagram of the methods and 
packages included in the Workflow section, and how they are interconnected.

○

We have added to the Introduction more motivational text on why a DTU analysis is 
relevant for biology and biomedical research.

○

We have added a large section describing the methods DEXSeq and DRIMSeq, before ○
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the Workflow section.
We have expanded the original sections discussing counts-from-abundance and their 
use in the workflow, to make our use of the tximport method more clear.

○

For the DEXSeq section, we have corrected an earlier incorrect use of nbinomLRT(), 
which is now replaced with the correct testForDEU(). The practical result is that 
DEXSeq performs somewhat less conservatively, but the original code was incorrect, 
and the fix is necessary. The incorrect use of nbinomLRT() in this context will now 
produce an error in future releases of Bioconductor, to avoid possible incorrect 
usage.

○

We have added RATs to the DTU Evaluation.○

We now apply stageR to all DTU methods that are evaluated: DRIMSeq, DEXSeq, RATs, 
and SUPPA2. The RATs and SUPPA2 methods are described, but the code is not 
provided, as these packages are not part of the Workflow.

○

We use consistent x-axes and y-axes whenever possible, and use PDF instead of JPG 
to reduce compression artifacts. When a consistent x-axis is not used in the main text, 
we include Supplementary Figures with the same plots with outlying methods 
dropped to keep the x-axis consistent.

○

We use a palette in which colors are more discernable for color-blind readers○

In the Evaluation sections, we include additional plots which examine the simulated 
gene type source of false positives for the DTU, DGE, and DTE analyses.

○

We added a new evaluation to examine performance differences between DRIMSeq 
and DEXSeq, using the identical simulated data that was used in Soneson et al (2016) 
and Nowicka and Robinson (2016).

○

We have added a 2 vs 2 simulation for the DTU Evaluation.○

We added a brief overview description of all methods assessed in the DGE and DTE 
Evaluations.

○

We have added more recommendations in the Discussion.○

Reviewer-specific comments: 
 
 
1) We have followed the reviewer's suggestion, and have separated the Workflow and 
Evaluation sections, with an outline at the beginning clearly delineating the two sections, 
and an overview diagram. 
 
2) We originally submitted our Bioconductor workflow as a "Research" article, but the 
Editorial Office recommended to change the categorization to "Method", which is the 
categorization of many of the other Bioconductor workflows. Bioconductor workflows are 
not intended to introduce new computational methods or new software packages, but to 
demonstrate, with live code that resides in an Rmarkdown vignette within an R package 
structure, how to use a number of different existing Bioconductor packages to analyze a 
dataset.  
 
We asked for comment from the Editorial Office on the recommended categorization of 
Bioconductor workflows under the F1000Research article types, and they provided us with 
the following statement: 
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"In general, Bioconductor workflows are classified as Method articles in F1000Research, since 
Research articles must present novel research findings, and Software Tool articles must present 
novel software tools. Since this article by Love et al neither presented novel research findings nor 
a new software tool, the F1000Research editorial office felt that classifying this article as a 
Method article was most appropriate. The majority of workflows submitted to the Bioconductor 
gateway will fall into this article type." -F1000Research Editorial Office 
 
3) We have followed the reviewer's suggestion and included, in addition to the fixed per-
gene dispersion simulation, an additional simulation from Soneson et al. (2016), to assess 
differences between DRIMSeq and DEXSeq, the two methods that are the focus of the 
workflow. This simulation involved generation of Negative Binomial gene counts, and then 
the expression was distributed from genes to transcripts by per-sample draws from a 
Dirichlet distribution, with a minority of genes undergoing DTU across condition. Analysis of 
additional datasets, and a final determination of which type of data-generating process is 
closer to various real RNA-seq datasets, is beyond the scope of this workflow, but we feel 
that the existing simulations cover a range of possibilities and are useful to the readers of 
the workflow. We comment in a number of places on the limitations of the simulation, 
including in the overview: 
 
"While the evaluations rely on simulated data, and are therefore relevant only to the extent that 
the simulation model and parameters reflect real data, we feel the evaluations are useful for a 
rough comparison of method performance, and for observing relative changes in performance 
for a given method as sample size increases." 
 
Also at the end of the DTU Evaluation: 
 
"Again, a caveat of all of our comparative evaluations of DRIMSeq and DEXSeq is that we do not 
know whether various real RNA-seq experiments will more closely reflect heterogeneous 
dispersion or fixed dispersion within genes, or if the counts within gene are better modeled by 
distributing gene-level abundance to transcripts via a Dirichlet distribution as in Soneson et al 
(2016). However, we have examined simulations reflecting each of these cases, and confirmed 
that minimum count and minimum proportion filtering benefit both DRIMSeq and DEXSeq." 
 
4) We now include more discussion on the results of the evaluations in the Discussion, 
including a comment on statistical power. We include a breakdown of false positives by the 
simulated gene type. Further cross-section of all methods' performance by incomplete 
annotation, effect size filters, and various count or proportion filters is beyond the scope of 
the article. Complete analysis of overlap of calls across the various simulations and analyses 
is also beyond the scope of the article. 
 
We now explore DRIMSeq's performance in the "main" and "fixed per-gene dispersion" 
simulations, wherein we see that many of the excess false positives at the transcript-level 
arise from simulated DTU genes, so other transcripts not participating in DTU were being 
reported as significant. In the “main” simulation, where DRIMSeq has the most problem 
with FDR control, it only slightly exceeds a target 10% FDR at the gene level at per-group 
sample sizes 6 and higher. With proportion SD filtering, DRIMSeq at the transcript level also 
has small inflation of target 10% FDR for per-group sample sizes 6 and higher.  
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We now include RATs as an additional method evaluated on the "main" simulation for DTU 
analysis. RATs performs similar to SUPPA2, in that it nearly always controls the FDR, 
although in some cases, it displays higher gene-level sensitivity than SUPPA2. We do not 
intend the article to be a complete evaluation of all existing methods for DTU, but to 
compare the two Bioconductor methods that are the focus of the workflow with a few key 
DTU methods. 
 
Extended discussion of long-read sequencing is beyond the scope of the article, although 
we added the following comment to the workflow section on importing counts: 
 
"If a different experiment is performed and a different quantification method used to produce 
counts per transcript which do not scale with transcript length, then the recommendation would 
be to use these counts per transcript directly. Examples of experiments producing counts per 
transcript that would potentially not scale with transcript length include counts of full-transcript-
length or nearly-full-transcript-length reads, or counts of 3' tagged RNA-seq reads aggregated to 
transcript groups. In either case, the statistical methods for DTU could be provided directly with 
the transcript counts." 
 
A relevant quote from Nowicka and Robinson (2016) is: 
 
"With emerging technologies that sequence longer DNA fragments (either truly or synthetically), 
we may see in the near future more direct counting of full-length transcripts, making transcript-
level quantification more robust and accurate.” 
 
In the "DTU testing" section, we now discuss how DEXSeq and DRIMSeq can be used to 
evaluate experiments with complex designs, with little limitation as long as the coefficients 
for each sample can be encoded as a design matrix multiplied by a vector of coefficients. 
 
5) Comprehensive evaluation of the methods on additional datasets is beyond the scope of 
the article. 
 
6) Following this and other reviewers' suggestion, we have now added motivation to the 
first part of the Introduction as to why DTU is relevant for biological or biomedical research. 
 
7) We have revised some of our description of the stageR framework to be more clear about 
why we recommend its use in a DTU workflow: 
 
"It is likely that an investigator would want both a list of statistically significant genes and 
transcripts participating in DTU, and stageR provides error control on this pair of lists, assuming 
that the underlying tests are well calibrated." 
 
We also provide some more details in the Discussion regarding the various methods and 
their performance. 
 
Minor Comments: 
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1) We have added an overview diagram as Figure 1. 
 
2) We have updated figures to be PDF instead of JPG, and made the axes more consistent 
when possible. 
 

Competing Interests: No competing interests were disclosed.

Reviewer Report 30 July 2018
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© 2018 Oshlack A et al. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Alicia Oshlack   
Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia 

Marek Cmero   
Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia 

A workflow to enable more people to perform differential transcript usage on their RNA-seq data 
set is a useful addition to the literature. Benchmarking methods and combinations of workflows 
are also an important part of the literature. In this manuscript, both things have been attempted, 
which unfortunately makes the manuscript a little blurred in its focus. 
 
We view a workflow as an instructional manuscript in which a step-by-step analysis can be 
reproduced with a new data set that a user wants to bring to the analysis. This is presented in the 
sections Quantification and data import and Statistical analysis of differential transcript usage and, 
in our view, should be the focus of the manuscript. These are complex analyses combining several 
packages with several alternative paths. It would really help the user if a flowchart for this analysis 
could be made that shows the common parts of the workflow (e.g. starting with a Salmon, 
importing into R), how the alternatives split and which packages are used for alternative parts of 
the workflow. For example, DRIMseq is an alternative to DEXseq, which can then be followed by 
stageR, and Suppa is a complete (parallel) workflow. 
 
The evaluation sections are somewhat useful and interesting in their own right, but rely on 
simulated data and are therefore not directly applicable to readers who are looking for workflows 
to guide them in their own data analysis. However, they do help users decide which workflows to 
choose in their own analysis. 
 
Overall we wonder if this manuscript could be two separate manuscripts: a workflow for DTU and 
an evaluation of methods based on simulated data? Another (preferable) alternative would be to 
only focus on DTU in the evaluation and keep the section Evaluation of methods for DTU as a 
guide to help the user to choose the workflow (with this clearly stated). We felt there were too 
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many additional analysis introduced after this point which relied on more in-depth understanding 
of the DGE literature, which was not really the focus of the workflow. 
 
Minor comments: 
Several sections should be edited for clarity and flow of ideas. Specifically,

page 6: "We recommend scaledTPM for differential transcript usage so that the estimated 
proportions fit by DRIMSeq in the following sections correspond to the proportions of 
underlying abundance." Could the authors please rewrite/break up this sentence to 
improve readability?

○

page 6, section 'Import counts into R/Bioconductor': the authors should clarify whether the 
referenced R package is for demonstration purposes only (i.e. should the user install the 
rnaseqDTU to perform any of the workflow?).

○

page 6: could the concept of using counts from abundance be introduced/explained before 
referring to specific package parameters and settings?

○

page 6: "The following code chunk is not evaluated, but instead we will load a pre-
constructed matrix of counts". Could the authors please clarify this sentence? We assume 
this means that instead of constructing a matrix of counts (as in a typical workflow), pre-
constructed data is loaded.

○

page 7 "We ran the following unevaluated code chunks": does 'unevaluated' refer to not run 
in a typical workflow?

○

page 7, 'Statistic analysis of differential transcript usage', second paragraph: could the 
description of txdf be moved to the previous section where it is constructed? This would 
help improve the flow.

○

page 12: "(2) contain a transcript with a transcript adjusted p-value less than 0.05 which 
does not participate in DTU, so contain a falsely confirmed transcript": could the authors 
please rewrite this sentence for clarity.

○

page 13: sentence "The testing of “this” vs “others”..." could be improved for clarity, e.g.: 
"DEXseq in its original version requires fitting of coefficients for each exon within a gene. 
Running DEXseq at a transcript-level considerably improves performance as fewer features 
per gene require fitting of coefficients."

○

page 14, after the line "dxr <- as.data.frame(dxr[,columns]": showing head(dxr) could help in 
clarifying the output.

○

page 15, in the code "paste0("suppa/group1.tpm")": the paste function is not necessary 
here.

○

Section 'Evaluation of methods for DTU': could the authors offer an explanation why 
SUPPA2 only reported one DGE gene as DTU?

○

Could the y and x axes on the plots on pages 17-20 and 25 be made consistent with each 
other? Also, very minor point, but these plots have some jpeg artefact. Could pdf or png 
plots be used instead?

○

page 19 "DRIMSeq [...] performed slightly better": could a metric be referenced in how the 
package performed better?

○

page 22: "We can repeat the same analysis...": 'same analysis' is misleading as this section 
tests only DGE.

○

page 24: could the authors formally introduce or describe EBSeq and SAMseq packages, 
preferably earlier in the manuscript?

○

page 26: could the authors use 'compute time' instead of 'timing'?○

 
We identified the following typographical errors and grammatical issues:
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page 5: "We recommend [constructing] a CSV file..."○

page 6: "We suggest for DTU analysis to generate counts from abundance..." reword to "For 
DTU analysis, we suggest generating counts from abundance..."

○

page 16: "DEXSeq controlled [the FDR] except for..."○

page 16: "DRIMSeq had [an] observed FDR.."○

page 16: "...reported 2 extra genes more than..." change to "reported two more genes than"○

page 16: "...DEXseq were the most sensitive methods [for] recovering"○

page 19 "...DRIMSeq and DEXSeq[,] [in] this additional simulation"○

page 19: "Again, we caveat our comparative evaluation of DRIMSeq and DEXSeq by noting 
that we do not know..." change to "Again, a caveat of our comparative evaluation of 
DRIMSeq and DEXSeq is that we do not know..."

○

page 24: "did not have [adequate] sensitivity to detect DGE"○

page 24: "while those two method[s] had"○

 
Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 11 Sep 2018
Michael Love, University of North Carolina at Chapel Hill, Chapel Hill, USA 

We thank all reviewers for their insightful comments and suggestions that we feel have 
greatly improved the readability and usefulness of the workflow. We summarize the main 
changes and then address reviewer-specific comments point-by-point:
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We have addressed all minor text or grammatical suggestions by the reviewers.○

We have re-organized the article into distinct and more separated Workflow and 
Evaluation sections, which was suggested by all reviewers. We begin the article with a 
clear outline, titled: "Structure of this article", which outlines the Workflow part and 
the Evaluation part. This outline has direct links to relevant sections and subsections 
which follow. We have also included an overview diagram of the methods and 
packages included in the Workflow section, and how they are interconnected.

○

We have added to the Introduction more motivational text on why a DTU analysis is 
relevant for biology and biomedical research.

○

We have added a large section describing the methods DEXSeq and DRIMSeq, before 
the Workflow section.

○

We have expanded the original sections discussing counts-from-abundance and their 
use in the workflow, to make our use of the tximport method more clear.

○

For the DEXSeq section, we have corrected an earlier incorrect use of nbinomLRT(), 
which is now replaced with the correct testForDEU(). The practical result is that 
DEXSeq performs somewhat less conservatively, but the original code was incorrect, 
and the fix is necessary. The incorrect use of nbinomLRT() in this context will now 
produce an error in future releases of Bioconductor, to avoid possible incorrect 
usage.

○

We have added RATs to the DTU Evaluation.○

We now apply stageR to all DTU methods that are evaluated: DRIMSeq, DEXSeq, RATs, 
and SUPPA2. The RATs and SUPPA2 methods are described, but the code is not 
provided, as these packages are not part of the Workflow.

○

We use consistent x-axes and y-axes whenever possible, and use PDF instead of JPG 
to reduce compression artifacts. When a consistent x-axis is not used in the main text, 
we include Supplementary Figures with the same plots with outlying methods 
dropped to keep the x-axis consistent.

○

We use a palette in which colors are more discernable for color-blind readers○

In the Evaluation sections, we include additional plots which examine the simulated 
gene type source of false positives for the DTU, DGE, and DTE analyses.

○

We added a new evaluation to examine performance differences between DRIMSeq 
and DEXSeq, using the identical simulated data that was used in Soneson et al (2016) 
and Nowicka and Robinson (2016).

○

We have added a 2 vs 2 simulation for the DTU Evaluation.○

We added a brief overview description of all methods assessed in the DGE and DTE 
Evaluations.

○

We have added more recommendations in the Discussion.○

Reviewer-specific comments:
We have tried to separate and clarify the Workflow section and the Evaluation section. 
We now include an overview diagram, as helpfully suggested here.

○

We have expanded the section on counts-from-abundance, added a section before 
the counts are imported, and clarified the sentences highlighted by the reviewers.

○

We have clarified a number of the "not evaluated" sentences in the original workflow.○

The description of txdf is given in the section where it is constructed, under the 
heading "Transcript-to-gene mapping".

○
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We have clarified the OFDR description in the sentence highlighted by the reviewers, 
and have removed the "this" vs "other" sentence, as the history of DEXSeq method 
development is not necessary or useful for the readers of this workflow.

○

We have added `head(dxr)` to demonstrate the output.○

We have removed the SUPPA2 code, as now the workflow focuses on the 
Bioconductor package DRIMSeq and DEXSeq, which have live code examples (SUPPA2 
is a python package and so cannot have live code examples in a Bioconductor 
workflow).

○

We have made the x- and y-axes consistent whenever possible.○

We have revised the Workflow and Evaluation sections following all of the reviewers' 
helpful comments, error spotting, and suggestions on improved wording.

○

 

Competing Interests: No competing interests were disclosed.

Reviewer Report 24 July 2018
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Kristoffer Vitting-Seerup   
Department of Biology, Biotech Research and Innovation Centre, University of Copenhagen, 
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Malte Thodberg  
Department of Biology, Biotech Research and Innovation Centre, University of Copenhagen, 
Copenhagen, Denmark 

Summary 
In “Swimming downstream: statistical analysis of differential transcript usage following Salmon 
quantification” Love et al presents a combined workflow and benchmark for differential transcript 
usage. This is a vital paper as there is no consensus on which differential transcript usage tools 
works better (here addressed by the benchmark part) and very few people analyze differential 
transcript usage – something the workflow can hopefully help with. Of special note is the extent to 
which open source have been embraced by Love et al – an approach that is commendable (and 
copy worthy). Although the manuscript has a lot of potential it can, in its current form, be 
challenging to read and the benchmark of differential transcript usage part needs to be extended. 
Revisions are therefore required. 
 
Preface

Malte Thodeberg helped me review this paper – thanks Malte!○

Since neither of us are native English speakers/writers we have not attempted to corrected ○
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for potential gramma and/or spelling mistakes
I'm the developer of IsoformSwitchAnalyzeR.○

 
General comments

The article switches between describing a workflow, which users can follow to perform 
differential transcript usage on their own data, and a benchmark of differential 
expression/usage tools. The two sections should be much more clearly separated and each 
should be more concisely written.

One solution would be to have the benchmark first and the workflow afterwards. It 
would then be natural that workflow used the tool(s) deemed better by the 
benchmark.

○

○

The main problem with the workflow part of the manuscript is the intermixing of the 
workflow and benchmarking (and the intro/methods) sections which makes it necessary to 
include a lot of callouts, omissions and special cases. This has the unintended effect of 
cluttered the workflow making it hard to read and/or follow. This would however be solved 
by the above suggested re-structuring. If such restructure were implemented it would also 
seem more natural that the workflow consistently only use a small dataset (either a subset 
of the simulated data or another dataset entirely) whereby the workflow could be simplified 
a lot.

○

Although the benchmark is of high quality it still needs to be a bit more exhaustive.○

(Even with the suggested re-structure) The whole article would highly benefit from an 
overview paragraph and/or figure to give the reader the high-level overview of the outline 
before jumping into it (something like a table/figure/description of content). This could also 
be a table of content (with links included to enable easy jumping in the article).

○

 
Title

The title should reflect it is a workflow and/or benchmark. The current title suggests the 
authors developed a new tool for differential transcript usage which were specifically 
designed to integrate with Salmon. Furthermore, it could be considered to change the title 
so it also indicates the differential gene/transcript expression performed in the manuscript.

○

 
Introduction

The introduction lacks a section describing why differential transcript usage are of interest 
in the first place.

○

Large parts of what would normally be in the introduction and methods have been moved 
into the results. Introduction to tools and methods including descriptions of how they work 
belongs in the introduction. Description of parameter choice for e.g. scaling during tximport 
also belongs in intro/methods.

Optional suggestion: include a lay-man introduction to how the tools work (the 
technical part are in the original papers for people interested).

○

○

In the section where tools for DTU are mention please remove (or argue for inclusion of) 
BITSeq and stageR. StageR is for post analysis of p-values (no test). Although BITSeq is 
mentioned in some of the BiocViews of alternative splicing neither the article nor the 
vignette shows anything but DTE (aka no DTU). Mention that SGSseq wraps DEXSeq.

○

The test build into IsoformSwitchAnalyzeR in not rank-based – but it is obsolete and will be 
removed from the next update – so it could be skipped entirely (along with the other non-
maintained tests).

○
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Please reference IsoformSwitchAnalyzeR for its main purpose: the downstream analysis of 
functional consequences of identified isoform switches. Consider also mentioning other 
tools for downstream analysis (some can be found at 
https://www.bioconductor.org/packages/devel/BiocViews.html#___AlternativeSplicing ).

○

To be more user-friendly please insert a link when mentioning the IsoformSwitchAnalyzeR 
vignette.

○

  
Methods

Please add in the number of transcripts considered expressed (>= 10 estimated fragment 
counts)

○

The simulations performed should either be named or numbered to allow for clear 
reference to which of the simulated datasets are used.

○

In the countSimRepport please compare the simulated data to the 12 samples which were 
used for the basis of the simulation (comparing 12 to hundreds of samples is not easy to 
interpret).

○

Please elaborate on discussion of the different options for scaling-from-TPM-to-counts. It is 
unclear what the difference is and when it matters. Furthermore you write “if we used 
lengthScaledTPM transcript counts, then a change in transcript usage among transcripts of 
different length could result in a changed total count for the gene, even if there is no 
change in total gene expression” is there a mixup here? If not, why do you then use 
lengthScaledTPM in the DGE/DTU section? Please include a recommendation of when to use 
which option for analysis of DGE/DTE, DTU and if both are present in the data.

○

Modifications
Include a paragraph on quantification before introducing the modifications. If any 
expression filtering was done (as fig 1 indicate and mention above) it should be 
clearly stated.

○

Currently it is unclear how many genes were modified in which way. To remedy that 
please provide a table indicating the number genes modified for DTU or DGE by each 
of the changes you introduce (as well as the total number of genes modified.

○

Why both simulate DTU with a modification of a single isoform and a switch of two 
isoforms if you are not investigating whether it makes a difference - seems 
redundant? (more on that in the DGE benchmark).

○

○

  
In the workflow

Please add a comment of why DRIMSeq have NA as p-values (that will confuse many people)○

  
Post-hoc filtering on DRIMSeq

What is the reasoning beheading this filtering step? And is it statistically valid to do this 
filtering – the proportions and p-values are not independent. Is the modified p-value 
distribution still uniform in the interval [0.05-1[ enabling proper FDR correction?

○

If the filtering is statistically sound why not also do it for the other methods?○

  
Evaluation of methods for DTU. This is the major selling point of the article and the part that 
require most work.

To reflect a very common-use case scenarios the benchmark should also be formed with 2 
replicates. Since the benchmark presented here show quite subtle differences (in TPR vs 
FDR) between 9 and 12 replicates the 2-replicate scenario could for replace either of them.

○
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The benchmark simulation should not only be performed once (one time) as the exact 
samples used in that run will have a large effect (especially for the smaller comparisons). 
Instead 25 simulations should be performed and the average iCOBRA plot could be shown 
(possibly extended to also show variation across the simulations).

○

The benchmark must also include a run on unmodified simulated data to test how many 
false positives are found if there truly are no DTU (which might be the case for some 
datasets).

○

Be consistent and concise in the use of stageR. Either use with no tools or use with all tools 
(or both to also enable a benchmark of stageR). Else the transcript level FDR between tools 
are not comparable). Highlight the difference between perGeneQValue and stageR (or only 
use one of them) or highlight where each is used. For example, it is not clear whether 
stageR was used in figure 3 and if it was whether it was for all tools.

○

Given the success of repurposing DEXSeq to DTU, and the good performance of limma for 
DTE/DGE, the current benchmark could also test a repurposing of limma’s (and edgeR’s) 
differential exon usage test. This is optional – but it would be a huge step forward for 
testing differential isoform usage as it would bring a lot of clarity to the field.

○

Use same axis for the 4 iCOBRA plots to illustrate improvement with increasing number of 
samples. Please include group sizes (e.g. 3 vs 3, 6 vs 6 etc.) in the figure to make it easier to 
read - could be instead of the rather uninformative “overall” facet title.

○

Please comment:
On the large performance increase from “Kallisto + DEXSeq” in Soneson el al, Genome 
Biology 2016 (where FDR performance was quite poor) to the current “Salmon + 
DEXSeq” which performs rather good.

○

On the differences between your benchmark (indicating DEXSeq works better) and 
the benchmark performed by Nowicka et al in the DRIMSeq paper (indicating 
DRIMSeq) works better.

○

○

Please move the evaluation with fixed per-gene dispersion to supplementary material as it 
is just a sanity check.

○

Please end section with a recommendation of what tool to use.○

  
Evaluation of DTU vs DGE

This section belongs in the workflow part of the article.○

 
Evaluation of DGE/DTE

The reason for (re)doing a DGE/DTU benchmark here need to be clearly described (which is 
to test how tools perform when there are also underlying DTU as hinted in Soneson 2016, 
F1000Research).

○

To reflect a very common-use case scenarios the benchmark should also be formed with 2 
replicates. The 2-replicate scenario could replace either the 9 or 12 replicates

○

Table with runtime should be moved to supplementary as it can be summarized as “sleuth is 
slower”.

○

The TPR vs FDR figures are unreadable due to too many lines on top of one another – this 
must be fixed. Furthermore, use same axis for the 4 iCOBRA plots to show improvement 
with increasing number of samples. Please include group sizes in the figure to make it 
easier to read - could be instead of the “overall” facet title.

○

The DGE results are quite surprising – in other recent benchmarks most tools handle FDR 
quite well – which is not the case here.

○
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I suspect this might be due to the DGE where only a single isoform was changed 
(meaning the overall gene expression could change only marginally). Therefore, the 
authors should investigate how the benchmark result differ when only considering 
either the DGE introduce with one isoform upregulated or the DGE with all isoforms 
were upregulated.

○

If the results hold op a comment on how this compare to recent DGE benchmarks is 
necessary

○

If the problem rather seems to be the presence of DTU this should be highlighted and 
discussed.

○

For figure S2 please include the sleuth result on the main simulated data as well else a 
direct comparison (to judge the effect of the GC content) is not feasible

○

Please end section with a recommendation of what tools to use.○

  
Discussion

There also needs to be a discussion around the benchmark part of the paper – it is currently 
completely missing.

○

 
Please don't hesitate to contact me if anything was unclear.
 
Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics with a focus on isoform usage analysis.

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 11 Sep 2018
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Michael Love, University of North Carolina at Chapel Hill, Chapel Hill, USA 

We thank all reviewers for their insightful comments and suggestions that we feel have 
greatly improved the readability and usefulness of the workflow. We summarize the main 
changes and then address reviewer-specific comments point-by-point:

We have addressed all minor text or grammatical suggestions by the reviewers.○

We have re-organized the article into distinct and more separated Workflow and 
Evaluation sections, which was suggested by all reviewers. We begin the article with a 
clear outline, titled: "Structure of this article", which outlines the Workflow part and 
the Evaluation part. This outline has direct links to relevant sections and subsections 
which follow. We have also included an overview diagram of the methods and 
packages included in the Workflow section, and how they are interconnected.

○

We have added to the Introduction more motivational text on why a DTU analysis is 
relevant for biology and biomedical research.

○

We have added a large section describing the methods DEXSeq and DRIMSeq, before 
the Workflow section.

○

We have expanded the original sections discussing counts-from-abundance and their 
use in the workflow, to make our use of the tximport method more clear.

○

For the DEXSeq section, we have corrected an earlier incorrect use of nbinomLRT(), 
which is now replaced with the correct testForDEU(). The practical result is that 
DEXSeq performs somewhat less conservatively, but the original code was incorrect, 
and the fix is necessary. The incorrect use of nbinomLRT() in this context will now 
produce an error in future releases of Bioconductor, to avoid possible incorrect 
usage.

○

We have added RATs to the DTU Evaluation.○

We now apply stageR to all DTU methods that are evaluated: DRIMSeq, DEXSeq, RATs, 
and SUPPA2. The RATs and SUPPA2 methods are described, but the code is not 
provided, as these packages are not part of the Workflow.

○

We use consistent x-axes and y-axes whenever possible, and use PDF instead of JPG 
to reduce compression artifacts. When a consistent x-axis is not used in the main text, 
we include Supplementary Figures with the same plots with outlying methods 
dropped to keep the x-axis consistent.

○

We use a palette in which colors are more discernable for color-blind readers○

In the Evaluation sections, we include additional plots which examine the simulated 
gene type source of false positives for the DTU, DGE, and DTE analyses.

○

We added a new evaluation to examine performance differences between DRIMSeq 
and DEXSeq, using the identical simulated data that was used in Soneson et al (2016) 
and Nowicka and Robinson (2016).

○

We have added a 2 vs 2 simulation for the DTU Evaluation.○

We added a brief overview description of all methods assessed in the DGE and DTE 
Evaluations.

○

We have added more recommendations in the Discussion.○

Reviewer-specific comments: 
 
General comments 
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We believe we have made the separation between Workflow and Evaluation much more 
clear now, and have added an outline to the beginning of the article with hyperlinks to 
subsections and with an overview diagram, as usefully suggested here. 
 
Title 
 
We believe the title is appropriate and does not suggest a new tool. The fact that existing 
tools are leveraged in the workflow is clear from the abstract and the main text. 
 
Introduction 
 
The Bioconductor workflows do not have typical structure with Introduction, Methods, 
Results and Discussion, but instead a prolonged section where relevant concepts are 
typically introduced as needed. See, for example, the DESeq2 workflow: 
https://bioconductor.org/packages/rnaseqGene. We have now added overview descriptions 
of the methods DEXSeq and DRIMSeq before the Workflow section begins. 
 
We have removed BitSeq. We believed earlier that cjBitSeq, which is a new DTU method, 
was implemented in the Bioconductor package BitSeq, but it is a separate GitHub package 
(https://github.com/mqbssppe/cjBitSeq). Since we are listing Bioconductor packages that 
can be used for DTU, we now do not list BitSeq. We now have a separate sentence 
describing stageR and its connection to the DTU methods, and SGSeq (and we mention its 
leveraging of DEXSeq or limma).  
 
We no longer mention the statistical test from Vitting-Seerup and Sandelin (2017). We use 
the suggested purpose description for IsoformSwitchAnalyzeR, link to the 
AlternativeSplicing BiocViews, and include a link to the IsoformSwitchAnalyzeR vignette. 
 
Methods 
 
We now include the number of transcripts with estimated counts greater than 10 in the 
Simulation. We name the various simulations, and use their name when referring to them in 
the main text or captions. 
 
Our purpose in using the countsimQC report is to compare the joint distribution of 
estimated  parameters (mean, dispersion) from the simulation and from the dataset from 
which the estimates were derived. We therefore compare the 24 simulated samples to the 
458 non-duplicated GEUVADIS samples that were used for the estimation of the mean and 
dispersion parameters. We have made this more clear in the caption of the countsimQC 
Supplementary Figure. 
 
We have elaborated on discussion of the different options for counts-from-abundance, 
including the sentence about change in total counts. We include details on the 
recommended counts-from-abundance options through the text and in the overview 
diagram, Figure 1. 
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We state whenever any expression filtering was done. The only expression filtering in the 
DTU section is performed by the filtering functions in DRIMSeq, and the TPM > 1 filter to 
speed up SUPPA2 on the command line. We mention the various expression filters used by 
the different DGE and DTE methods in the Evaluation section for those methods. We include 
in the Simulation section the exact number of genes modified by simulated DGE, simulated 
DTE, and simulated DTU. 
  
We have added a comment on the NA p-values for DRIMSeq in the section in the workflow 
where they are replaced with a p-value of 1. The text now reads: 
 
"From investigating these NA p-value cases for DRIMSeq, they all occur when one condition 
group has all zero counts for a transcript, but sufficient counts from the other condition 
group, and sufficient counts for the gene. DRIMSeq will not estimate a precision for such a 
gene. These all happen to be true positive genes for DTU in the simulation, where the 
isoform switch is total or nearly total. DEXSeq, shown in a later section, does not produce 
NA p-values for any genes. A potential fix would be to use a plug-in common or trended 
precision for such genes, but this is not implemented in the current version of DRIMSeq." 
  
We now perform post-hoc proportion SD filtering on the adjusted transcript p-values for 
DRIMSeq directly, which has little effect on the results. The SD of proportions and the p-
values may possibly be independent under the null hypothesis of no DTU, which is the 
requirement for proper Type I error control of an independent filter [Bourgon (2010)], but 
we do not attempt to provide empirical evidence to support this. Importantly, we apply the 
post-hoc filtering because we have empirical evidence that DRIMSeq was not providing 
uniform p-values for null transcripts on the simulated data explored in this article. 
Therefore, we begin with a non-uniform distribution of p-values for the null transcripts. The 
filtering is shown empirically to improve the FDR control. 
  
We do not perform the simulation multiple times, and we have not extended iCOBRA to 
support multiple iterations on a single plot, which is beyond the scope of this article. We are 
most interested in the relative performance of the various methods, and their general 
location on the TPR-FDR plots, which is achieved with the current evaluation. We did explore 
running DEXSeq 25 times on the 3 vs 3 "main" simulation, and the inter-simulation variation 
in the TPR-FDR plot was minimal. We have uploaded all 24 of the simulated paired-end 
reads to Zenodo, and the dataset is already quite large. We do not run the methods on 
entirely null datasets, which is beyond the scope of this article. 
 
We have now used stageR on all methods. stageR accepts gene-level p-values (or adjusted 
p-values) and transcript-level p-values. If gene-level p-values are not provided by a method 
then DEXSeq's perGeneQValue was used to generate gene-level adjusted p-values, for use 
with stageR. 
 
We do not evaluate other methods for exon usage, as we focus in the workflow on 
Bioconductor methods that have been already proposed and evaluated for DTU analysis in 
publications. 
 
We now use consistent axes, and include the group size in the strip titles. 
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We now evaluate DRIMSeq and DEXSeq on the identical simulation dataset used in both 
Soneson et al (2016) and Nowicka and Robinson (2016). We find similar performance of 
DEXSeq as reported in those papers using a less stringent transcript filter, but when we use 
DRIMSeq count and proportion filters as recommended in this workflow, the performance 
of DEXSeq is greatly improved, to levels consistent with what we see in the "main" 
simulation. 
 
Evaluation of DGE/DTE 
 
We clarify why a DGE and DTE evaluation is included. 
 
We do not perform a 2 replicate DGE or DTE evaluation, as this is beyond the scope of the 
article. 
 
We now breakdown the DGE and DTE results by simulated gene type. We do not see any 
strong enrichment of one simulated gene type in the false positive breakdown plots. We 
believe our evaluation may differ from others in exploring the consistency of results as 
sample size increases. 
 
Discussion 
 
We now include in the Discussion some recommendations on tool usage and performance.  

Competing Interests: No competing interests were disclosed.

Comments on this article
Version 2

Author Response 26 Sep 2018
Michael Love, University of North Carolina at Chapel Hill, Chapel Hill, USA 

Thank you for noting this. This was unfortunately missed during the revision, although we ran the 
new code using testForDEU(), we didn't update that code chunk as it is displayed above. I will 
contact the editors whether it can be fixed or requires a version 3.

Competing Interests: No competing interests were disclosed.

Reader Comment 24 Sep 2018
Simon de Bernard, AltraBio, France 

 
Page 61 of 62

F1000Research 2018, 7:952 Last updated: 26 JUL 2021



Contrary to the "Amendments from Version 1" section, the quoted code still uses "nbinomLRT" 
instead of "testForDEU"

Competing Interests: No competing interests were disclosed.
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